
Interference Verification for Structural Parallel
Programs

Yang Zhao
School of Computer Science, Nanjing University of Science & Technology, Nanjing, China

Email: yangzhao@mail.njust.edu.cn

Abstract— This paper presents a simplified “fractional per-
mission” type system for a toy imperative language with
structured parallelism and synchronization. In this system,
we make the permission as a kind of linear values associated
with some piece of state in a program. Different permissions
permit different operations and “fractions” are attached to
permissions to distinguish reads from writes, with which we
are able to check interference among parallel threads. The
main purpose is to detect race conditions and deadlocks
in a multithreaded program. Program expressions and
statements are transformed into action traces, then we
permission-check all possible interleavings among traces in
parallel. Operational semantics as well as permission type
rules are provided and a type soundness result is then
established.

Index Terms— fractional permission, structural parallelism,
action trace

I. INTRODUCTION

Data race and deadlock are two common programming
errors in parallel programs. A data race happens when
two or more concurrent threads sharing state try to access
the same data simultaneously and at least one of them is
a write operation. This may cause unexpected results or
runtime errors. Suppose two threads are trying to access
an object through the same pointer, one dereferences
some field of the object, while the other attempts to
deallocate that object concurrently. Assuming that the
deallocation operation happens to win the competition and
be executed first, then the dangling pointer error appears
and a null pointer exception will be throwed out when the
dereference action happens.

Deadlock occurs when multiple concurrent threads are
holding some resources but waiting for more which are
held by some others. It is possible that none of them
can make progress. For example, thread t1 holds resource
r1 waiting for r2, thread t2 holds resource r2 waiting
for r3, ..., and thread tn holds resoource rn waiting
for r1. Clearly, a cyclic waiting chain is formed. All
threads are blocked and the whole program then gets
stuck. Because of many unexpected or nondeterministic
interactions among different threads in parallel, analysis
or verification for concurrent programs is usually very

This is a revised and extended version of the conference paper [1]
that appeared in the Proceedings of ICACTE 2008.

This work was supported in part by NSFC grants 61103002, NJUST
Research Funding 2010GJPY016 and SRF for ROCS of SEM.

hard. Here, we give two code examples to show these
problems.

Example 1: Assuming there exists an account object
pointed to by a variable v and its balance is $100
currently, then two threads are trying to deposit some
money at the same time (we use e1||e2 to show that two
expressions are executed concurrently), written as:

*v=*v+10 || *v=*v+20

This code segment may exhibit unexpected behaviors. In
particular, the left side thread may load the account value
from memory (*v) and add a constant 10, then just before
stores the sum value to memory (*v) it yields to the right
side thread to finish the whole deposit process. Thereafter,
the left side continues to finish the store operation. Based
on this execution order, the final balance of the account
is then $110, which only reflects one deposit operation.
Actually, the date race between these two store operations
on different branches causes some unexpected result.

This race problem could be fixed easily by using
synchronization:

synch v do {*v=*v+10}
||synch v do {*v=*v+20}

Either thread attempting to execute the deposit process
has to obtain the lock of account in the first place. Since
this lock is mutually exclusive, only one thread is able
to hold the lock at any time. In fact, the synchronization
ensures that two deposit operations are not interrupted. In
other words, they are atomic.

Example 2: Two fund transfers between two accounts
happen to be executed at the same time, but in a different
locking order for a checking account (c) and a saving
account (s), such as

synch c do {synch s do ...}
|| synch s do {synch c do ...}

This code segment shows race free, but may cause a
deadlock: after the left side thread locks c, it yields to
the right side thread to lock s. Then when the right side
thread continues to lock c, it must fail, since c is being
held by the left side thread who is currently expecting s.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1889

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1889-1896

Neither of them gives up, and thus could execute further
more, therefore the whole program gets stuck.

There are quite a lot of previous work addressed these
problems by devising type systems [2]–[6] and other
static [7]–[9] or dynamic checking tools [10]. Brookes
introduced a novel method to detect data races in pointer-
free parallel programs [7] by converting every command
into action traces and using the separation logic to prove
all the possible interleavings between parallel traces are
race free. In order to analyze multithreaded programs with
pointer aliases, we need to check interferences among
parallel executions. Boyland introduced a fractional per-
mission type system to check interference [11]. In this
paper, we attempt to extend this permission system to
detect the race conditions and deadlocks based on action
traces.

The contributions of this paper beyond previously pub-
lished work include:
• Transforming expressions and statements into action

traces and modelling the parallel statement as traces
in parallel;

• Combining the pointer alias and synchronization
together to model flexible parallel programs;

• Permission type checking to detect race conditions
and deadlocks in parallel programs.

In the following sections, we first describe a simplified
permission system briefly. Section III gives the formal
system for a toy language including operational semantics
and some permission rules for sequential executions. In
section IV, we describe the ideas of actions and traces and
show how to transform expressions and statements into
traces, then we address the race and deadlock detection
among interleavings of parallel traces. Section V provides
the consistency of this permission system. Section VI de-
scribes some further work and we conclude in section VII.

II. FRACTIONAL PERMISSIONS

Permissions are used as the semantic foundation
for multiple program annotations described in previous
work [11], [12]. We additionally attach “fractions” to
indicate partial permission values that allow to distinguish
reads from writes.

