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Abstract—With the development of the information 
technology, using Internet to pay for goods and services has 
become a very popular application. The traditional forms of 
payment can not be applied to e-commerce environment. 
Because of the complexity of online transactions related to 
capital flows and goods flows, the transaction process 
requires higher security and reliability. One mature 
approach for ensuring reliability is to use formal 
methodologies. In this paper, we employ model checking 
method to verify the security and reliability of the Internet 
Payment Systems. A PROMELA model for the System is 
present. As an important part of our modeling methodology, 
we translate the Internet Payment System into a simpler 
model that nevertheless preserves all the essential behavior 
to be verified. We also propose initial results on the actual 
verification of the Internet Payment System using SPIN. 
The result of our work is a complete procedure for the 
modeling and verification of the Internet Payment System.  
 
Index Terms—the Internet Payment Systems, verification, 
model checking, SPIN, PROMELA, linear temporal logic 

I.  INTRODUCTION 

In the traditional business activities, the payment 
process is mainly classified in paper forms, such as bill 
payments and cash payments. Recently the Internet has 
become an essential tool for commerce and financial 
services. With the help of new communication and 
information technologies, these services have 
experienced tremendous growth. The traditional forms of 
payment can not applied to the e-commerce environment. 
The reasons are as following: the traditional payment can 
not be binding and monitor between the participants of 
the transaction. Quality of the goods, transaction integrity, 
and requirements of return and replacement can not be 
reliable guarantee. The Financial Institutions focuses 
these days to move all payment forms (i.e. transfers, deals, 
purchases, and bill payments) to electronic form instead 
of paper form. 

It is convenient for people to use Internet Payment in 
online transactions. Because the online transactions are 
related to both capital flows and goods flows, higher 
security and reliability is required for the transaction 
process. In electronic payments, participants may use 
communication protocols for which there are no 
transactional variants (e.g. HTTP) and the programs may 
be deployed in very heterogeneous application 
environments. For these reasons, electronic payment 
systems cannot rely on traditional transaction 
mechanisms [1]. The research on internet payment 
agreements has been the focus of financial payment 
system in recent years, in particular, how to ensure the 
safety and reliability of the system. Software testing is a 
method to verify the security and reliability of systems. 
The testing of Internet Payment System has been 
conducting and researching in recent years. But there are 
not many related works to verify the logic and design of 
business processes during the online payment. 

One mature approach for ensuring reliability is to use 
methodologies based on formal methods. In general, this 
approach consists of constructing a computer tractable 
description (formal model) of the system design and then 
using a specific automatic (or semi-automatic) analysis 
technique to prove or to check the satisfaction of a given 
set of critical properties [2]. Probably, the most promising 
formal methods to ensure a prior reliability is model 
checking [3, 4], Analyzing a payment system with model 
checking consists of the following steps: (a) construct 
model of the payment system with the main features that 
could produce execution errors; (b) specify the reliability 
properties with a property-oriented language; and (c) 
produce the reachability graph including all the execution 
paths for the model in order to check whether these paths 
satisfy the properties. This technique has been integrated 
in many academic and industrial oriented tools [5].  

This paper discusses how to employ SPIN [5, 6, 7], 
one of the most powerful and well-known model 
checking tools, in order to specify and analyze the 
correctness of protocols for Internet Payment Systems. 
The rest of the paper is organized as follows. Section 2 
provides background material on the Internet Payment 
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Systems and the model checking technology. Section 3 
presents the modeling process. In Section 4, we give 
some description of the model, and present some 
properties of the system. In Section 5 we show the 
experiments of the verification, and discuss the results. 
We summarize and discuss related work in Section 6. 
And in Section 7, we give some conclusions of the works 
we have done, and point out some further works we 
would do. 

