
Model Checking and Verification of the Internet
Payment System with SPIN

Wei Zhang

Shandong Provincial Key Laboratory of Computer Network
Shandong Computer Science Center, Jinan, China

Email:wzhang@keylab.net

Wen-ke Ma, Hui-ling Shi, and Fu-qiang Zhu
Shandong Computer Science Center, Jinan, China

Email:{mawk, shihl, zhufq}@keylab.net

Abstract—With the development of the information
technology, using Internet to pay for goods and services has
become a very popular application. The traditional forms of
payment can not be applied to e-commerce environment.
Because of the complexity of online transactions related to
capital flows and goods flows, the transaction process
requires higher security and reliability. One mature
approach for ensuring reliability is to use formal
methodologies. In this paper, we employ model checking
method to verify the security and reliability of the Internet
Payment Systems. A PROMELA model for the System is
present. As an important part of our modeling methodology,
we translate the Internet Payment System into a simpler
model that nevertheless preserves all the essential behavior
to be verified. We also propose initial results on the actual
verification of the Internet Payment System using SPIN.
The result of our work is a complete procedure for the
modeling and verification of the Internet Payment System.

Index Terms—the Internet Payment Systems, verification,
model checking, SPIN, PROMELA, linear temporal logic

I. INTRODUCTION

In the traditional business activities, the payment
process is mainly classified in paper forms, such as bill
payments and cash payments. Recently the Internet has
become an essential tool for commerce and financial
services. With the help of new communication and
information technologies, these services have
experienced tremendous growth. The traditional forms of
payment can not applied to the e-commerce environment.
The reasons are as following: the traditional payment can
not be binding and monitor between the participants of
the transaction. Quality of the goods, transaction integrity,
and requirements of return and replacement can not be
reliable guarantee. The Financial Institutions focuses
these days to move all payment forms (i.e. transfers, deals,
purchases, and bill payments) to electronic form instead
of paper form.

It is convenient for people to use Internet Payment in
online transactions. Because the online transactions are
related to both capital flows and goods flows, higher
security and reliability is required for the transaction
process. In electronic payments, participants may use
communication protocols for which there are no
transactional variants (e.g. HTTP) and the programs may
be deployed in very heterogeneous application
environments. For these reasons, electronic payment
systems cannot rely on traditional transaction
mechanisms [1]. The research on internet payment
agreements has been the focus of financial payment
system in recent years, in particular, how to ensure the
safety and reliability of the system. Software testing is a
method to verify the security and reliability of systems.
The testing of Internet Payment System has been
conducting and researching in recent years. But there are
not many related works to verify the logic and design of
business processes during the online payment.

One mature approach for ensuring reliability is to use
methodologies based on formal methods. In general, this
approach consists of constructing a computer tractable
description (formal model) of the system design and then
using a specific automatic (or semi-automatic) analysis
technique to prove or to check the satisfaction of a given
set of critical properties [2]. Probably, the most promising
formal methods to ensure a prior reliability is model
checking [3, 4], Analyzing a payment system with model
checking consists of the following steps: (a) construct
model of the payment system with the main features that
could produce execution errors; (b) specify the reliability
properties with a property-oriented language; and (c)
produce the reachability graph including all the execution
paths for the model in order to check whether these paths
satisfy the properties. This technique has been integrated
in many academic and industrial oriented tools [5].

This paper discusses how to employ SPIN [5, 6, 7],
one of the most powerful and well-known model
checking tools, in order to specify and analyze the
correctness of protocols for Internet Payment Systems.
The rest of the paper is organized as follows. Section 2
provides background material on the Internet Payment

Manuscript received July 30, 2011; revised September 5, 2011;
accepted December 19, 2011

This work is supported in part by the National Science Foundation
of China (Grant No. 61070039).

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1941

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.1941-1949

Systems and the model checking technology. Section 3
presents the modeling process. In Section 4, we give
some description of the model, and present some
properties of the system. In Section 5 we show the
experiments of the verification, and discuss the results.
We summarize and discuss related work in Section 6.
And in Section 7, we give some conclusions of the works
we have done, and point out some further works we
would do.

II. BACKGROUND

As theoretic background, we introduce the concepts of
Internet Payment Systems, including the classification of
the payment systems, general process of the online
payment transactions, and some frameworks of the
Internet Payment Systems. Also we introduce the theory
of model checking technology, SPIN which is one of the
model checking tools, and Linear Temporal Logic which
is used for applications in software verification.

A Internet Payment Systems
The growing importance of e-commerce and the ever-

increasing number of business transaction models has
resulted in a plethora of payment systems. Online
payments involve communication with a trusted third
party (TTP) during payment and in general they are
considered as more secure than offline payments that
involve only the payer and the payee.