A permission is a linear (non-duplicable) value associ-
ated with some piece of state in a program [12]. Based on
different permission values, different program operations
are allowed to be executed. If some operation is not
granted certain permission, it is recognized to be “invalid”
operation which will cause program state to go wrong.

Every piece of state is associated with exactly one
permission and then a permission seems like some kind
of right to access the associated state. The syntax of
permissions is given in below:

base permission β ::= v : ptr(ρ) | ρ
fraction ξ ::= 1 | q | ξξ | z
fact Γ ::= ρ=ρ′ | not Γ
single permission π ::= ξβ | Γ
permission bag Π ::= ∅ | π | Π,Π

We have two kinds of base permissions: for the pointer
variable v and for the location variable ρ. Fraction con-
stants represent the known fraction values between 0
and 1, and fraction variable z represents an unknown
fraction value. A whole permission (1 β or β) allows a
write access to certain variable in β, while the fractional
permission (ξβ with ξ known not to be 1) only allows
read access. A single permission could be either a base
permission or a predicate (Γ) which indicates a fact. In
this paper, the fact we care about is whether two location
variables are actually pointing to the same location in
the memory. A permission bag contains nothing (∅) or a
set of base permissions combined by comma notations.
In next sections, we usually call the permission bag as
permissions instead.

III. FORMAL SYSTEM

This section describes a toy multithreaded language
which is derived from previous work [11] with some
additional concurrent features. We give the formal syntax,
operational semantics and sequential permission checking
rules.

A. Syntax

This toy language combines the shared-memory par-
allelism with pointer operations. The syntax is given in
below:

P ::= D∗ s
D ::= p(a) requires a∗{s}
s ::= skip | v=new | ∗v=e | let x=e in s | s ; s

| call p(v) | if b then s else s
| s � s | s||s
| synch v do s | hold v in s

e ::= n | x | e± e | ∗v
b ::= e!=n | v==v

A program consists several procedure definitions followed
by a statement acting as the main body of this program.
The definition of a procedure needs to provide a formal
argument list a as well as the required lock sets a∗.
Every required lock a is required to be included in a.
For simplicity, parallel statements are allowed to be used
inside not the procedure body, but the program body.

Most of statements appear in the syntax are straight-
forward. One may allocate a cell using v=new and
initialize the datum stored in this cell as 0 which could be
updated by ∗v = e later on. This language also contains
conditional (if b then s else s′), sequential com-
position (s ; s′) as well as a procedure call (call p(v)).

In order to model multithreaded features, we use the
parallel statement (s � s′) to indicate that a new spawn
thread to execute the s′ in parallel with the execution
of s. Moreover, the new thread cannot hold any locks
originally. We use the s || s′ as an internal representation
for two statements in parallel. A similar case happens
for hold v in s which is also internal form when
evaluating a body of synchronization statement.

1890 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

There are two primitive types used in our system:
Integer and Boolean. Integer expressions include literals,
local variables, arithmetic expressions and dereferences of
pointer variables. Boolean expressions permit comparison
with zero and pointer comparison as well.

B. Operational Semantics

There are a finite set of global variables V and an
infinite set of memory locations L. The memory M maps
variables to locations or locations to integers (Z):

(µV , µL) = µ ∈M = (V → L)× (L→ Z)

For simplicity purpose, we do not distinguish µV and µL

and use µ instead. A thread may hold some locks for
corresponding cells, so we list the cell locations for the
held locks of each thread. Operational semantics is given
in Figure 1 in terms of a small step evaluation. Evaluating
an expression will update neither the memory nor the held
locks, but evaluating a statement may do, such as creating
a new cell, updating a cell content, acquiring a lock, and
so on.

Figure 1 gives all evaluation rules, most of which
are straightforward and have been mentioned in previous
work [11]. Here, we only address several rules that are
related to synchronization and parallel executions. Here,
all the evaluation rules are based on single thread or two
parallel threads which are easy to be extended to more
parallel threads.

In fact, every object in Java is associated with a monitor
field, that the context thread can lock or unlock. At most
one thread at a time may hold a lock on the monitor
of that object. Any other threads attempting to lock that
monitor will be blocked until they can obtain a lock on
that monitor sucessfully. In order to model the lock status
of a cell, we require every cell implicitly associated with
an additional address to simulate the “monitor” field used
in Java-like language. We simply choose the next address
of the cell to represent whether the location is locked or
not: a zero to represent the unlocked state, but a positive
number to represent how many times the cell has been
locked by one thread. Therefore, every cell will actually
contain two continuous addresses in memory: l (for the
cell content) and l + 1 (for the lock value).

Rule E-SYNC provides the synchronization capability:
it is required to acquire the lock for the cell v before
evaluating the body. There are three possibilities for v:
• in the unlocked state;
• in the locked state, but being held by the current

thread;
• in the locked state, but being held by the some other

thread.
We increase the lock value by 1 for the first and second
cases, but insert µ(v) to the held locks of the current
thread only in the first case. Thereafter, we evaluate the
body using rule E-HOLD which indicates v has already
been held before entering the body s. When finishing
evaluating the body, the lock value must be decreased by

1 and if it becomes 0, we remove µ(v) from the current
held locks using rule E-RELEASE.