II.  BACKGROUND 

As theoretic background, we introduce the concepts of 
Internet Payment Systems, including the classification of 
the payment systems, general process of the online 
payment transactions, and some frameworks of the 
Internet Payment Systems. Also we introduce the theory 
of model checking technology, SPIN which is one of the 
model checking tools, and Linear Temporal Logic which 
is used for applications in software verification. 

A  Internet Payment Systems 
The growing importance of e-commerce and the ever-

increasing number of business transaction models has 
resulted in a plethora of payment systems. Online 
payments involve communication with a trusted third 
party (TTP) during payment and in general they are 
considered as more secure than offline payments that 
involve only the payer and the payee. 

The vast majority of Internet Payment Systems are 
online systems that perform either: 
 Credit-card payments (First Virtual, CyberCash, iKP, 

Anonymous Credit-Cards). 
 Micropayments (NetBill, Millicent, l-iKP, MiniPay 

and NetCash). 
 Or they are used as payment switches (OpenMarket) 

[1]. 
In this paper, we focus on the Micropayments, which 

are widely used in the Internet Payment Systems. The 
internet payment generally involves three participants: 
consumers (C), merchant (M) and the Trusted Third Party 
(TTP). The general process is as follows: 

(1)Customers buy goods on the e-commerce sites, and 
finally decide to purchase; the customers and merchant 
make the intention of the deal online; 

(2)Customers choose to use TTP as a intermediary for 
the transaction, customers will be paid with a credit card 
account designated to TTP; 

(3)TTP platform will notify the merchant that the 
customers have paid, and require the merchant to deliver 
the goods within the specified time; 

(4)Merchant receives the notification, and delivers the 
goods in accordance with the order; 

(5)If customers receive the goods, and they notify TTP, 
turn to (6); if customers reject the goods, and then they 
notify the TTP, turn to (7). 

(6)TTP receives the notification of receipt, and their 
accounts transfer to the merchant’s account, the 
transaction is completed (transaction successful); 

(7)TTP makes their accounts returned to the 
customer’s account, the transaction is completed 
(transaction failed). 

B  Model Checking and SPIN 
Modal checking is a technique that relies on building a 

finite model of a system and checking that a desired 
property holds in the model or not. As specified in [8], 
Model checking has been used primarily in hardware and 
protocol verification. Currently it employed in software 
system also. Two approaches for model checking are 
used. First is temporal model checking in which 
specifications are expressed in a temporal logic and 
systems are modeled as finite transition system. In the 
second approach the specification is given as an 
automaton and the system is also modeled as automaton, 
and is compared to the specification to determine whether 
its behavior conforms to the specification [16].  

There is a wide variety of model checking tools 
available, such as the SPIN [6], the NuSMV2 [9], Java 
Pathfinder [10], FDR and the MARIA [11]. Among them, 
the SPIN model checker represents the most popular one 
that provides a friendly  user interface and accepts model 
specifications written in PROMELA (PROcess MEta 
LAnguage) [6, 12]. PROMELA is a language for building 
verification models that represent an abstract of a system, 
which contains only those aspects that are relevant to the 
properties one wants to verify [12]. A PROMELA 
program consists of processes, message channels, and 
variables. Processes are defined globally; while message 
channels and variables can be declared either globally or 
locally within a process. Processes are used to specify 
system behaviors, and channels and global variables are 
used to define the environment in which the processes run. 
Examples and further details about the PROMELA 
language can be found in references [6, 12]. 

There are two basic ways to use the SPIN model 
checking tool in system verification [12]. The first 
approach is to use the tool to construct verification 
models that can be shown to have all the required system 
properties. Such verification models can serve as 
specification models or high-level design models of a 
system to be implemented. The second approach is to 
start from an existing system, and based on the existing 
system, we build verification models that preserve the 
system behaviors to be verified [13]. 