The vast majority of Internet Payment Systems are
online systems that perform either:
 Credit-card payments (First Virtual, CyberCash, iKP,

Anonymous Credit-Cards).
 Micropayments (NetBill, Millicent, l-iKP, MiniPay

and NetCash).
 Or they are used as payment switches (OpenMarket)

[1].
In this paper, we focus on the Micropayments, which

are widely used in the Internet Payment Systems. The
internet payment generally involves three participants:
consumers (C), merchant (M) and the Trusted Third Party
(TTP). The general process is as follows:

(1)Customers buy goods on the e-commerce sites, and
finally decide to purchase; the customers and merchant
make the intention of the deal online;

(2)Customers choose to use TTP as a intermediary for
the transaction, customers will be paid with a credit card
account designated to TTP;

(3)TTP platform will notify the merchant that the
customers have paid, and require the merchant to deliver
the goods within the specified time;

(4)Merchant receives the notification, and delivers the
goods in accordance with the order;

(5)If customers receive the goods, and they notify TTP,
turn to (6); if customers reject the goods, and then they
notify the TTP, turn to (7).

(6)TTP receives the notification of receipt, and their
accounts transfer to the merchant’s account, the
transaction is completed (transaction successful);

(7)TTP makes their accounts returned to the
customer’s account, the transaction is completed
(transaction failed).

B Model Checking and SPIN
Modal checking is a technique that relies on building a

finite model of a system and checking that a desired
property holds in the model or not. As specified in [8],
Model checking has been used primarily in hardware and
protocol verification. Currently it employed in software
system also. Two approaches for model checking are
used. First is temporal model checking in which
specifications are expressed in a temporal logic and
systems are modeled as finite transition system. In the
second approach the specification is given as an
automaton and the system is also modeled as automaton,
and is compared to the specification to determine whether
its behavior conforms to the specification [16].

There is a wide variety of model checking tools
available, such as the SPIN [6], the NuSMV2 [9], Java
Pathfinder [10], FDR and the MARIA [11]. Among them,
the SPIN model checker represents the most popular one
that provides a friendly user interface and accepts model
specifications written in PROMELA (PROcess MEta
LAnguage) [6, 12]. PROMELA is a language for building
verification models that represent an abstract of a system,
which contains only those aspects that are relevant to the
properties one wants to verify [12]. A PROMELA
program consists of processes, message channels, and
variables. Processes are defined globally; while message
channels and variables can be declared either globally or
locally within a process. Processes are used to specify
system behaviors, and channels and global variables are
used to define the environment in which the processes run.
Examples and further details about the PROMELA
language can be found in references [6, 12].

There are two basic ways to use the SPIN model
checking tool in system verification [12]. The first
approach is to use the tool to construct verification
models that can be shown to have all the required system
properties. Such verification models can serve as
specification models or high-level design models of a
system to be implemented. The second approach is to
start from an existing system, and based on the existing
system, we build verification models that preserve the
system behaviors to be verified [13].

The two main types of temporal logic used in model
checking are Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL). CTL is a branching time logic
that is most suitable for applications in hardware
verification; while LTL is a linear time logic that is
typically used for applications in software verification
[12]. The SPIN model checker supports specification of
system properties using LTL, which has been proven to
have good expressivity and more natural language like
statements for verification [14, 15]. LTL consists of only
a few logic operators, such as “[]” (always), “<>”
(eventually), “U” (until), “W” (unless, or weak until) and
“O” (next). Combining with Boolean operators, i.e.,
“&&” (and), “||” (or), “!” (Negation), “→” (logical
implication) and “↔” (logical equivalence), LTL is

1942 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

capable of describing many key properties of a
concurrent software system.

III. MODELING THE INTERNET PAYMENT SYSTEM

In this section we describe main features of the Internet
Payment Systems which incorporates have been
presented in last sections, and sketch how they can be
specified in PROMELA.

Formal modeling is the first and crucial step in model
checking. In the formal modeling process, we should
ignore the participants which are independent of the
desired characteristics of the system. In order to get an
accurate model of the Internet Payment System, here we
only pay attention to the three objects, the customer, the
merchants and the trusted third party. We overlooked
some objects such as the participants for storage or
transport of goods, so it can simplify the system modeling
process, and also can reduce the time and space overhead
in the validation process.

