
Detecting Offline Transaction Concurrency
Problems

Hao Luo1, Mehedi Masud2, and Hasan Ural1
1EECS, University of Ottawa, Ottawa, Canada

2Department of Computer Science, Taif University, Taif, Saudi Arabia
Email: {hao,ural}@site.uottawa.ca, mmasud@tu.edu.sa

Abstract— When multiple instances of a database application
(DBA) are executing concurrently, transactions from these
instances interleave. Due to unintentional grouping of oper-
ations of the DBA into transactions, some interleavings of
these transactions may cause offline concurrency problems.
Although these problems are analogous to lost update,
dirty read, non-repeatable read, and phantom problems,
the concurrency controller of a DBMS cannot ensure ACID
properties because from the DBMS’s point of view the
transactions involved in the offline concurrency problems
are executed successfully. This paper gives the enumeration
of patterns of interleaving of operations which identify
potential offline concurrency problems in a DBA.

Index Terms— database concurrency, transaction processing,
consistency, database application testing

I. INTRODUCTION

A database application (DBA) is written in some
source language where transactions are formed as se-
quences of SQL queries SELECT, INSERT, DELETE,
UPDATE terminating with SQL keywords COMMIT or
ROLLBACK. When multiple instances of a DBA are
running, a set of transactions from these instances may
be submitted to be executed by a Database Management
System (DBMS). Since executing transactions in a given
set one at a time seriously hampers the performance of
the DBMS, transactions often are executed concurrently
by interleaving operations (i.e., read, write, commit, abort
as seen by the DBMS) from these transactions. However,
allowing concurrent execution of transactions may create
concurrency problems (Lost Update (P0), Dirty Read
(P1), Non-repeatable Read (P2), and Phantom (P3)) [1].
Hence, DBMSs have been constructed to avoid the above
problems, guarantee the ACID properties [1] for each
transaction and accommodate different performance re-
quirements via isolation levels (i.e., Read Uncommitted
(0), Read committed (1), Repeatable Read (2), and Seri-
alizable (3) [1].

When transactions in a given set are executed at isola-
tion level Serializable (which is by default), it is assumed
that the transaction manager of the DBMS schedules the
operations from these transactions in such a way that
the result of the concurrent execution of the operations
is the same as that of a sequential execution of the
transactions in some order. It is also assumed that none of
the concurrency problems P0 to P3 could occur, provided
that the DBA developer uses transaction constructs ap-

propriately. However, this last assumption may not hold
if an unintentional transaction design/implementation in
the DBA groups SQL queries into transactions such that
data are manipulated across multiple transactions when all
the work should be done in a single transaction. Potential
problems analogous to P0 to P3 that may occur due
to this unintentional grouping of operations are called
offline concurrency problems [2]. The DBMS will not
be aware of the existence of such problems because none
of the ACID properties has been violated and therefore
concurrency control mechanisms in the DBMS cannot
prevent realization of offline concurrency problems.

The offline concurrency problems in a DBA are identi-
fied by [3], [4] by considering three transactions, Ti, Tj ,
and Tk, from two concurrently executing instances of
the DBA and by analyzing the dataflow involving at-
tributes of a relational database and host variables be-
tween transactions at the highest isolation level. They
provided two tables indicating patterns of operations on
related attributes/host variables in Ti, Tj , Tk which may
pose potential offline concurrency problems. However,
justifications for the correctness and completeness of the
identified potential offline concurrency problems have not
been provided. Also, they have not considered other isola-
tion levels. In this paper, we complete their analysis. In the
following sections, we identify potential offline concur-
rency problems in addition to the problems identified by
[3], [4]. We demonstrate the existence of these additional
potential offline concurrency problems we identify by
examples. We provide justifications for the claims for the
absence of each potential offline concurrency problem for
each pattern. We also enumerate the problematic patterns
in other isolation levels.

