
A Novel Web Service Composition Algorithm for
Multiple QoS Constraints

Changsong Liu, Dongbo Liu, Ning Han

School of Computer and Communication, Hunan Institute of Engineering, Xiangtan, 411104, China
Email: liuchangsong74@126.com

Abstract—Web services are creating unprecedented
opportunities for the formation of online Business-to-
Business collaborations. However, effective approach to
service composition with multiple QoS constraints still
remains an open issue, since both the QoS performance of
services and the QoS requirements of applications might
dynamically be changed at runtime. In this paper, we
introduce a novel service composition algorithm which
formulates the service composition problem as a Multiple
choice Multiple dimension Knapsack Problem (MMKP) and
applies evolution strategy to obtain an approximate solution.
Experimental results compare our method with other
solutions and demonstrate the effectiveness of our approach
toward the identification of an optimal solution to the QoS
constrained Web service selection problem.

Index Terms—web service, quality of service, service
composition, workflow, QoS negotiation

I. INTRODUCTION

Web services are autonomous components that can be
advertised, located, and accessed through XML based
standards and transmitted using Internet protocols [1, 4].
The emergence of Web services has created
unprecedented opportunities for organizations to establish
various collaborations with other organizations. For
example, an integrated financial management Web
service can be created by composing more specialized
Web services for payroll, tax preparation, and cash
management. Since, they are intended to be discovered
and used by other applications across internet, Web
services need to encapsulate application functionality and
information resources, and make them available through
programmatic interfaces [2, 18, 19]. In the presence of
multiple Web services with similar functionality, users
will discriminate these alternatives based on their quality
of service (QoS) requirement. Therefore, Web services
need to be described and understood both in terms of
functional capabilities and quality of service properties [5,
8-11].

The early solutions select Web services by associating
the running activity to the best candidate service which
supports its execution, which can only guarantees those
local QoS constraints such as the price of a single Web
service. Recently, many global solutions are proposed to
satisfy the process constraints and user preferences for

the whole application. In this way, QoS constraints can
predicate at a global level, for example, the constraints
posing restrictions over the whole composed service
execution can be introduced. However, those global
approaches introduce an increased complexity with
respect to local solutions, also, their performance tend to
be variable since workload on Web services are
fluctuated dramatically. For instance, when a business
process has a long duration, the set of services may
change their QoS properties during the process execution
or some services can become unavailable. So, a dynamic
and adaptive composition approach is needed, in which
runtime changes in the QoS of the component services
are taken into account.

In this paper, we introduce a novel service composition
algorithm which formulates the service composition problem as
a Multiple choice Multiple dimension Knapsack Problem
and applies evolution strategy to obtain an approximate
solution. The rest of this paper is organized as follows:
Section 2 presents the related work; Section 3 presents
the definition of problem and designs the corresponding
algorithm. In Section 4 presents, extensive experiments
are conducted to verify the effectiveness and performance
of the proposed algorithm compared with other
approaches. Finally, Section 5 concludes the paper with a
brief discussion of future work.

II. RELATED WORK

The standard description of service composition are
proposed in ebXML [18] and DAML-S [3]. DAML-S
supports the Semantic Web services based on a generic
ontology, in which both functional and QoS aspects of
services are expressed as rule-based preconditions and
post-conditions on service operations. However, neither
DAML-S nor ebXML consider user’s QoS criteria, nor
do they address the issue of dynamic service selection
and adaptive service composition.

The technique of Web service composition has
received a lot of attention. Most of the work can be
broadly classified into three categories: manual
composition, semi-automatic, and automatic composition.
In manual composition, the composite service is modeled
manually by using a service flow language such as
BPEL4WS [2] and they often requires the knowledge of
specific domain. Meanwhile, it is a labor-intensive and
error-prone task; so, it is not appropriate for the large-

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1867

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1867-1872

scale web service composition. In [6, 12, 19], some Semi-
automatic composition techniques have been proposed,
which solve some of the problems of manual composition.

The technique of semantic Web has been proven to be
automatic and flexible since a composed service process
is built automatically from a high level specification of
the required functionality. In [13], Lazovik et al. designed
a framework which interleaves planning and execution of
complex applications whose functional objectives and
QoS requirements are specified by assertions of XSAL
languages. In [8], Dacosta et al. proposed a similar
approach which built complex applications from a high
level workflow specification by applying contingency
planning technique. However, the drawback of these
techniques is high computation complexity, which often
means that only suboptimal solution can be obtained by
some heuristic functions.