The internet payment transaction protocol involves
three participants: the consumer (C), the merchant (M)
and the trusted third party (TTP). We use the notation
“ YX ⇒ Message” to indicate that X sends the message
to Y. The basic protocol consists of the following
messages:

1. MC ⇒ Buy
2. CM ⇒ BuyOK or BuyNOK
3. TTPC ⇒ Pay or Deny
4. MTTP ⇒ Pay or Deny
5. TTPM ⇒ Sent
6. CTTP ⇒ Sent
7. TTPC ⇒ Confirm or Back
8. MTTP ⇒ Moneytos
9. MTTP ⇒ Back
10. TTPM ⇒ Backconf
11. CTTP ⇒ Moneybackc
The massage flow is shown in Figure 1 below.

Figure 1. Massage flow in the Internet Payment Systems

Constructing a model for a protocol in PROMELA
requires a previous abstraction process of the original
source code. Usually, this process eliminates details that
are not necessary for debugging purposes. Therefore,
models will be as small as possible making sure that they
represent the exact details needed for the properties to be
analyzed.

Extended Finite State Machine (EFSM) has been the
underlying model as formal description for the
communications protocol. EFSM model is extended with
the finite state machine (FSM) model. Compared with
FSM, there are environmental variables and the migration
of pre-conditions in EFSM. So EFSM model has a
stronger ability to describe the dynamic behavior of the
system. For these reasons, we use EFSM to model the
process, which is formula in the area of model checking,
and also can be described in PROMELA easily.

Figure 2. EFSM of the Internet Payment Systems

Definition: EFSM M is defined as the tuple
(S,s0,V,MV,P,MP,I,O,T), in which:

S is a finite set of states, s0 is the initial state, s0∈S;
V is the finite set of the internal variable (environment

variable), and the range of the internal variable is DV;
MV is the set of the initial (or default) value of

variables in V , in which any element can be expressed as
a tuple (s, v), s∈S, v∈DV;

P is the input and output parameters;
MP is the set of the initial (or default) value of

variables in P, in which any element can be expressed as
a tuple (p, u), p∈I∪O, u∈Dp, Dp is the range of the
input and output parameters;

I is a set of the input symbols;
O is a set of the output symbols;
T is a finite set of state transition.
A state transition t (t∈T) is defined as the tuple

(s,x,y,gP,gE,op,e), where:
s and t are the start (head) state and the end (tail) state;
gP is the input and output conditions to determine;
gE is the conditions to determine of the variable

required for migration;
x and y are the input and output symbols;
op is output operations.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1943

© 2012 ACADEMY PUBLISHER

Figure 2 shows the EFSM model of the Internet
Payment System, containing 5 states and 8 state
transitions. The label “buy<=goods/buyOK” means that,
when the input symbol of the state BUY satisfying
“buy<=goods”, the state will be converted to the state
PAY, and it will output the symbol buyOK. The label
"pay/goods:=goods-buy, sent" means that, when the input
symbol is pay, the state PAY will be converted to the state
CONFIRM, and it perform the operation “goods:=goods-
buy” and output the symbol sent.

According to the analysis of message flow above, we
have abstracted three processes, named Customer, Seller
(Merchant), and Netpay (abstract of the TTP and the
back). The fragment of PRMELA code that represents
EFSM from Figure 2 is presented in Figure 3 as the
Customer Process. In this fragment, each label like
“cus_init” represents each state of the process. Notation
“∷” denotes the possible nondeterministic choices of
further execution options inside bodies of if and do
operations. The option can be selected if its guard (the
first statement followed after “∷”) is enabled, that is
executable. If more then one option is enabled, one will
be selected at random. Notation “goto” means the process
turn from one state to another state. Notation
“customer_seller!buy” means sending value from
variable buy to channel customer_seller. The variable buy
defined for the number of goods bought by the customer.
The similar situation is shown in Figure 4 for the seller
process. The variable goods defined for the number of
goods left in the seller. Notation “customer_seller?buy”
means receiving a message from channel customer_seller
into variable buy. The Netpay process is similar as the
processes discussed above, we would not show the
fragment in this paper. More details about PROMELA
semantics can be found in [12].

Figure 3. Fragment of Customer Process in PROMELA

Figure 4. Fragment of Seller Process in PROMELA

……
chan customer_netpay=[0] of {mtype};
chan customer_seller=[0] of {int};
chan seller_netpay=[0] of {mtype};
chan netpay_customer=[0] of {mtype};
chan seller_customer=[0] of {mtype};
chan netpay_seller=[0] of {mtype};
……

Figure 5. Fragment of the channels’ definition in PROMELA

Channels are used to model data flow between
processes and can be either globally scoped or locally
scoped within a single process. Channels can have a
predetermined storage capacity. When the channel
capacity has been reached, additional messages sent to
the channel will be dropped. The fragment presented in
Figure 5 shows how to define the channels.