Rule E-PARALLEL0 is used when starting to evaluate
a parallel statement s1 � s2 by creating a parallel locks
l1||·. Since the new spawn thread does not inherit any
locks originally, the rule then indicates this scenario using
an empty lock sequence ·. Thereafter we use the parallel
locks to evaluate two statements in parallel s1 || s2.
Rules E-PARALLEL1 and E-PARALLEL2 will be applied
nondeterministically: either branch could make progress.
Thus, the parallel composition can be eliminated once
both branches are done.

C. Permission Type Rules

Permissions are basically some kind of special type in
a program, thus we borrow typical type checking methods
to handle permission checking. Sequential permission
rules are given in Figure 2, where the basic judgments
are:

E ` s a
{
E′
}

or E ` e : τ where E = ∆; Π; Φ; Φ̂

A permission environment E has four parts: a type context
∆ which is a set of variables drawn from pointer variables,
local integer variables and fraction variables; some per-
missions Π owned by the current thread; a lock sequence
Φ and a lock set Φ̂. The Φ is used to represent the locks
being held by the current thread, while Φ̂ is a set which
indicates the locks being held in the global system. Thus,
the former is just a local property for current thread, while
the latter keeps the global lock information. Moreover, the
Φ allows duplicated locks, but the Φ̂ does not.

The execution any expression certainly does not change
the permission environment, but the treatment for state-
ments is opposite. A statement may be executed nonde-
terministically, so we have to keep all possible output en-
vironments

{
E′
}

. The nondeterminism obviously comes
from the conditional and parallel statements inside. Based
upon the one-in-multiple-out permission checking idea,
we also borrow a syntactic sugar for multiple-in-multiple-
out judgment:

∀i ∈ [1..m] : Ei ` s a
{

∆i,j ; Πi,j ; Φi,j ; Φ̂i,j |ni
j=1

}
{Ei |mi=1} ` s a

{
∆i,j ; Πi,j ; Φi,j ; Φ̂i,j |m,ni

i=1,j=1

}
Therefore, we can chain two sequence executions s1 and
s2 together:

E ` s1 a
{
E′
}
` s2 a

{
E′′
}

Most rules have been explained in previous work [11],
while several rules bear some explanation. Within rule
READ, we must have at least some fractional permission
for the pointer variable to be dereferenced as well as some
other fractional permission for the cell content to be read.
A similar consideration occurs for rule WRITE except that
we require the whole permission for the cell content to
be updated which is represented as 1ρ assuming ρ is the
location where the pointer v is pointing to.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1891

© 2012 ACADEMY PUBLISHER

E-NEW
l′, l′ + 1 6∈ Dom(µL) µ′ = µ[v 7→ l′, l′ 7→ 0, (l′ + 1) 7→ 0]

((µ; l); v=new)→ ((µ′; l);skip)

E-READ

((µ; l); ∗v)→ ((µ; l);µ(µ(v)))

E-LET1
((µ; l); e)→ ((µ; l); e′)

((µ; l);let x=e in s)→ ((µ; l);let x=e′ in s)

E-LET
x 6∈ µV

((µ; l);let x=i in s)→ ((µ; l); [x 7→ i]s)

E-WRITE1
((µ; l); e)→ ((µ; l); e′)

((µ; l); ∗v=e)→ ((µ; l); ∗v=e′)

E-WRITE
µ′ = µ[(µv) 7→ i]

((µ; l); ∗v=i)→ ((µ′; l);skip)

E-SEQ1
((µ; l); s1)→ ((µ′; l′)); s′1)

((µ; l); s1;s2)→ ((µ′; l′); s′1;s2)

E-SEQ

((µ; l);skip;s)→ ((µ; l); s)

E-IF

((µ; l); b)→ ((µ; l); b′)

((µ; l);if b then s1 else s2)→ ((µ; l);if b′ then s1 else s2)

E-CALL
Pbody(p) = s Formals(p) = a

((µ; l);call p(v))→ ((µ[ai 7→ vi]; l); s)

E-PARALLEL0
((µ; l); s1 � s2)→ ((µ; l||·); s1 || s′2)

E-PARALLEL1
((µ; l1); s1)→ ((µ′; l′1); s′1)

((µ; (l1||l2)); s1 || s2)→ ((µ′; l′1||l2); s′1 || s2)

E-PARALLEL2
((µ; l2); s2)→ ((µ′; l′2); s′2)

((µ; (l1||l2)); s1 || s2)→ ((µ′; (l1||l′2)); s1 || s′2)

E-PARALLEL

((µ; (l1||·));skip || skip)→ ((µ; l1);skip)

E-SYNC

(µ(µ(v) + 1) = 0 ∨ µ(v) ∈ l) µ′ = µ[(µ(v) + 1) 7→ (µ(µ(v) + 1)) + 1]

((µ; l);synch v do s)→ ((µ′; l, µ(v));hold v in s)

E-HOLD

((µ; l); s)→ ((µ′; l′); s′)

((µ; l);hold v in s)→ ((µ′; l′);hold v in s′)

E-RELEASE
µ(v) = l1 µ′ = µ[(l1 + 1) 7→ (µ(l1 + 1)− 1)]

((µ; l, l1);hold v in skip)→ ((µ′; l);skip)

Figure 1. Operational semantics.