The technique of agent-based service composition has
recently received great attention. For example, McIlraith
and Son [15] proposed an agent-based web service
composition framework; Maamar et al. [14] presented an
agent-based and context-oriented approach that supports
the composition of web services; Wang et al. [22]
proposed an agent-based web service workflow model for
inter-enterprise collaboration. During service
composition process, software agents engage in
conversations with their peers to agree on the web
services that participate in this process. However, the
agents in the above mentioned approaches are not used to
achieve the automatic web service composition but to the
coordination and enactment of the composite web
services.

III. THE FRAMEWORK AND DESCRIPTIONS

Fig. 1. Framework of QoS-aware Web Service Composition

The adaptive service composition algorithm presented
in this paper is based on the framework as shown in Fig.
1. In the framework, user applications invoke Web
services through Web Service Portal, in which the service
abstract interface requirements and user’s QoS
constraints are specified. The registry service is an
extended version of a UDDI registry, which provides
related information on service abstract interface and
corresponding QoS characteristics. The Concrete Service
Invoker is responsible for invoking the concrete service

corresponding to application’s requirements through a
Mapper component. Then the Mapper selects the best
concrete services for each task of the composed service
according to the optimization criteria which will be
discussed in the remainder of this paper. The Broker
component is responsible for invoking services that
selected by Mapper, and QoS negotiation is performed
through the Negotiator component. In order to provide
adaptive QoS for user applications, we designed an
application profile database which includes the context of
application invocation, application performance profile
and service performance profile. As the invocation
context can vary over time, by this profile database,
different services can be invoked due to modifications of
the context.

A. Definitions on Service Execution
A Web service is modeled as a software component

that implements a set of operations. In the framework, a
composed service is specified at an abstract level as a
high-level business process, which contains an initial task
tinit and an exit task texit. So, an abstract composed service
can be noted as a directed graph G=<T, E>, where T={t1,
t2, …, tn} is the set of tasks, E={ei,j|if <ti,tj>∈T×T}. As
mentioned above, the Mapper Service is responsible for
transforming abstract business process into concreted
composed service. So, a concreted composed service can
also be noted as a directed graph G*=<S, P>, where
S={ws1, ws2, …, wsn} is the set of Web services, P={p1,
p2, …, pn } is the set of execution path. When a task ti is
mapped onto sj and invokes the k-th operation interface, it
is noted as a pair < ti, wsj,k>. Invoking path ipk={pi,…,pj}
is a set of order execution path, which starts from pi and
ends at pj.

B. QoS Measurements of Web Services
Several QoS measurements can be associated when

executing a Web service. In this paper, we assume that
the values of QoS measurements are real numbers that
vary in a bounded range with a minimum and a maximum
value. If the same operation is accessible from the same
Web service and the same provider, but with different
quality characteristics, then multiple copies of the same
operation will be stored in the registry, each copy being
characterized by its quality profile.

We mainly take into account the following subset of
QoS measurements, which have been the basis for many
QoS-aware service architectures [9, 10, 15, 20]: (1)
Availi,j: The probability that the service operation wsi,j is
accessible, which is a number in the range [0, 1]; (2)
Costi,j: The fee that a user has to pay to the service
provider for the service invocation wsi,j; (3) Execi,j: The
duration between the time when wsi,j is invoked and then
time when the result is obtained; (4) Repi,j: It is defined as
the ratio of the number of service invocations which
comply the negotiated QoS to the total number of
invocations, which is in the range [0, 1]. With respect to
negotiability, the QoS measurement such as costs and
execution time are negotiable, while availability and
reputation are not negotiable. An example of QoS
constraints specified by a user is shown as following.

Web Applications

Web Service Portal

Concrete Service Invoker

Mapper Service
UDDIe

Registry
Service

Broker Negotiator Application
Profile

Database…… Web Service

1868 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

QosConstraint.xml
<QosContraints name=task1>

 <CostConstraint value=100 />
 <ExecTime value=2.5 />
 <Reputation value=0.9 />

</QosConstraints>
<QosContraints name=task2>

 <CostConstraint value=70 />
 <ExecTime value=1.5 />
 <Reputation value=0.75 />

</QosConstraints>
<QosContraints name=task3>

 <CostConstraint value=110 />
 <ExecTime value=5.0 />
 <Reputation value=0.95 />

</QosConstraints>

According to the definitions in Section III.A, the

aggregated QoS measurements of a composed service can
be calculated as following.