In Figure 3 and 4, there is a different point between
them. In Figure 4, there is a notation active before the
notation proctype. It means the process is alive when the
program begins running. Because there can be several
Customer processes, so we use this init process to run
these Customer processes. The init process is shown in
Figure 6 below.

init {
 int i;

i = 1;
do

:: (i <=5) ‐>run customer(i); i++

:: else ‐>
break

od;
}

Figure 6. Fragment of init process in PROMELA

IV. DESCRIPTION OF THE MODEL AND PROPERTIES

In the last section, the Internet Payment System
modeling in PROMELA has been completed. In the
modeling process, we have done lots of abstraction to
prevent the state explosion. The main purpose of this
paper is to verify the process of internet payment
transactions for any errors, so the model does not reflect
the identity, password authentication and other security
aspects of the process, these parts will also be the focus
of our future research. Although it has been abstracted,
this model still can describe the actual process of the
internet transactions. The more details we will introduce
are as following.

A Partial Return.
The actual business is to buy, return, and partial return.

But in the model, it is given that only two types of
business processes, to buy and return. Figure 7 shows the
two different behaviors of the customers. In fact, partial
return can be seen as made of two customers. One
customer is to buy and not return, and the other is to all
return. Thus, our model can represent all kinds of
behaviors of customers.

In more detail, one customer buys i, the number of
goods, returns j to the seller. Ii is equivalent to that, there
are two abstract customers in the model, one buys (i-j),

1944 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

and the other buys j , returns all j back to the seller. The
states of the two customers actually represent the
customer who is in the case of the partial return.

Figure 7. Two different behaviors of customers

B Several Cases of Different Values of Variables
In the model, there are three main variables represent

the different meanings. The variable i means the number
of customers. The variable buy means the number of
goods bought by each customer. And the variable goods
means the inventory of merchant. The three variables
given different initial values, there will be several
different situations, which represent the different actual
payment business.

There are two major types of cases of the variable i.
When it is i<=1 in the loop in Figure 6, there is only one
customer process running. When i <= any number larger
than 1, there will several concurrent customer processes
running together. If there are concurrent processes
running, the Seller process will control each customer to
turn correct state. Specific control process can be seen in
the fragment of Seller process in Figure 4, and the detail
of the next states is shown in Figure 8.

Figure 8. Different situations of the state BUY

In Figure 8, we will see that the other two variables
buy and goods are compared in the process. Also it
represents two different situations. If it is the situation of
“buy<=goods”, it means the customer can buy the goods,
as there are enough inventories of the seller. If it is the
situation of “buy>goods”, it means there are not enough
inventories. The process will turn back to the state INIT.
So, if these two variables are defined by the initial values
to meet the condition “buy>goods”, there will be some
of the states that could never been reached. We will
discuss these cases in more detail with experiments in
Section 5.

C Properties Description
As explained in Section 2, SPIN supports two main

kind of analysis for the modeled protocols. The first one
consists of checking deadlocks and other safety properties
by generating the execution paths in the model. The
second kind of analysis consists of checking temporal
properties specified with temporal logic. Here we
describe correctness criteria we are interested in, and
show how they can be defined in SPIN. In order to
formalize both desired and undesired properties of the
Internet Payment Systems, we use LTL (linear temporal
logic notation), which has been explained in Section 2.
LTL allows expressing temporal properties we expect the
system behavior will conform to during the system
lifetime. Such properties can be seen as a part of
requirement specification. Expression of properties in the
formal LTL notation gives both an unambiguous
presentation of expected system behavior and possibility
to verify whether the system model conforms to the
requirements. LTL formulae can express both safety and
aliveness properties, and are effectively supported in
SPIN.

Examples of typical requirements to the internet
payment behavior can be formulated in plain English as
following. For customers, the customers need the support
of the payment is guaranteed:

(1) Before receiving confirmation, the trusted third
party will not pay the money to the merchant;

(2) IF customers are not satisfied with the goods, after
the required return, the trusted third party will refund
money to customers;

For the merchant, the business requires the support of
the Internet Payment System guaranteed: After
confirmation of receipt in customer, the trusted third-
party party will pay the money to the merchant. That
requires the support of the system:

(3) When transaction succeeds, the customers receive
the goods, the merchant get money from the trusted third
party.

(4) When transaction fails, the goods are returned to
the merchant, and the money is back to the customers
from the trusted third party.