INTLITERAL

E ` n : int

VARIABLE

E = ∆; Π; Φ; Φ̂ x ∈ ∆

E ` x : int

ARITHMATIC
E ` e1 : int E ` e2 : int

E ` e1 ± e2 : int

NONZERO
E ` e : int

E ` e!=0 : bool

SKIP

E ` skip a {E}

NEW

E = ∆; 1v : ptr(ρ′),Π; Φ; Φ̂ ρ fresh

E ` v=new a
{
{ρ} ∪∆; 1v : ptr(ρ), 1ρ,Π; Φ; Φ̂

} ALIAS

E = ∆; Π; Φ; Φ̂ Π = 1v : ptr(ρ), ξv′ : ptr(ρ′),Π′

E ` v=v′ a
{

∆; 1v : ptr(ρ′), ξv′ : ptr(ρ′),Π′; Φ; Φ̂
}

READ

E = ∆; Π; Φ; Φ̂ Π = ξv : ptr(ρ), ξ′ρ,Π′

E ` ∗v : int

WRITE

E = ∆; Π; Φ; Φ̂ E ` e : int Π = ξv : ptr(ρ), 1ρ,Π′

E ` ∗v=e a {E}
PARALLEL

∆; Π; (Φ || ·); Φ̂ ` s1 || s2 a
{

∆′; Π′; Φ′; Φ̂′
}

∆; Π; Φ; Φ̂ ` s1 � s2 a
{

∆′; Π′; Φ′; Φ̂′
}

SEQ

E ` s1 a
{
E′
}
` s2 a

{
E′′
}

E ` s1;s2 a
{
E′′
}

LOCAL

E = ∆; Π; Φ; Φ̂ E ` e : int x /∈ ∆ {x} ∪∆; Π; Φ; Φ̂ ` s a
{

∆′; Π′; Φ′; Φ̂′
}

E ` let x=e in s a
{

∆ \ {x} ; Π′; Φ′; Φ̂′
}

IF1
E ` e : int E ` s1 a

{
E′
}

E ` s2 a
{
E′′
}

E ` if e!=0 then s1 else s2 a
{
E′
}
∪
{
E′′
}

IF2
Π = ξv : ptr(ρ), ξ′v′ : ptr(ρ′),Π1 ∆; ρ = ρ′,Π; Φ; Φ̂ ` s1 a

{
E′
}

∆; ρ 6= ρ′,Π; Φ; Φ̂ ` s2 a
{
E′′
}

∆; Π; Φ; Φ̂ ` if v==v′ then s1 else s2 a
{
E′
}
∪
{
E′′
}

CALL
Formals(p) = a

|a| = |v| = m ∀i ∈ [1..m],∃Π′1 : σ1Π1 = ξivi : ptr(ρi),Π
′
1 ∀ai ∈ Requires(p) : ρi ∈ Φ

p : ∆1; Π1 → ∆2;σ2Π3 ∆1 ⊇ {a} ` σ1 : ∆1 → ∆ ` σ2 : ∆3 → ∆2 ∆3 fresh

∆;σ1Π1,Π; Φ; Φ̂ ` call p(v) a
{

∆ ∪∆3;σ1Π3,Π; Φ; Φ̂
}

PROCEDURE
a = Formals(p) |a| = m ∀i ∈ [1..m] : Π1 = ξiai : ptr(ρi),Πi Φ = ρi|i ∈ [1..m]

Φ̂ = {ρi|i ∈ [1..m]} ∆1; Π1; Φ; Φ̂ ` Body(p) a
{

∆;σΠ2; Φ; Φ̂
}

∆ ∩∆2 = ∅ σ : ∆2 → ∆

` p : ∆1; Π1 → ∆2; Π2

Figure 2. Permission type rules.

1892 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

In rule CALL which applies to a statement of procedure
call, we adopt a procedure type ∆1; Π1 -> ∆2; Π2.
The output permissions Π2 will use the (existentially
quantified) variables in ∆2 as well as the (universally
quantified) variables in ∆1. The first context ∆1 will
include all formal parameters a. For each procedure call,
we borrow σ1 to map from ∆1 to actual parameters v.
The new created variables set ∆3 is used to substitute for
the existentially quantified variables (in ∆2). Therefore,
permission checking a procedure call requires to:
• make sure the required locks have been held;
• use σ1 to map formals to actuals;
• split incoming permission into two parts: σ1Π1 and

Π, such that the latter will not be affected by this
call;

• fetch the procedure type and find a σ2 which will
map from new created fresh variable set into the
result variable set ∆2.

The other important rule is PARALLEL. Here we as-
sume that the new spawn child thread does not inherit
any lock originally, thus the initial lock sequence for
the child thread is empty. Then we use parallel locks
Φ and · to permission check the parallel statements s1
and s2. Because of the possible aliasing problem, these
two parallel statements may interleave with each other.
The general idea presented in this paper is to convert the
complicated statements and expressions into action traces,
then permission check all possible interleavings of parallel
traces.

IV. PARALLEL CHECKING

Most rules in Figure 2 work for sequential executions.
For parallel programs, we need to consider whether or not
the current thread may be affected by some others. Since
the runtime execution is unpredictable for multithreaded
programs, we have to check all the possibilities within
the permission system. In order to model actual program
behaviors, we convert statements and expressions into
a sequence of atomic actions which is supposed to be
executed without interruption. Furthermore, we transform
the parallel statements into the parallel traces and then
permission check their possible interleavings to make sure
that data races and deadlocks can never happen.