,

,

,

()
i j l k

k i j

t ws ip

Cost ip Cost
< > �

= å (1)

 (2)

, ,

,()
i j l k

k i j

t ws ip

AvailAvail ip
< > �

= Õ (3)

,

, ,

()
1

i j

i j l kk

k
t ws ip

Rep ip Rep
ip < > �

=� å (4)

C．Solution of Optimal Service Composition with QoS
Constraints

In this paper, we focus on Web service composition
with multiple QoS constraints. Based on the aggregated
QoS definition in (1)~(4), the problem can be determined
by solving the following optimization programming
problem.

where cm

i,j, rm
i,j and em

i,j, are all boolean variants which
indicate that whether < ti, wsj,m> is in the invoking path
ipk; QoScost, QoSexec and QoSrep are user’s QoS constraints
that specified in the QosConstraint.xml file. It is clear that
the above problem is a classic 0-1 integrated
programming problem, which is equivalent to the
Multiple choice Multiple dimension Knapsack Problem
(MMKP). MMKP is a well-known NP-hard problem and
many heuristic approaches have been proposed to solve it

approximately [5, 11, 21]. In this paper, we use
evolution-computing technique to solve the above
problem, and the algorithm is shown as following.

Algorithm of Optimal Service Composition
with Multiple QoS Constraints
Begin
1. Q := 0;
2. Generate a random invoking path ip;
3. while evolution iteration W is not reached do
4. for each ti in T do
5. WSi := {}
6. for each wsj in S do
7. if wsj is not candidate service of ti then continue
8. else WSi := WSi + {wsj}
9. end for
10. for each < ti, wsj,m> in ip do
11. Randomly generate triple < cm

i,j, rm
i,j, em

i,j,>
12. if < cm

i,j,rm
i,j,em

i,j,> satisfying the QoS constraints then
13. Calculate Cost(ipm), Exec(ipm) and Rep(ipm)
14. Q’ := Q’ + Cost(ipm) + Exec(ipm) + Rep(ipm)
15. if Q’ > Q then Q := Q’
16. else
17. Mutate ip using swap-mutation with the probability

of 0.5;
18. go to step 3
19. end if
20. end if
21. end for
22. end while
end.

IV. EXPERIMENTS EVALUATION AND ANALYSIS

A. Experimental Settings
In order to evaluate the performance of the proposed

service composed algorithm, extensive experiments are
conducted in practical platform. In our experiments, Web
services were developed using IBM’s Web Services
Toolkit and deployed on a cluster of PCs. All PCs had the
same configuration: Pentium IV 2.8 MHz with 2G RAM,
Windows 2000, Java 2 Enterprise Edition, and Oracle
XML Developer Kit. Host nodes are connected through
100Mbits/sec LAN. The target Web application in our
experiments is an extended version of service-oriented
numerical optimization project, which is deprived from
the prototype that designed by University of Southampton
[23]. In our experiments, QoS data is retrieved by the
service execution engine in different ways depending on
the QoS dimension. The service broker logs appropriate
QoS information during task executions, and the
availability is calculated based on the information that it
records about the up and down time of each service.

We investigate the performance in two situations: In a
static situation, the QoS of any Web service will not be
changed during a given composite service execution, and
services are able to execute the tasks successfully and in
conformance with their expected QoS; In a dynamic

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1869

© 2012 ACADEMY PUBLISHER

environment, the QoS of services may undergo changes
during the execution of a composite service, which means
that existing component services may become
unavailable, new component services with better QoS
may become available, component services may not be
able to complete the execution of tasks.

B. Performance Comparison
The first series of experiments aimed at evaluating the

QoS of composite service executions in both static and
dynamic environments. The performance of the proposed
algorithm (Evolution-strategy based Service Composition
Algorithm, ESCA) are compared with three classic
composition policy, which includes Global Composition
Optimization Algorithm [8] (GCOA), Local Composition
Optimization Algorithm [16] (LCOA), and Agent-based
Service Composition Algorithm [20] (ASCA). Four QoS
measurements are all considered separately in our
experiments, and experimental results are shown in Fig. 2
and Fig. 3.