According to section of the formal modeling and
system security requirements, several formulas should be
defined. The fragment is shown in Figure 9, in which, p1
represents the customer confirms the transaction, q1
means the TTP pays the money to the merchant, p2
represents the TTP tells the merchant that the customer

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1945

© 2012 ACADEMY PUBLISHER

want to return the goods, and q2 means the TTP gives the
money back to the customer.

Figure 9. Fragment of formulas defined in PROMELA

In this case the requirement expressing correct
behavior can be expressed in LTL formula as:

)1&&2(!&&)2&&1(!&&)22(&&)11(qpqpqpqp <><>→<>→<>

 Since SPIN analyzes all possible behaviors of the model
including the case when the LTL formula above is false,
the formula is false will always be discovered if it exists.
The properties expressed in the form of linear temporal
logic statements will be verified by applying model-
checking system SPIN in the next section.

V. EXPERIMENTS

If a specification of model has been given in
PROMELA, SPIN can search the whole state space of the
model; it also can identify unreachable state or deadlock
in model. In addition, SPIN can construct a verifier,
which can check several claims on the execution of the
model. We have established the model of the Internet
Payment System in PROMELA, and analyzed the
properties in last sections. These properties include the
values of certain variables at certain points in the code
and true statements that can be made about execution
states (state properties) or the paths of execution (path
properties). In this section, we present various kinds of
verification that can be performed on a PROMELA
model described in the sections above. Using SPIN and
the PROMELA specification presented above, several
properties of the execution of the model were verified.
These properties were verified as part of several
experiments described below. For each experiment, the
size of the model constructed by SPIN, the time for
verification were measured. The experiments were
carried out on a 2.0GHz Pentium duel machine with
2048MB of memory.

A Experiment 1
First we have let SPIN perform a full state space

search for invalid end states, which is SPIN’s
formalization of deadlock states, in case of 5 customers,
buy=2, and goods=100. The results are shown in Figure
10. Here we give the meaning of each line in the results.

The first line lists the version of SPIN used in the
experiments. In line 2, the “+” represents the default
simple algorithms is used, else, the “-” represents it is
fully complied without simplification. We can add
options “- DNOREDUCE” to achieve a fully compiled.
Line 3 represents the type of search. In this case, it is the
default type, that is all state-space search. The “-” in line
4 means it is not use “never” declare or LTL formulas.
Line 5 indicates that the detection process does not
violate the user-defined statements (assert). Line 6
indicates that the process does not detect the current user-
defined acceptable cycle or no progress marked circle.
The “+” in line 7 represents the correct end state, which
means there is no deadlock. The following lines are easy
to understand. We focus on the lines from 15 to 25. These
lines represent the unreached states. Since the model of
the Internet Payment System is an infinite loop, the
process will never reach the end state.

 (Spin Version 6.1.0 ‐‐ 4 May 2011)
+ Partial Order Reduction

 Full statespace search for:
never claim ‐ (none specified)
assertion violations +
cycle checks ‐ (not selected)
invalid end states +

 State‐vector 100 byte, depth reached 3162, errors: 0
 14750894 states, stored
 32353853 states, matched
 47104747 transitions (= stored+matched)
 0 atomic steps
 hash conflicts: 26864854 (resolved)

 1616.172 memory usage (Mbyte)

 unreached in proctype customer
NETPAY04.pml:89, state 38, "‐end‐"
(1 of 38 states)

 unreached in proctype seller
NETPAY04.pml:139, state 43, "‐end‐"
(1 of 43 states)

 unreached in proctype netpay
NETPAY04.pml:176, state 35, "‐end‐"
(1 of 35 states)

 unreached in init
(0 of 10 states)

 pan: elapsed time 51.8 seconds
 pan: rate 284711.33 states/second

Figure 10. Results of verification of 5 customers

TABLE I.
RESULTS OF VERIFICATION OF 1-5 CUSTOMERS

Number of
Customers Elapsed time Memory usage States stored States matched Transitions Depth

1
2
3
4
5

0.02s
0.11s
0.45s
6.02s
51.8s

3.418Mb
8.105Mb
24.902Mb

210.832Mb
1616.172Mb

10952
61358
244672

2023217
14750894

5221
69959
269288

3361364
32353853

16173
131317
513960

5384581
47104747

1087
1198
1264
1426
3162

1946 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

B Experiment 2
We have let SPIN perform a full state space search in

cases of 1-5 customers, and the variable buy=2,
goods=100. The results are summarized in Table I. The
exponential increase in number of states, memory usage
and verification time, seems to be not manageable when
checking more than 5 customers. In case of 6 customers,
the available physical memory was insufficient.