A. Action and Trace

The behaviors of a program can be described in terms
of atomic actions [7], for instance, allocating a new
cell, dereferencing a pointer, updating a cell’s content
and so on. However, executions in the current thread
may be interrupted by other parallel threads. Let’s take
an assignment statement ∗v = ∗v + 10 for example,
we do not know whether or how often this statement
will be interrupted, but we do know all the positions
where interruptions may happen. Assuming the read, write
and plus are atomic operations, the possible interruption
positioins could be:
• before the execution of this statement;

• after loading the content ∗v;
• after reading the constant 10;
• after the plus operation;
• after the update of the content ∗v.
To analyze the possible interleavings in permission

checking, we define two concepts: actions and traces.
Definition 1: An action is an atomic execution that

cannot be interrupted in any actual parallel execution
together with other threads. In this paper, they include
• an idle action: skip;
• integer actions: n, x, ±;
• boolean actions: v == v′, v! = v′

• heap actions: v=new, ∗v, ∗v =;
• a store action: v = v′;
• lock actions: try(v), rel(v);
• a fork action: fork.

Every expression or statement can be converted into one
or more sequences of actions.

We borrow λ to range over the set of actions, and then
a trace is defined in below.

Definition 2: A trace is a group of actions defined as:

ι ::= λ | ι]ι | ι||ι

The concatenation] indicates a deterministic trace in
which the latter trace must follow the former. The parallel
|| indicates a trace is constructed by two traces in parallel.

We use 〈e〉 and 〈s〉 to represent the set of traces for
the expression e and statement s respectively. Here, we
build an approximation: a procedure call is considered as
an action with two requirements:
• no parallel statements are in the procedure body
• all the parameters are unchangeable.

It is provable that a call to a well-formed procedure
satisfying these two requirements can be considered as
a action if its required lock set is a subset of the held
locks for the current thread.

All transformation rules are given in Figure 3. The
difference between TRACE-IFNONZERO and TRACE-
IFPOINTEREQ is that the trace for non-zero comparation
needs to be added to both branches equally, while the
different results of the pointer comparation will be added
into different branches correspondingly.

B. Permission Checking for Parallel Traces

In order to check parallel statements, we need to
have permission checking rules for actions. Type rules
in Figure 2 do not work for actions (although some of
them are very similar). Some rules for actions are then
given in Figure 4.

There are two rules (TRYSUCCESSFUL and TRY-
FAILED) for the try(v) action, corresponding to whether
or not the lock is acquired successfully. In RELEASE1 and
RELEASE2, we distinguish the cases that the lock ρ1 has
been held only once and more than one times respectively.
In the latter case, the rel(v) action removes the lock
from not Φ̂, but Φ (since the current thread is still holding
this lock somewhere).