Fig. 2 QoS Performance Comparison in Static Environment

When the service composition occurs in static, the QoS

of any Web service will not be changed during a given
composite service execution, and services are able to
execute the tasks successfully and in conformance with
their expected QoS. So, QoS negotiations only are
performed before the concrete service broker starts,
which mean that re-negotiation never happens. In this
case, we assume that reputation of a service is measured
by its historic log that indicates the degree of its QoS
compliance. As shown in Fig.2, the performance of
GCOA are significantly better the LCOA policy. For
example, the execution duration is consistently shorter
when using GCOA than that of LCOA. It is because that
the computation costs of GCOA is much higher that that
of LCOA, which will be evaluated in the second
experiment in details.

As to ASCA and ESCA, their performances are very
similar when the number of tasks is less than 40.
However, their variants become significant when we
increase the task number of the experimental application.
For example, the execution time of ESCA is about 25%
shorter than that of ASCA when number of tasks is 100.
As the analysis in [20], ASCA policy is based on the
automotive characters of multiple agents, which is

defined by administers of the system. When the size of an
application is small, the ASCA can find an optimal
solution by linear programming, which is similar to the
proposed ESCA. However, when the number of tasks
increases significantly, the solution of ASCA depends on
the interaction of a large set of autonomous agents and
the optimal solution can not be figured out any more.

When in dynamic environment, the QoS of services
may undergo changes during the execution of a
composite service, which means that existing component
services may become unavailable, new component
services with better QoS may become available. As
shown in Fig. 3, the most differences between the two
cases are that performance on reputation and availability
measurements. The performance of both of QoS
measurements are reduced about 12%~20% when in
dynamic environments. Since the availability of Web
services is dynamic, some services that are selected by
the optimal execution plan may become unavailable when
the task needs to be executed. Although the system can
re-negotiate the unexecuted part of composite services,
the executed part may become suboptimal, making the
entire composite service execution suboptimal. There,
execution time of a solution becomes uncertain, because
re-negotiation will increased the delay of execution, but if
better candidate service is available the benefits might
compensate the delay brought by re-negotiation or re-
optimization. So, in our experiments, we find that the
performances of cost and execution time are almost the
same whether in static environment or in dynamic
environment.

Fig. 3 QoS Performance Comparison in Dynamic Environment

By the above experimental results, we draw the

conclusions as following: (1) The performance of ASCA
and ESCA are better than GOCA and LOCA; (2) In
presence of large-scale application, ESCA is more
suitable than ASCA to find global optimal solution with
multiple QoS constraints; (3) The stability of ESCA is
better than the other three policies when in dynamic
environment.

C. Computation Cost Comparison
In this experiment, we will investigate the computation

cost of the proposed service composition algorithm. The
aim is to provide a basis for determining the overhead for
obtaining an optimal solution. For each test case, we
executed the composite service 10 times and computed

1870 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

the average computation cost. Same as the first
experiment, we choose the GCOA, LCOA and ASCA for
comparison. As the complexity of ESCA is related to the
parameter W (Evolution Iteration Number), so, we
conducted the ESCA algorithm three with W=50, W=100,
W=200. It is clear that bigger W will result in more
computation cost but also bring about more optimal
solution for ESCA. The experimental results are shown in
Fig. 4 and Fig. 5.

Fig. 4 Comparison of Computation Costs in Static Environment

Fig. 5 Comparison of Computation Costs in Dynamic Environment

As shown in Fig. 4 and Fig. 5, the mean computation

cost of GCOA is the highest, and LCOA is the second
highest. It is especially true when the number of task
become very large. In addition, we noticed that
computation costs of GCOA and LCOA increases faster
than that of ESCA and ASCA. It is because that
implementation of GCOA and LCOA requires travailing
the abstract service graph and candidate service set
several time before a concrete service composition is
obtained. The computation cost of global planning by
exhaustive searching is very high even in very small scale
in aspect of the number of tasks and candidate service. So
the computation costs of both of the two composition
policies are multi-linear related to the size of the target
graph of an application. In addition, when in dynamic
environment, re-negotiation often results in the change of
candidate service set, which in turn will increase the
computation cost of the two policies. The computation
cost of ASCA policy is better than GCOA and LCOA,
and the reason have been mentioned in the first
experiments.