Since checking more than two customers is
superfluous and violates the requirement that the
verification model be the minimum sufficient model to
perform the verification successfully. In Figure 11, we
can see the memory usage is in the exponential growth
with the number of customers increasing. We do not gain
in verification power by checking more than 5 customers.
In our future research we will search for a better
modeling of loops that will minimize the state explosion
that has been revealed by our experiments.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5

Number of costumers

M
em

or
y

us
ag

e
(M

by
te

)

Figure 11. Memory usage of 1-5 customers

C Experiment 3
In the experiments, we define the variable as a special

case, in which we define the variable buy=3 and goods=2.
This means that in the initial state, the determination is
consistent with “buy>goods”. We have let SPIN perform
a full state space search in this case. The results are
shown in Figure 12. The meaning of the first few lines in
the results has been introduced in above cases. Compared
with the results in Figure 10, we will find the differences
mainly in “unreached in proctype”. In other words, many
states are unreachable in this case.

Because the two variables are defined by the initial
values to meet the condition “buy>goods”, all customers
will not succeed to buy the goods. As shown in Figure 8,
all customers will get the massage “buyNOK”, which
means they cannot buy the goods. So the situation
“seller_customer!buyOK” will never arise. All the
customers in the state BUY will turn back to the state
INIT, and the states behind the state BUY would never
been reached. For this reason, it is acceptable that there
are so many states unreachable in the results shown in
Figure 12.

In the experiments, we also have tried to simulate the
actual situation as more as possible, and add the property
which we will verify into the process. In the actual
internet payment, the quantity of goods bought by each
customer is not the same. Although we can not simulate

the random number of goods bought by each customer,
we can define the variable buy=i, approximating the
actual situation. Thus, the process can simulate different
numbers of goods for each customer. Several interesting
liveness claims can be made about the Internet Payment
System. We have described the properties in LTL
formula in last section. The experiment shows that the
verification of the model of the Internet Payment System
that does not contain any loops can be done very
effectively. The results of these experiments show that
there is no error in the design of the Internet Payment
System.

 (Spin Version 6.1.0 ‐‐ 4 May 2011)
+ Partial Order Reduction

……
 State‐vector 76 byte, depth reached 11, errors: 0
 13 states, stored
 3 states, matched
 16 transitions (= stored+matched)
 0 atomic steps
 hash conflicts: 0 (resolved)

 2.539 memory usage (Mbyte)

 unreached in proctype customer
 NETPAY04.pml:73, state 28, "customer_netpay!confirm"

……
(3 of 37 states)

 unreached in proctype seller
 NETPAY04.pml:99, state 4, "seller_customer!buyOK"

……
(10 of 43 states)

 unreached in proctype netpay
 NETPAY04.pml:145, state 2, "netpay_seller!pay"

……
(11 of 33 states)

 unreached in init
(0 of 10 states)

 pan: elapsed time 0 seconds

Figure 12. Results of verification of the buy>goods condition

If we have detected any situation which do not meet
the properties in the other model of protocol, SPIN can
display these paths. We call these paths as counter-
examples. According to the counterexample generated by
SPIN, developers have the opportunity to understand
wrong business process behavior, to locate errors and to
effect right changes for correcting business process
design. Then, the modified design is again submitted to
SPIN for verification. This methodology determines a
gradual correction and refinement of business process
models, before it is definitely implemented.

VI. RELATED WORK

Research on model checking has been conducted based
on an underlying logical representation. Many tools have
been built to model checking FSM- or EFSM- based
systems. Tools for Model checking such as SMV [9],
SPIN [6] and FDR have been used by researchers and
industrialists to find bugs in circuit designs, floating point
standards, cache coherence protocols for multiprocessors.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1947

© 2012 ACADEMY PUBLISHER

Recently model checking has also been applied to check
software systems and protocols. Parts of our work refer
to model checking fault tolerance with respect to the
Internet Payment System guarantees.

The vast majority of Internet Payment Systems are
online systems that perform either. A detailed description
of the forenamed types of Internet Payment Systems is
given in [17, 18, 19] .In Reference [20], the authors
provide a thorough treatment of the most fundamental
security requirements, as well as a complete source of
references. In Reference [21], the authors point out the
need for custom-made payment systems, which provide
payment services that are extended beyond the traditional
bilateral transaction model. There are also many papers
introducing the development of the Internet Payment
Systems, such as Reference [28]. The system discussed in
our article is based on the Internet Payment Systems
introduced in all the papers above.