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1893

© 2012 ACADEMY PUBLISHER

TRACE-CONST

〈n〉 = {n}
TRACE-VARIABLE

〈x〉 = {x}

TRACE-ARITHMETIC
ι ∈ 〈e〉 ι′ ∈ 〈e′〉
〈e± e′〉 = {ι]ι′]±}

TRACE-READ

〈∗v〉 = {∗v}
TRACE-SKIP

〈skip〉 = {skip}

TRACE-NEW

〈v=new〉 = {v=new}

TRACE-SEQ

ι1 ∈ 〈e1〉 ι2 ∈ 〈e2〉
〈e1 ; e2〉 = {ι1]ι2}

TRACE-IFNONZERO
ι ∈ 〈e〉 ι1 ∈ 〈s1〉 ι2 ∈ 〈s2〉

〈if e!=0 then s1 else s2〉 = {ι]ι1} ∪ {ι]ι2}
TRACE-LOCAL

ι ∈ 〈e〉 ι′ ∈ 〈s〉
〈let x=e in s〉 = {ι]ι′}

TRACE-WRITE
ι ∈ 〈e〉

〈∗v=e〉 = {ι](∗v=)}

TRACE-IFPOINTEREQ

ι1 ∈ 〈s1〉 ι2 ∈ 〈s2〉
〈if v==v′ then s1 else s2〉 = {(v==v′)]ι1} ∪ {(v!=v′)]ι2}

TRACE-SYNC
ι ∈ 〈s〉

〈synch v do s〉 = {try(v)]ι]rel(v)}

TRACE-PARALLEL
ι1 ∈ 〈s1〉 ι2 ∈ 〈s2〉

〈s1 � s2〉 = {fork](ι1 || ι2)}

Figure 3. Transformation rules

CONDITIONTRUE
Π = ξv : ptr(ρ), ξ′v′ : ptr(ρ′),Π′

∆; Π; Φ; Φ̂ ` v==v′ a ∆; ρ = ρ′,Π; Φ; Φ̂

CONDITIONFALSE
Π = ξv : ptr(ρ), ξ′v′ : ptr(ρ′),Π′

∆; Π; Φ; Φ̂ ` v!=v′ a ∆; not ρ = ρ′,Π; Φ; Φ̂

TRYSUCCESSFUL

Π = ξv : ptr(ρ),Π′ ρ /∈ Φ̂

∆; Π; Φ; Φ̂ ` try(v) a ∆;1/2ξv : ptr(ρ),Π′; ρ,Φ; {ρ} ∪ Φ̂

TRYFAILED

Π = ξv : ptr(ρ),Π′ ρ ∈ Φ̂

∆; Π; Φ; Φ̂ ` try(v) a failed

FORK

∆; Π; Φ; Φ̂ ` fork a ∆; Π; (Φ || ·); Φ̂

RELEASE1
Π = 1/2ξv : ptr(ρ),Π′ ρ 6∈ Φ

∆; Π; ρ,Φ; {ρ} ∪ Φ̂ ` rel(v) a ∆; ξv : ptr(ρ),Π′; Φ; Φ̂

RELEASE2
Π = ξv : ptr(ρ),Π′ ρ ∈ Φ

∆; Π; ρ,Φ; Φ̂ ` rel(v) a ∆; 2ξv : ptr(ρ),Π′; Φ; Φ̂

Figure 4. Permission type rules for actions.

Permission checking two parallel statements is then
transformed into checking two traces in parallel ι1 ||
ι2, which is written as λ1]ι

′
1 and λ2]ι

′
2 respectively.

Assuming λi is neither try(v) nor fork, we either
check λ1 before ι′1 || ι2; or check λ2 before ι1 || ι′2.
After finishing all possibilities, all output environments
are united as the entire output environment for checking
ι1 || ι2.

ι1 = λ1]ι
′
1 ι2 = λ2]ι

′
2

Π = Π1,Π2,Π3 ∆; Π1; Φ1; Φ̂ ` λ1 a ∆′; Π′; Φ′; Φ̂′

∆; Π2; Φ2; Φ̂ ` λ2 a ∆′′; Π′′; Φ′′; Φ̂′′

∆′; Π′,Π2,Π3; Φ′ || Φ2; Φ̂′ ` ι′1 || ι2 a
{
E1

}
∆′′; Π′′,Π1,Π3; Φ1 || Φ′′; Φ̂′′ ` ι1 || ι′2 a

{
E2

}
∆; Π; Φ1 || Φ2; Φ̂ ` ι1 || ι2 a

{
E1

}
∪
{
E2

}
To check the interference, we split the input permissions
Π into Π1,Π2,Π3 and use Π1 and Π2 to check λ1 and
λ2 respectively. If both actions can be checked under
correspondent permissions, then there is no interference
between these two actions.

There are several related lemmas.
Lemma 1: Two actions do not interfere with each other

under the given environment E (written as E[[λ1 � λ2]]),
if E = ∆; Π; Φ; Φ̂ and Π can be transformed into
(Π1,Π2,Π3) and Πi permission check λi independently
(i=1,2).

Lemma 2: Two parallel traces do not interfere with
each other under the given environment E (written as
E[[ι1 � ι2]]), if for any λ1, λ2, there exists ι11, ι12, ι21,
ι22 and E′, such that ι1 = ι11]λ1]ι12, ι2 = ι21]λ2]ι22

and E ` ι11 || ι21 a
{
E′
}

, E′[[λ1 � λ2]] for every
E′ ∈

{
E′
}

.
Lemma 3: Two statements in parallel s1 || s2 is race

free under the environment E (written as E[[s1 � s2]]),
if for any trace ι1 and ι2, such that ι1 ∈ 〈s1〉 ∧ ι2 ∈ 〈s3〉,
E[[ι1 � ι2]].

ιi ∈ 〈s1〉 ι′j ∈ 〈s2〉
∆; Π; Φ1 || Φ2; Φ̂ ` ιi || ι′j a

{
∆i,j ; Πi,j ; Φi,j ; Φ̂i,j

}
∆; Π; Φ1 || Φ2; Φ̂ ` s1 || s2 a

|〈s1〉|,|〈s2〉|⋃
i=1,j=1

{
∆i,j ; Πi,j ; Φi,j ; Φ̂i,j

}

C. Deadlock Detection

Deadlocks may happen when several threads attempt
to lock some resources being held by some other threads.
For example:

synch v1 do {synch v2 do {...}}
|| synch v2 do {synch v3 do {...}}
|| synch v3 do {synch v1 do {...}}

It is possible that the main thread is holding the lock for v1
and waiting for v2, the child thread is holding the lock for
v2 and waiting for v3 and the grandchild thread is holding
the lock for v3 and waiting for v1. In this case, a deadlock
happens and none of parallel executions can make any
progress. It is easy to see that the deadlock condition can
only happen between multiple try(v) actions in parallel.

Lemma 4: A deadlock condition exists among some
parallel actions try(v1), try(v2), ... try(vn) under the

1894 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

given environment E = (∆; Π; (Φ1||Φ2||...||Φn); Φ̂), if
∀i ∈ [1..n]∃j ∈ [1..n] : (i 6= j) ∧ (Π = ξivi :
ptr(ρi),Π

′
i) ∧ (ρi ∈ Φj).

Detailed detection rules are omitted here.