The two main types of temporal logic used in model 
checking are Computation Tree Logic (CTL) and Linear 
Temporal Logic (LTL). CTL is a branching time logic 
that is most suitable for applications in hardware 
verification; while LTL is a linear time logic that is 
typically used for applications in software verification 
[12]. The SPIN model checker supports specification of 
system properties using LTL, which has been proven to 
have good expressivity and more natural language like 
statements for verification [14, 15]. LTL consists of only 
a few logic operators, such as “[]” (always), “<>” 
(eventually), “U” (until), “W” (unless, or weak until) and 
“O” (next). Combining with Boolean operators, i.e., 
“&&” (and), “||” (or), “!” (Negation), “→” (logical 
implication) and “↔” (logical equivalence), LTL is 
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capable of describing many key properties of a 
concurrent software system. 

III.  MODELING THE INTERNET PAYMENT SYSTEM 

In this section we describe main features of the Internet 
Payment Systems which incorporates have been 
presented in last sections, and sketch how they can be 
specified in PROMELA. 

Formal modeling is the first and crucial step in model 
checking. In the formal modeling process, we should 
ignore the participants which are independent of the 
desired characteristics of the system. In order to get an 
accurate model of the Internet Payment System, here we 
only pay attention to the three objects, the customer, the 
merchants and the trusted third party. We overlooked 
some objects such as the participants for storage or 
transport of goods, so it can simplify the system modeling 
process, and also can reduce the time and space overhead 
in the validation process. 

The internet payment transaction protocol involves 
three participants: the consumer (C), the merchant (M) 
and the trusted third party (TTP). We use the notation 
“ YX ⇒ Message” to indicate that X sends the message 
to Y. The basic protocol consists of the following 
messages: 

1. MC ⇒  Buy 
2. CM ⇒  BuyOK or BuyNOK 
3. TTPC ⇒  Pay or Deny 
4. MTTP ⇒  Pay or Deny 
5. TTPM ⇒  Sent 
6. CTTP ⇒  Sent 
7. TTPC ⇒  Confirm or Back 
8. MTTP ⇒  Moneytos 
9. MTTP ⇒  Back 
10. TTPM ⇒  Backconf 
11. CTTP ⇒ Moneybackc 
The massage flow is shown in Figure 1 below. 

 
Figure 1.  Massage flow in the Internet Payment Systems 

Constructing a model for a protocol in PROMELA 
requires a previous abstraction process of the original 
source code. Usually, this process eliminates details that 
are not necessary for debugging purposes. Therefore, 
models will be as small as possible making sure that they 
represent the exact details needed for the properties to be 
analyzed. 

Extended Finite State Machine (EFSM) has been the 
underlying model as formal description for the 
communications protocol. EFSM model is extended with 
the finite state machine (FSM) model. Compared with 
FSM, there are environmental variables and the migration 
of pre-conditions in EFSM. So EFSM model has a 
stronger ability to describe the dynamic behavior of the 
system. For these reasons, we use EFSM to model the 
process, which is formula in the area of model checking, 
and also can be described in PROMELA easily.  

 
Figure 2.  EFSM of the Internet Payment Systems 

Definition: EFSM M is defined as the tuple 
(S,s0,V,MV,P,MP,I,O,T), in which:  

S is a finite set of states, s0 is the initial state, s0∈S;  
V is the finite set of the internal variable (environment 

variable), and the range of the internal variable is DV; 
MV is the set of the initial (or default) value of 

variables in V , in which any element can be expressed as 
a tuple (s, v), s∈S, v∈DV; 

P is the input and output parameters; 
MP is the set of the initial (or default) value of 

variables in P, in which any element can be expressed as 
a tuple (p, u), p∈I∪O, u∈Dp, Dp is the range of the 
input and output parameters; 

I is a set of the input symbols;  
O is a set of the output symbols;  
T is a finite set of state transition. 
A state transition t (t∈T) is defined as the tuple 