The authors of [23] point out the need for a systematic
treatment of the correctness properties required in
Internet Payment Systems. Reference [24] is finding that
e-Business managers, developers, and auditors require
robust tools to assure users that Internet Payment Systems
are secure and reliable. Designing and implementing
highly secure and reliable e-processes is challenging and
requires adherence to several specific criteria to be
effective. The authors of [22] use a model checking tool
to examine the non-security characteristics of e-processes
to verify the money and goods atomicity properties of
two online payment processes, which are Digicash [25]
and NetBill [26]. This seminal work demonstrated how to
model the Internet Payment Systems and their properties
of interest in a process algebra language, CSP, which is
the language used in FDR [27].The author of [1] gives a
roadmap to electronic payment transaction guarantees
and a Colored Petri NET model checking approach. The
paper uses the model checker based Colored Petri Net.

 Our work builds on the insights in the above work in
model checking methods which are using SPIN and
specified declaratively by EFSM. There are also many
papers in the area model checking with SPIN, but not for
the Internet Payment Systems, such as Reference [29, 31,
and 32]. These papers also bring a lot of learning to our
approach.

Our approach improves on the internet payment in
three directions. First, we provide a model based EFSM
for the Internet Payment Systems in PROMELA. As a
result, the verification procedure can detect interactions
of each behavior of online payments. Second, as the
important part of our modeling methodology, we translate
the Internet Payment System into a simpler model that
nevertheless preserves all the essential behavior to be
verified. Third, we provide initial results on the actual
verification of the Internet Payment System using SPIN.
The result of our work is a complete procedure for the
modeling and verification of the Internet Payment System.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a model checking
approach to verify the Internet Payment Systems. First we

analyzed the general Internet Payment Systems, including
the internet payment protocol, the participants of the
payment transactions, and the massage flow in the system.
We proposed an EFSM model, and translated the model
in PROMELA. We also summarized a set of LTL
formulas that can guarantee the reliability of the
transactions. And then we did some experiments, which
can prove that our model can simulate the actual
transactions. Also the initial results on the verification of
the Internet Payment System using SPIN were provided.
Our approach can be easily extended to support model
checking debugging new design of the Internet Payment
Systems using the SPIN tool. The designers may simulate
their active applications with our method.

For our future work, we will try to combine our
approach with more details of the Internet Payment
Systems, such as password authentication and other
security-related properties. Also in our future research,
we will search for a better modeling of loops, which will
minimize the state explosion revealed by our experiments.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China under Grant No.
61070039, the Fund for the Doctoral Research of
Shandong Academy of Sciences under Grant No. 2010-
12, and the Outstanding Young and Middle-aged
Scholars Foundation of Shandong Province of China
under Contract No. BS2011DX033.

REFERENCES

[1] P. Katsaros, “A roadmap to electronic payment transaction
guarantees and a Colored Petri Net model checking
approach,” Information and Software Technology, Elsevier,
vol.51, pp. 235–257, 2009.

[2] M. M. Gallardo, J. Martinez and P. Merino, “Model
checking active networks with SPIN,” Computer
Communications, Elsevier, vol.28, pp. 609–622, 2005.

[3] E.M. Clarke, E.A. Emerson and A.P. Sistla, “Automatic
verification of finite-state concurrent systems using
temporal logic specifications,” ACM Trans. on
Programming Languages and Systems, vol.8 (2), pp.244–
263, Apr. 1986.

[4] E. Clarke, O. Grumberg and D. Peled, Model Checking,
MIT Press, Cambridge, 2000.

[5] G.J. Holzmann, Design and Validation of Comp. Protocols,
Prentice-Hall, Englewood Cliffs, NJ, 1991

[6] G.J. Holzmann, “The model checker SPIN,” IEEE
Transactions on SE, vol.23 (5), pp. 279–295, 1997.

[7] On-the-fly LTL model checking with SPIN.
http://spinroot.com/spin/whatispin.html

[8] E. M. Clark and J. M. Wing, “Formal methods: State of the
art and future directions,” ACM Computing Surveys, Vol.
28(4), pp. 1–18, 1996.

[9] A. Cimatti, E. M. Clarke, E. Giunchiglia, et al. “NuSMV2:
An OpenSource Tool for Symbolic Model Checking,”
Proceeding of International Conference on Computer-
Aided Verification (CAV2002), Copenhagen, Denmark,
July 2002.

[10] K. Havelund. “Java PathFinder: A Translator from Java to
PROMELA,” Proceedings of the 5th and 6th International

1948 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

SPIN Workshops on Theoretical and Practical Aspects of
SPIN Model Checking, Springer-Verlag, pp. 152, 1999.