As to ESCA policy, the experimental results indicate
that its computation cost does not increasing linearly with

the increasing of the number of tasks. By analyzing the
detailed experimental data, we noticed that most of
optimal solution is obtain before the evolution iteration is
increased to the maximum account. That is why the
computation cost of ESCA is not linear to the W value,
for instance, when W value is increased 100% then
computation cost of ESCA only increased about
30%~45%. It is noteworthy that communication delay of
QoS negotiation is not taken into account when
calculating the computation cost of these policies, since
this overhead is heavily depended on the network traffic
and topology of the tested environment. More detailed
study on negotiation delay when compositing large-scale
application will be our next work.

The summary of this experiment is as following: (1)
For those composition policies that based on exhausted
searching technique, such as GOCA and LOCA, its
extensibility will become a performance bottleneck in
presence of large-scale distributed applications; (2) Both
ESCA and ASCA are extensible service composition
algorithms; (3) The computation cost of ESCA is less-
linear related to W parameter, and a suitable value of W
should be decided by the user’s QoS requirements.

V. CONCLUSION

To address the issue of Web service composition with
multiple QoS constraints, we introduce a service
composition algorithm which formulates the service
composition problem as a Multiple choice Multiple
dimension Knapsack Problem and applies evolution
strategy to obtain an approximate solution. Extensive
experiments are conducted on a set of practical
applications. Experimental results compare our method
with other solutions and demonstrate the effectiveness of
our approach toward the identification of an optimal
solution to the QoS constrained Web service selection
problem. In presence of large-scale application, the
proposed ESCA algorithm is more suitable than ASCA to
find global optimal solution with multiple QoS
constraints. Also, the stability of ESCA is better than the
other three policies when in dynamic environment. At
present, the implementation of ESCA only considers four
QoS measurements. Our future work will focus on more
QoS requirement of business applications. Meanwhile,
we will take efforts to improve the performance of QoS
negotiation in our service composition framework.

ACKNOWLEDGMENT

This work was supported by a grant from the National
Natural Science Foundation of China (No. 60673165 and
No. 60970038). It is also a project supported by Scientific
Research Fund of Hunan Provincial Education
Department (No. 09c270). The authors sincerely thank
Ms. Lee Xi in Chicago University for the correction of
English writing.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web
Services. Springer Verlag, 2003.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1871

© 2012 ACADEMY PUBLISHER

[2] T. Andrews and F. Curbera, “Business Process Execution
Language for Web Services (version 1.1),”
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
specification-draft.pdf, 2003.

[3] A. Ankolekar, et al., “DAML-S: Web Service Description
for the Semantic Web,” Proc. First Int’l Semantic Web
Conf. (ISWC 02), 2002.

[4] D. Ardagna and B. Pernici, “Global and Local QoS
Guarantee in Web Service Selection,” Proc. Business
Process Managment Workshop (BPM ’05), pp. 32-46,
2005. Int’l J. Business Performance Managment, vol. 1,
no. 4, pp. 233-243, 2005.

[5] G. Bartoli, et al. “An Optimized Resource Allocation
Scheme Based on a Multidimensional Multiple-Choice
Approach with Reduced Complexity”, Proc. of IEEE
International Conference on Communications (ICC), pp.
1-6, 2011.

[6] J. Cardoso and A. Sheth, “Semantic E-Workflow
Composition,” J. Intelligent Information Systems, vol. 21,
no. 3, pp. 191-225, 2003.

[7] S. Ceri, F. Daniel, M. Matera, and F. Facca, “Model-
Driven Development of Context-Aware Web
Applications,” ACM Trans. Internet Technology, vol. 7,
no. 2, 2007.

[8] L.A.G. Dacosta, P.F. Pires, and M. Mattoso, “Automatic
Composition of Web Services with Contingency Plans,”
Proc. Int’l Conf. on Web Services Workshop (ICWS ’04),
2004.

[9] A.B. Hassine, S. Matsubara, and T. Ishida, “A Constraint-
Based Approach to Horizontal Web Service
Composition,” Proc. Fifth Int’l Semantic Web Conf.
(ISWC), pp. 130-143, 2006.