(s,x,y,gP,gE,op,e), where: 
s and t are the start (head) state and the end (tail) state; 
gP is the input and output conditions to determine; 
gE is the conditions to determine of the variable 

required for migration;  
x and y are the input and output symbols; 
op is output operations.  
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Figure 2 shows the EFSM model of the Internet 
Payment System, containing 5 states and 8 state 
transitions. The label “buy<=goods/buyOK” means that, 
when the input symbol of the state BUY satisfying 
“buy<=goods”, the state will be converted to the state 
PAY, and it will output the symbol buyOK. The label 
"pay/goods:=goods-buy, sent" means that, when the input 
symbol is pay, the state PAY will be converted to the state 
CONFIRM, and it perform the operation “goods:=goods-
buy” and output the symbol sent. 

According to the analysis of message flow above, we 
have abstracted three processes, named Customer, Seller 
(Merchant), and Netpay (abstract of the TTP and the 
back). The fragment of PRMELA code that represents 
EFSM from Figure 2 is presented in Figure 3 as the 
Customer Process. In this fragment, each label like 
“cus_init” represents each state of the process. Notation 
“∷” denotes the possible nondeterministic choices of 
further execution options inside bodies of if and do 
operations. The option can be selected if its guard (the 
first statement followed after “∷”) is enabled, that is 
executable. If more then one option is enabled, one will 
be selected at random. Notation “goto” means the process 
turn from one state to another state. Notation 
“customer_seller!buy” means sending value from 
variable buy to channel customer_seller. The variable buy 
defined for the number of goods bought by the customer. 
The similar situation is shown in Figure 4 for the seller 
process. The variable goods defined for the number of 
goods left in the seller. Notation “customer_seller?buy” 
means receiving a message from channel customer_seller 
into variable buy. The Netpay process is similar as the 
processes discussed above, we would not show the 
fragment in this paper. More details about PROMELA 
semantics can be found in [12]. 

 
Figure 3.  Fragment of Customer Process in PROMELA 

 
Figure 4.  Fragment of Seller Process in PROMELA 

……
chan customer_netpay=[0] of {mtype};  
chan customer_seller=[0] of {int};
chan seller_netpay=[0] of {mtype}; 
chan netpay_customer=[0] of {mtype};
chan seller_customer=[0] of {mtype};
chan netpay_seller=[0] of {mtype};
……  

Figure 5.  Fragment of the channels’ definition in PROMELA 

Channels are used to model data flow between 
processes and can be either globally scoped or locally 
scoped within a single process. Channels can have a 
predetermined storage capacity. When the channel 
capacity has been reached, additional messages sent to 
the channel will be dropped. The fragment presented in 
Figure 5 shows how to define the channels. 

In Figure 3 and 4, there is a different point between 
them. In Figure 4, there is a notation active before the 
notation proctype. It means the process is alive when the 
program begins running. Because there can be several 
Customer processes, so we use this init process to run 
these Customer processes. The init process is shown in 
Figure 6 below.  

init {
       int i;

i = 1;
do

:: (i <=5) ‐>run customer(i); i++

:: else ‐>
break

od;
}

 
Figure 6.  Fragment of init process in PROMELA 

IV.  DESCRIPTION OF THE MODEL AND PROPERTIES 

In the last section, the Internet Payment System 
modeling in PROMELA has been completed. In the 
modeling process, we have done lots of abstraction to 
prevent the state explosion. The main purpose of this 
paper is to verify the process of internet payment 
transactions for any errors, so the model does not reflect 
the identity, password authentication and other security 
aspects of the process, these parts will also be the focus 
of our future research. Although it has been abstracted, 
this model still can describe the actual process of the 
internet transactions. The more details we will introduce 
are as following. 

A  Partial Return. 
The actual business is to buy, return, and partial return. 

But in the model, it is given that only two types of 
business processes, to buy and return. Figure 7 shows the 
two different behaviors of the customers. In fact, partial 
return can be seen as made of two customers. One 
customer is to buy and not return, and the other is to all 
return. Thus, our model can represent all kinds of 
behaviors of customers. 