[11] M. Makela, “Maria: Modular Reachability Analyser for
Algebraic System,” Application and Theory of Petri Nets
2002, 23rd International Conference, ICATPN 2002, Vol.
2360, pp. 434–444, June 2002.

[12] G. J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual, Addison Wesley, 2004.

[13] H. Xu and Y-T. Cheng, “Model Checking Bidding
Behaviors in Internet Concurrent Auctions,” International
Journal of Computer Systems Science & Engineering
(IJCSSE), Vol. 22, No. 4, pp. 179–191, July 2007.

[14] Z. Manna and A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems: Specification, Springer-Verlag,
1992.

[15] E. M. Clarke, O. Grumberg, and K. Hamaguchi, “Another
Look at LTL Model Checking,” Formal Methods in System
Design, Vol. 10, pp. 47-71, February 1997.

[16] R. Shaikh and S. Devane, “Formal verification of payment
protocol using AVISPA,” International Journal for
Infonomics, Vol.3, Issue 3, September 2010.

[17] H.M. Deitel, P.J. Deitel and T.R. Nieto, e-Business & e-
Commerce: How to Program, Prentice Hall, 2001.

[18] A. Pombortsis and A. Tsoulfas, An Introduction to
Electronic Commerce, Tziolas Publishers, 2002.

[19] L. Ferreira and C. Dahab, “A scheme for analyzing
electronic payment systems,” Proceedings of the 14th
Annual Computer Security Applications Conference, IEEE
Computer Society, pp.137–146, 1998.

[20] N. Asokan, P. Janson, M. Steiner, et al. “State of the art in
electronic payment systems,” IEEE Computer, vol.30 (9),
pp. 28–35, 1997.

[21] H. Schuldt, A. Popovici and H.J. Schek, “Automatic
generation of reliable e-commerce payment processes,”
Proceedings of the First International Conference on Web
Information Systems Engineering (WISE00), IEEE
Computer Society, vol. 1, pp. 434–441, 2000.

[22] N. Heintze, J. Tygar, J. Wing, et al. “Model checking
electronic commerce protocols,” Proceedings of the
Second USENIX Work-shop in Electronic Commerce,
Oakland, CA, USENIX Association, California, pp. 146–
164, 1996.

[23] B. Pfitzmann and M. Waidner, “Properties of payment
systems – General definition sketch and classification,”
Research Report RZ 2823(#90126), IBM Research
Division, May 1996.

[24] I. Ray, “Failure analysis of an e-commerce protocol using
model checking,” Proceedings of the Second International
Work-shop on Advanced Issues of e-Commerce and Web-
based Information Systems, Milpitas, CA, 2000.

[25] D. Chaum, A. Fiat and M. Naor, “Untraceable electronic
cash,” Advances in Cryptology, CRYPTO ’88 Proceedings,
1990.

[26] B. Cox, J. Tygar and M. Sirbu, “Netbill security and
transaction protocol,” Proceedings of the First USENIX
Workshop in Electronic Commerce, July 1995.

[27] G. Lowe, “Breaking and fixing the needham-schroeder
publickey protocol using FDR,” Tools and Algorithms for
the Construction and Analysis of Systems: Second
International Work-shop, TACAS, March 1996.

[28] Z. Duric, O. Maric and D. Gasevic, “Internet Payment
System: A new payment system for internet transactions,”
Journal of Universal Computer Science, vol. 13(4),
pp.479-503, 2007.

[29] R. Zeng and X. He, “Analyzing a formal specification of
mondex using model checking,” Lecture Notes in
Computer Science, Springer-Verlag, Berlin Heidelberg,
vol.6255, pp. 214-229, 2010.

[30] H. Cao, S. Ying and D. Du, “Towards model-based
verification of BPEL with model checking,” Proceedings
of the sixth IEEE international conference on computer
and information technology (CIT06), IEEE, 2006.

[31] J. Bentahar, J. Meyer and W. Wan, “Model checking
communicative agent-based systems,” Knowledge-Based
Systems, Elsevier, vol.22, pp.142–159, 2009.

[32] M. H. Beek, M. Massink, D. Latella, et al. “Model
checking Publish/Subscribe notification for thinkteam,”
Electronic Notes in Theoretical Computer Science,
Elsevier, vol. 133, pp.275–294, 2005.

Wei Zhang was born in Tai’an, China, in 1983. He
received the B.S. degree in Mechanics from Zhejiang
University in 2004 and the M.S. degree in Computer
Software and Theory from Liaoning University in 2008.
He works in Shandong Computer Science Center, where
his research interests are in Software Testing, Formal
Verification, test sequence generation methods, and so on.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1949

© 2012 ACADEMY PUBLISHER