V. CONSISTENCY

To ensure the soundness of permission type system, it
is required that well-typed program can never go wrong.
In this system, soundness means permission checked
program will never have data races or deadlocks at
runtime. To verify this two properties, we need to make
the static permission type and dynamic runtime state
match to each other according to its operational semantics
and sequential/parallel permission type rules. This is the
“consistency”.

The consistency relation between a memory µ, a run-
time thread information T and a permission environment
∆; Π; (Φ1||Φ2||...||Φn); Φ̂ is represented as:

∆; Π; (Φ1||Φ2||...||Φn); Φ̂ ` µ;T ok

The threads T is a sequence of held locks:

T ::= l1||l2||...||ln
In order to match the static type to runtime state, it is

required to:
• map the pointer variable in permission type to abso-

lute address in memory
• match parallel locks in environment to actual parallel

threads
• match the global lock set Φ̂ to the actual lock status

in memory
A memory µ only includes values of pointer variables,

but the type system has location variables and fraction
variables as well. We use a partial function ψ1 to map
from fractions into numbers between zero and ψ2 to
map from location variables into actual locations in the
memory:

ψ1 : F ⇀ (0, 1] ψ2 : R ⇀ L

For fractions, we have:

ψ1(1) = 1 ψ1(q) = q ψ1(ξξ′) = ψ1(ξ) ∗ ψ1(ξ′)

Once ξ = ξ′ happens, we will get ψ1(ξ) = ψ1(ξ′). For
location variable ρ, the ψ2(ρ) will be its actual location,
thus for a permission ξv : ptr(ρ), we get ψ2(ρ) = µ(v).

In order to track the fraction in permissions, we use ψ3

to map from a permission bag into a set of mappings from
pointer or location variables to numbers between zero and
one:

ψ3 : (Π ⇀ (V ∪ L→ (0, 1]))

First, we apply ψ3 to single permissions and get:

ψ3(ξv : ptr(ρ)) = {v 7→ ψ1(ξ)}
ψ3(ξρ) = {ψ2(ρ) 7→ ψ1(ξ)}
ψ3(ρ=ρ′) = {} if ψ2(ρ) = ψ2(ρ′)

To apply the ψ3 on permission bag Π, it’s required to
merge all the “compatible” permissions to get a “com-
pact” permission bag first.

Definition 3: Two permissions π1 and π2 are compat-
ible in a permission bag Π if either:
• π1 = π2;
• π1 = ξ1ρ1, π2 = ξ2ρ2 and Π = (ρ1 = ρ2),Π′ for

some Π′;
• π1 = ξ1v : ptr(ρ1), π2 = ξ2v : ptr(ρ2) and Π =

(ρ1=ρ2),Π′ for some Π′.
Definition 4: A permission bag Π is compact if for any

π1 and π2, such that Π = Π′, π1,Π
′′, π2,Π

′′′ for some Π′,
Π′′ and Π′′′, π1 and π2 are not compatible.

Theorem 1: Every permission bag Π can be equally
transformed to a compact permission bag: ∀Π,∃Π′ : (Π ≡
Π′) ∧ Compact(Π′).

Then we could apply ψ3 to a compact permission bag:

Compact(Π) Π = π,Π′

ψ3(Π) = ψ3(π) ∪ ψ3(Π′)

For simplicity, we do not distinguish ψ1, ψ2 and ψ3.
All of them are replaced by ψ. The total consistent rules
is:

∃ψ.(ψ;µ ` Π consistent) ∧
(ψ;µ;T ; Π ` (Φ1||Φ2||...||Φn); Φ̂; consistent)

∆; Π; (Φ1||Φ2||...||Φn); Φ̂ ` µ;T ok

which requires that the permission and lock information
are consistent with correspondent runtime state. Auxiliary
permission consistency rules and lock consistency rules
are omitted here.

Lemma 5: Given a permission-checked program P ,
if a sequence of parallel statements s1||s2||...||sn with
(1 ≤ n) can be permission checked with the environment
∆; Π; (Φ1||Φ2||...||Φn); Φ̂ (∆; Π; (Φ1||Φ2||...||Φn); Φ̂ `
s1||s2||...||sn a

{
E′
}

) for some
{
E′
}

with the
consistent memory µ and the thread information T
(∆; Π; (Φ1||Φ2||...||Φn); Φ̂ ` µ;T ok), then either n = 1
and s1 is skip or s1||s2||...||sn can be evaluated by
either:
• eliminating a latest created thread:

(µ; (s1||s2||...||sn))→ (µ; s1||s2||...||sn−1)

then there exists an permission environment
∆; Π; (Φ1||Φ2||...||Φn−1); Φ̂
which is consistent with µ;T \ {Tn} where Tn
corresponds to Φn and also permission checks
s1||s2||...||sn−1 with the output environment

{
E′
}

,
such that:

∆; Π; (Φ1||Φ2||...||Φn−1); Φ̂ ` s1||s2||...||sn−1 a{
E′
}

• nondeterministically picking a thread to evaluate:
(µ; (s1||s2||...||sj ||...||sn))→{

(µj ; s1||s2||...||s′j ||...||sn)|1 ≤ j ≤ n
}

then there exists a set of{
∆j ; Πj ; (Φ1j ||Φ2j ||...||Φnj

); Φ̂j

}
and {σj},

such that each is consistent with µj ;Tj
(∆j ; Πj ; (Φ1j ||Φ2j ||...||Φnj

); Φ̂j ` µj ;Tj ok)
and also permission checks the s1||s2||...||s′j ||...||sn,
that is:

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1895

© 2012 ACADEMY PUBLISHER

∆j ; Πj ; (Φ1j ||Φ2j ||...||Φnj
); Φ̂j `

s1||s2||...||s′j ||...||sn a
{
E′′
}

with E′′ ⊆ σjE′;
• creating a thread:

(µ; (s1||s2||...||sn))→ (µ; s1||s2||...||sn+1)

then there exists a permission environment
∆; Π; (Φ1||Φ2||...||Φn||∅); Φ̂ which is consistent
with µ;T ∪ {Tn+1} where Tn+1 corresponds to
the new created thread and also permission checks
s1||s2||...||sn+1 with the output environment

{
E′
}

,
such that:

∆; Π; (Φ1||Φ2||...||Φn||∅); Φ̂ ` s1||s2||...||sn+1 a{
E′
}

VI. FURTHER WORK

A. High Level Annotations

This paper is a subsequent work based on [11] and
we only mention the low level permission system. In
order to make the whole system work, we need to use
the effect system and translate the high level annotations
into the low level permissions which are ignored in this
paper. We are currently designing the permission system
for an object-oriented language and some high level
annotations have been modelled by low level permissions,
for instance, unique, readonly, borrowed and so on. Next,
final, guarded by and requires annotations may also be
added.

B. Object-oriented Features

One of the most challenging features of object-oriented
is polymorphism. The language in this paper only has
two primitive types and a pointer type. If we add the
object-oriented features, the permission type system will
become more complicated. The actual runtime type may
not be determined statically, therefore the conservatively
approximation need to be applied. Furthermore, Boyland
et al. [12] have developed a model of object invariant
using “adoption”, in which an invariant is established by
the constructor and is always correct thereafter. Soundness
for sequential programs has been proved and we hope to
extend it to parallel programs.

C. Atomicity

“Race-free” is still a weak property and is not sufficient
to ensure the absence of errors due to unexpected thread
interactions. Instead, atomicity is much more stronger
non-interference property. Atomic methods can be as-
sumed to execute serially, without interleavings from
other threads [13]. Flanagan suggest to add atomicity to
parallel programs. To implement this using permission,
some additional atomicity information or facts need to be
attached into the permission environment.

VII. CONCLUSION

This paper presents a type system for a simple language
with concurrency features using the fractional permis-
sions. Permission is abstracted as one kind of semantic
access right associated with every global variables or
locations in the memory. Any write access is required
to be granted a whole permission, which may be fur-
ther split into fractions to allow read accesses. We give
the permission rules to check the race conditions and
deadlocks. Well-typed programs in permission system are
guaranteed to be race-free and deadlock-free. At last,
some consistency rules between the runtime state and the
static permission environment are established.

REFERENCES

[1] Y. Zhao, “A simple permission checking for structural
parallel programs,” in ICACTE ’08, Dec. 2008.

[2] C. Flanagan and M. Abadi, “Types for safe locking,” in
ESOP ’99, Mar. 1999.

[3] C. Flanagan and Martı́n, “Object types against races,” in
Conference on Concurrent Theory, Aug. 1999.

[4] C. Boyapati, “Safejava: A unified type system for safe
programming,” Ph.D. dissertation, MIT, 2004.

[5] C. Flanagan and S. N. Freund, “Types-based race detection
for Java,” in PLDI ’00. ACM Press, 2000, pp. 219–232.

[6] M. Abadi, C. Flanagan, and S. N. Freund, “Types for safe
locking: Static race detection for java,” ACM Transactions
on Programming Languages and Systems, vol. 28, no. 2,
pp. 207–255, Mar. 2006.

[7] S. Brookes, “A semantics for concurrent separation logic,”
in CONCUR ’04, Aug. 2004.

[8] R. Rugina and M. C. Rinard, “Pointer analysis for struc-
tured parallel programs,” ACM Transactions on Program-
ming Languages and Systems, vol. 25, no. 1, pp. 70–116,
Jan. 2003.

[9] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson,
“Permission accounting in separation logic,” in POPL ’05.
ACM Press, 2005, pp. 259–270.

[10] L. Wang and S. D. Stoller, “Runtime analysis of atomicity
for multithreaded programs,” IEEE Transactions on Soft-
ware Engineering, vol. 32, no. 2, pp. 93–110, Feb. 2006.

[11] J. Boyland, “Checking interference with fractional permis-
sions,” in SAS ’03, ser. LNCS, vol. 2694. Springer, 2003,
pp. 55–72.

[12] J. Boyland and W. Retert, “Connecting effects and unique-
ness with adoption,” in POPL ’05. New York, NY, USA:
ACM Press, 2005, pp. 283–295.

[13] C. Flanagan and S. Qadeer, “A type and effect system for
atomicity,” in PLDI ’03. ACM Press, 2003, pp. 338–349.

Yang Zhao was born in 1978. He received his Ph.D. degree
in computer science from University of Wisconsin, Milwaukee
in 2007, his M.S. degree in computer science from Nanjing
University in 2003. He is currently an Associate Professor at
Nanjing University of Sci.& Tech., China. His current research
interests include program analysis and software engineering.

1896 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