In more detail, one customer buys i, the number of 
goods, returns j to the seller. Ii is equivalent to that, there 
are two abstract customers in the model, one buys (i-j), 
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and the other buys j , returns all j back to the seller. The 
states of the two customers actually represent the 
customer who is in the case of the partial return. 

 
Figure 7.  Two different behaviors of customers 

B  Several Cases of Different Values of Variables 
In the model, there are three main variables represent 

the different meanings. The variable i means the number 
of customers. The variable buy  means the number of 
goods bought by each customer. And the variable goods  
means the inventory of merchant. The three variables 
given different initial values, there will be several 
different situations, which represent the different actual 
payment business.  

There are two major types of cases of the variable i. 
When it is i<=1 in the loop in Figure 6, there is only one 
customer process running. When i <= any number larger 
than 1, there will several concurrent customer processes 
running together. If there are concurrent processes 
running, the Seller process will control each customer to 
turn correct state. Specific control process can be seen in 
the fragment of Seller process in Figure 4, and the detail 
of the next states is shown in Figure 8.  

 
Figure 8.  Different situations of the state BUY 

In Figure 8, we will see that the other two variables 
buy and goods are compared in the process. Also it 
represents two different situations. If it is the situation of 
“buy<=goods”, it means the customer can buy the goods, 
as there are enough inventories of the seller. If it is the 
situation of “buy>goods”, it means there are not enough 
inventories. The process will turn back to the state INIT. 
So, if these two variables are defined by the initial values 
to meet the condition “buy>goods”, there will be some 
of the states that could never been reached. We will 
discuss these cases in more detail with experiments in 
Section 5. 

C  Properties Description 
As explained in Section 2, SPIN supports two main 

kind of analysis for the modeled protocols. The first one 
consists of checking deadlocks and other safety properties 
by generating the execution paths in the model. The 
second kind of analysis consists of checking temporal 
properties specified with temporal logic. Here we 
describe correctness criteria we are interested in, and 
show how they can be defined in SPIN. In order to 
formalize both desired and undesired properties of the 
Internet Payment Systems, we use LTL (linear temporal 
logic notation), which has been explained in Section 2. 
LTL allows expressing temporal properties we expect the 
system behavior will conform to during the system 
lifetime. Such properties can be seen as a part of 
requirement specification. Expression of properties in the 
formal LTL notation gives both an unambiguous 
presentation of expected system behavior and possibility 
to verify whether the system model conforms to the 
requirements. LTL formulae can express both safety and 
aliveness properties, and are effectively supported in 
SPIN. 

Examples of typical requirements to the internet 
payment behavior can be formulated in plain English as 
following. For customers, the customers need the support 
of the payment is guaranteed: 

(1) Before receiving confirmation, the trusted third 
party will not pay the money to the merchant; 

(2) IF customers are not satisfied with the goods, after 
the required return, the trusted third party will refund 
money to customers; 

For the merchant, the business requires the support of 
the Internet Payment System guaranteed: After 
confirmation of receipt in customer, the trusted third-
party party will pay the money to the merchant. That 
requires the support of the system: 

(3) When transaction succeeds, the customers receive 
the goods, the merchant get money from the trusted third 
party. 

(4) When transaction fails, the goods are returned to 
the merchant, and the money is back to the customers 
from the trusted third party.  

According to section of the formal modeling and 
system security requirements, several formulas should be 
defined. The fragment is shown in Figure 9, in which, p1 
represents the customer confirms the transaction, q1 
means the TTP pays the money to the merchant, p2 
represents the TTP tells the merchant that the customer 
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want to return the goods, and q2 means the TTP gives the 
money back to the customer. 