[10] S. Hwang et al., “Dynamic Web Service Selection for
Reliable Web Service Composition,” IEEE Trans.
Services Computing, vol. 1, no. 2, pp. 104-116, Apr.-June
2008.

[11] M.I. Islam and M.M. Akbar, “Heuristic algorithm of the
multiple-choice multidimensional knapsack problem
(MMKP) for cluster computing”, Proc. of International
Conference on Computers and Information Technology
(ICCIT'09), pp.157-161, 2009.

[12] Q.A. Lang, “AND/OR Graph and Search Algorithm for
Discovering Composite Web Services,” J. Web Services
Research, vol. 2, no. 4, pp. 46-64, 2005.

[13] A. Lazovik, M. Aiello, and M. Papazoglou, “Associating
Assertions with Business Proesses and Monitoring Their
Execution,” Proc. Int’l Conf. Service Oriented Computing
(ICSOC ’04), pp. 94-104, 2004.

[14] Z. Maamar, S.K. Mostefaoui, and H. Yahyaoui, “Toward
an Agent-Based and Context-Oriented Approach for Web
Services Composition,” IEEE Trans. Knowledge and Data
Eng., vol. 17, no. 5, pp. 686-697, May 2005.

[15] S. McIlraith and T.C. Son, “Adapting Golog for
Composition of Semantic Web Services,” Proc. Int’l Conf.
Principles of Knowledge Representation and Reasoning
(KRR), pp. 482-496, 2002.

[16] S. Oh, D. Lee, and S.R.T. Kumara, “Web Service Planner
(WsPr): An Effective and Scalable Web Service

Composition Algorithm,” J. Web Services Research, vol.
4, no. 1, pp. 1-23, 2007.

[17] A. Patil et al., “METEOR-S Web Service Annotation
Framework,” Proc. 13th Int’l Conf. World Wide Web
(WWW), pp. 553-562, 2004.

[18] S. Patil and E. Newcomer, “ebXML and Web Services,”
IEEE Internet Computing, vol. 7, no. 3, pp. 74-82, 2003.

[19] J. Schaffner, H. Meyer, and C. Tosun, “A Semi-
Automated Orchestration Tool for Service-Based
Business Processes.” Proc. Second Int’l Workshop Eng.
Service-Oriented Applications: Design and Composition
(WESOA), pp. 50-61, 2006.

[20] H Tong, et al., “A Distributed Algorithm for Web Service
Composition Based on Service Agent Model”, IEEE
Trans. on Parallel and Distributed Systems, vol.2, no.12,
pp.2008-2021, 2011.

[21] D.C. Vanderster, N.J. Dimopoulos, R.J. Sobie,
“Metascheduling Multiple Resource Types using the
MMKP”, Proc. of IEEE/ACM International Conference
on Grid Computing, pp.231-237, 2006.

[22] S. Wang, W. Shen, and Q. Hao, “An Agent-Based Web
Service Workflow Model for Inter-Enterprise
Collaboration,” Expert Systems with Applications, vol. 31,
no. 4, pp. 787-799, 2006.

[23] G. Xue, W. Song, S.J. Cox, A. Keane. Numerical
Optimisation as Grid Services for Engineering Design.
Journal of Grid Computing, vol.2, no.3, pp.223-238, 2004.

[24] T. Yu and K. Lin, “Service Selection Algorithms for Web
Services with End-to-End QoS Constraints,” Information
Systems and E-Business Management, vol. 3, no. 2, pp.
103-126, 2005.

Changsong Liu was born in 1974. He received his master
degree in Xian University of Technology in 2004. Now, he is a
Ph.D candidate in Central South University, and currently
works in Hunan Institute of Engineering as lecturer. His
research interests include service computing, quality of service
management, distributed intelligence.

Dongbo Liu was born in 1974. He received his master degree in
Jiangsu University of in 2004. He obtains the Ph.D degree in
Hunan University in 2010, and currently works in Hunan
Institute of Engineering as associate professor. His research
interests include Web service, distributed intelligence, cloud
computing and etc.

Ning Han was born in 1981. He received his bachelor degree in
Beijing University of Science and Technology, and now
persuading master degree in Xiangtan University. Currently, he
works in the HP High Performance Lab of Hunan Institute of
Engineering as a senior networking engineer. His research
interests include complex networking deployment, distributed
computing, information security technology, fault-tolerance in
distributed systems.

1872 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