 
Figure 9.  Fragment of formulas defined in PROMELA 

In this case the requirement expressing correct 
behavior can be expressed in LTL formula as: 

)1&&2(!&&)2&&1(!&&)22(&&)11( qpqpqpqp <><>→<>→<>

 Since SPIN analyzes all possible behaviors of the model 
including the case when the LTL formula above is false, 
the formula is false will always be discovered if it exists. 
The properties expressed in the form of linear temporal 
logic statements will be verified by applying model-
checking system SPIN in the next section. 

V.  EXPERIMENTS 

If a specification of model has been given in 
PROMELA, SPIN can search the whole state space of the 
model; it also can identify unreachable state or deadlock 
in model. In addition, SPIN can construct a verifier, 
which can check several claims on the execution of the 
model. We have established the model of the Internet 
Payment System in PROMELA, and analyzed the 
properties in last sections. These properties include the 
values of certain variables at certain points in the code 
and true statements that can be made about execution 
states (state properties) or the paths of execution (path 
properties). In this section, we present various kinds of 
verification that can be performed on a PROMELA 
model described in the sections above. Using SPIN and 
the PROMELA specification presented above, several 
properties of the execution of the model were verified. 
These properties were verified as part of several 
experiments described below. For each experiment, the 
size of the model constructed by SPIN, the time for 
verification were measured. The experiments were 
carried out on a 2.0GHz Pentium duel machine with 
2048MB of memory. 

A  Experiment 1  
First we have let SPIN perform a full state space 

search for invalid end states, which is SPIN’s 
formalization of deadlock states, in case of 5 customers, 
buy=2, and goods=100. The results are shown in Figure 
10. Here we give the meaning of each line in the results. 

The first line lists the version of SPIN used in the 
experiments. In line 2, the “+” represents the default 
simple algorithms is used, else, the “-” represents it is 
fully complied without simplification. We can add 
options “- DNOREDUCE” to achieve a fully compiled. 
Line 3 represents the type of search. In this case, it is the 
default type, that is all state-space search.  The “-” in line 
4 means it is not use “never” declare or LTL formulas. 
Line 5 indicates that the detection process does not 
violate the user-defined statements (assert). Line 6 
indicates that the process does not detect the current user-
defined acceptable cycle or no progress marked circle. 
The “+” in line 7 represents the correct end state, which 
means there is no deadlock. The following lines are easy 
to understand. We focus on the lines from 15 to 25. These 
lines represent the unreached states. Since the model of 
the Internet Payment System is an infinite loop, the 
process will never reach the end state. 

  (Spin Version 6.1.0 ‐‐ 4 May 2011)
+ Partial Order Reduction

  Full statespace search for:
never claim         ‐ (none specified)
assertion violations +
cycle checks       ‐ (not selected)
invalid end states +

  State‐vector 100 byte, depth reached 3162, errors: 0
    14750894 states, stored
    32353853 states, matched
    47104747 transitions (= stored+matched)
           0 atomic steps
  hash conflicts:  26864854 (resolved)

    1616.172 memory usage (Mbyte)

  unreached in proctype customer
NETPAY04.pml:89, state 38, "‐end‐"
(1 of 38 states)

  unreached in proctype seller
NETPAY04.pml:139, state 43, "‐end‐"
(1 of 43 states)

  unreached in proctype netpay
NETPAY04.pml:176, state 35, "‐end‐"
(1 of 35 states)

  unreached in init
(0 of 10 states)

  pan: elapsed time 51.8 seconds
  pan: rate 284711.33 states/second

 
Figure 10.  Results of verification of 5 customers 

TABLE I.   
RESULTS OF VERIFICATION OF 1-5 CUSTOMERS 

Number of 
Customers Elapsed time Memory usage States stored States matched Transitions Depth 

1 
2 
3 
4 
5 

0.02s 
0.11s 
0.45s 
6.02s 
51.8s 

3.418Mb 
8.105Mb 
24.902Mb 

210.832Mb 
1616.172Mb 

10952 
61358 
244672 

2023217 
14750894 

5221 
69959 
269288 

3361364 
32353853 

16173 
131317 
513960 

5384581 
47104747 

1087 
1198 
1264 
1426 
3162 

1946 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER



B  Experiment 2 
We have let SPIN perform a full state space search in 

cases of 1-5 customers, and the variable buy=2, 
goods=100. The results are summarized in Table I. The 
exponential increase in number of states, memory usage 
and verification time, seems to be not manageable when 
checking more than 5 customers. In case of 6 customers, 
the available physical memory was insufficient.  

Since checking more than two customers is 
superfluous and violates the requirement that the 
verification model be the minimum sufficient model to 
perform the verification successfully. In Figure 11, we 
can see the memory usage is in the exponential growth 
with the number of customers increasing. We do not gain 
in verification power by checking more than 5 customers. 
In our future research we will search for a better 
modeling of loops that will minimize the state explosion 
that has been revealed by our experiments. 
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Figure 11.  Memory usage of 1-5 customers 

C  Experiment 3 
In the experiments, we define the variable as a special 

case, in which we define the variable buy=3 and goods=2. 
This means that in the initial state, the determination is 
consistent with “buy>goods”. We have let SPIN perform 
a full state space search in this case. The results are 
shown in Figure 12. The meaning of the first few lines in 
the results has been introduced in above cases. Compared 
with the results in Figure 10, we will find the differences 
mainly in “unreached in proctype”. In other words, many 
states are unreachable in this case. 

Because the two variables are defined by the initial 
values to meet the condition “buy>goods”, all customers 
will not succeed to buy the goods. As shown in Figure 8, 
all customers will get the massage “buyNOK”, which 
means they cannot buy the goods. So the situation 
“seller_customer!buyOK” will never arise. All the 
customers in the state BUY will turn back to the state 
INIT, and the states behind the state BUY would never 
been reached. For this reason, it is acceptable that there 
are so many states unreachable in the results shown in 
Figure 12. 

In the experiments, we also have tried to simulate the 
actual situation as more as possible, and add the property 
which we will verify into the process. In the actual 
internet payment, the quantity of goods bought by each 
customer is not the same. Although we can not simulate 

the random number of goods bought by each customer, 
we can define the variable buy=i, approximating the 
actual situation. Thus, the process can simulate different 
numbers of goods for each customer. Several interesting 
liveness claims can be made about the Internet Payment 
System. We have described the properties in LTL 
formula in last section. The experiment shows that the 
verification of the model of the Internet Payment System 
that does not contain any loops can be done very 
effectively. The results of these experiments show that 
there is no error in the design of the Internet Payment 
System. 

  (Spin Version 6.1.0 ‐‐ 4 May 2011)
+ Partial Order Reduction

……
  State‐vector 76 byte, depth reached 11, errors: 0
       13 states, stored
        3 states, matched
       16 transitions (= stored+matched)
        0 atomic steps
  hash conflicts:         0 (resolved)

    2.539 memory usage (Mbyte)

  unreached in proctype customer
         NETPAY04.pml:73, state 28, "customer_netpay!confirm"

……
(3 of 37 states)

  unreached in proctype seller
         NETPAY04.pml:99, state 4, "seller_customer!buyOK"

……
(10 of 43 states)

  unreached in proctype netpay
         NETPAY04.pml:145, state 2, "netpay_seller!pay"

……
(11 of 33 states)

  unreached in init
(0 of 10 states)

  pan: elapsed time 0 seconds

 
Figure 12.  Results of verification of the buy>goods condition 

If we have detected any situation which do not meet 
the properties in the other model of protocol, SPIN can 
display these paths. We call these paths as counter-
examples. According to the counterexample generated by 
SPIN, developers have the opportunity to understand 
wrong business process behavior, to locate errors and to 
effect right changes for correcting business process 
design. Then, the modified design is again submitted to 
SPIN for verification. This methodology determines a 
gradual correction and refinement of business process 
models, before it is definitely implemented. 

VI.  RELATED WORK 

Research on model checking has been conducted based 
on an underlying logical representation. Many tools have 
been built to model checking FSM- or EFSM- based 
systems. Tools for Model checking such as SMV [9], 
SPIN [6] and FDR have been used by researchers and 
industrialists to find bugs in circuit designs, floating point 
standards, cache coherence protocols for multiprocessors. 

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1947

© 2012 ACADEMY PUBLISHER



Recently model checking has also been applied to check 
software systems and protocols.  Parts of our work refer 
to model checking fault tolerance with respect to the 
Internet Payment System guarantees.  

The vast majority of Internet Payment Systems are 
online systems that perform either. A detailed description 
of the forenamed types of Internet Payment Systems is 
given in [17, 18, 19] .In Reference [20], the authors 
provide a thorough treatment of the most fundamental 
security requirements, as well as a complete source of 
references. In Reference [21], the authors point out the 
need for custom-made payment systems, which provide 
payment services that are extended beyond the traditional 
bilateral transaction model. There are also many papers 
introducing the development of the Internet Payment 
Systems, such as Reference [28]. The system discussed in 
our article is based on the Internet Payment Systems 
introduced in all the papers above. 

The authors of [23] point out the need for a systematic 
treatment of the correctness properties required in 
Internet Payment Systems. Reference [24] is finding that 
e-Business managers, developers, and auditors require 
robust tools to assure users that Internet Payment Systems 
are secure and reliable. Designing and implementing 
highly secure and reliable e-processes is challenging and 
requires adherence to several specific criteria to be 
effective. The authors of [22] use a model checking tool 
to examine the non-security characteristics of e-processes 
to verify the money and goods atomicity properties of 
two online payment processes, which are Digicash [25] 
and NetBill [26]. This seminal work demonstrated how to 
model the Internet Payment Systems and their properties 
of interest in a process algebra language, CSP, which is 
the language used in FDR [27].The author of [1] gives a 
roadmap to electronic payment transaction guarantees 
and a Colored Petri NET model checking approach. The 
paper uses the model checker based Colored Petri Net. 

 Our work builds on the insights in the above work in 
model checking methods which are using SPIN and 
specified declaratively by EFSM. There are also many 
papers in the area model checking with SPIN, but not for 
the Internet Payment Systems, such as Reference [29, 31, 
and 32]. These papers also bring a lot of learning to our 
approach. 

Our approach improves on the internet payment in 
three directions. First, we provide a model based EFSM 
for the Internet Payment Systems in PROMELA. As a 
result, the verification procedure can detect interactions 
of each behavior of online payments. Second, as the 
important part of our modeling methodology, we translate 
the Internet Payment System into a simpler model that 
nevertheless preserves all the essential behavior to be 
verified. Third, we provide initial results on the actual 
verification of the Internet Payment System using SPIN. 
The result of our work is a complete procedure for the 
modeling and verification of the Internet Payment System. 

VII.  CONCLUSIONS AND FUTURE WORK 

In this paper, we introduced a model checking 
approach to verify the Internet Payment Systems. First we 

analyzed the general Internet Payment Systems, including 
the internet payment protocol, the participants of the 
payment transactions, and the massage flow in the system. 
We proposed an EFSM model, and translated the model 
in PROMELA. We also summarized a set of LTL 
formulas that can guarantee the reliability of the 
transactions. And then we did some experiments, which 
can prove that our model can simulate the actual 
transactions. Also the initial results on the verification of 
the Internet Payment System using SPIN were provided. 
Our approach can be easily extended to support model 
checking debugging new design of the Internet Payment 
Systems using the SPIN tool. The designers may simulate 
their active applications with our method. 

For our future work, we will try to combine our 
approach with more details of the Internet Payment 
Systems, such as password authentication and other 
security-related properties. Also in our future research, 
we will search for a better modeling of loops, which will 
minimize the state explosion revealed by our experiments. 
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