II. IDENTIFYING POTENTIAL OFFLINE CONCURRENCY
PROBLEMS IN DBAS

In a transaction, SQL queries are formed using at-
tributes and host variables. A READ is an occurrence of
an attribute V in an SQL query by which the value of V
is accessed. A WRITE is an occurrence of an attribute
V in an SQL query by which a value is assigned to
V . A DEF is an occurrence of a host variable v in an
SQL query by which a value is assigned to v. A USE is
an occurrence of a host variable v in an SQL query by
which the value of v is referenced. The notions of DEF

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1855

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1855-1860

TABLE I.
PROBLEMATIC PATTERNS SET 1

Patterns
1 2 3 4 5 6 7 8

Ti R R R R W W W W
Tj R R W W R R W W
Tk R W R W R W R W

Concurrency No No Yes Yes No Yes Yes Yes
problems P2 P3 P0 P1 P0 P3 P2 P0 P1

TABLE II.
PROBLEMATIC PATTERNS SET 2

Patterns
9 10 11 12 13 14 15 16

Ti U U U U D D D D
Tj R R W W R R W W
Tk U D U D U D U D

Concurrency Yes Yes Yes Yes Yes Yes Yes Yes
problems P1 P1 P0 P1 P0 P1 P1 P1 P0 P1 P2 P3

P2 P3 P2 P3 P2 P3

and USE are generally used in data flow analysis [5]–
[8] to form def-use associations [9]. Data flow analysis is
a technique for optimizing programs by compilers [10]
or determining the possible set of values of variables
at various points in a program for validation purposes
[11]. We use the following convention to classify the
variable (attribute or host variable) occurrences appearing
in SQL queries (SELECT, INSERT, UPDATE, DELETE)
as READ, WRITE, DEF, and USE. Consider a database
containing a relation r with attributes X and Y . Let x and
y be some host variables in the source code of a DBA.

• SELECT X INTO x FROM r WHERE Y = y, maps
to READ of X,Y; DEF of x and USE of y.

• INSERT INTO r VALUES(x), maps to WRITE of
X; USE of x.

• UPDATE r SET X = f(x) WHERE Y = y, maps to
WRITE of X and READ of Y; USE of x, y.

• DELETE FROM r WHERE X = x, maps to READ
of X; USE of x.

Note that an attribute or a host variable is said to be
related to a host variable or an attribute, respectively, if
the value of one is determined with respect to the other.
If the value of a variable z1 (attribute or host variable)
determines the value of other variable z2 , then we say
that z1 affects z2.

The problem studied in this paper is stated as follows:
Consider a DBA and its two instances A and B which are
running concurrently. Suppose that a database containing
a relation r is used by this DBA. Further suppose that
transactions Ti and Tk belong to instance A and trans-
action Tj belongs to instance B. Let Ti, Tj , and Tk be
executed in this order to represent the interleaving of
transactions of instances A and B. Assume that Tj ac-
cesses some attribute(s) of relation r that is (are) accessed
by Ti and Tk; or Tj accesses some attribute of a relation r
that affects some host variable(s) defined/used in Ti and
Tk. Identify patterns of READ, WRITE, DEF, USE of
related attributes/host variables in Ti, Tj , Tk which may
pose potential offline concurrency problems.

There are two essential characteristics for a pattern of
READ, WRITE, DEF, USE to indicate an offline concur-
rency problem. First, the pattern should result in different
values for an attribute in two instances of a DBA. There-
fore, we should examine sixteen patterns shown in Tables
I and II where each column represents a pattern which
indicates whether Ti, Tj , Tk has a READ (R), WRITE
(W), DEF (D), or USE (U) of related attributes/host
variables. Second, either instance A or instance B should
use its value of this attribute later in its execution and
create a scenario that is described by any of P0, P1, P2
and P3. Only when both of the above two requirements
are satisfied, we say that the pattern indicates an offline
concurrency problem. The potential offline concurrency
problems associated with each pattern are shown at the
last row of Tables I and II where problems identified by
Deng et al. [3], [4] are in regular font. Our analysis of the
sixteen patterns resulting from sixteen combinations of R,
W, D, U show that the problems identified by Deng et al.
are correct but they are not complete. There are additional
potential offline concurrency problems associated with
some of these patterns which are shown in bold in Tables
I and II.

A. Examples for Additional Offline Concurrency Prob-
lems

We show below examples of the additional offline con-
currency problems we identified. We use C programming
language with embedded SQL queries in the examples. In
all of these examples, we assume that two instances of a
DBA, instance A (executing transactions T1 and T2)) and
instance B (executing transaction T3) are running concur-
rently. We also assume that the transactions T1, T2, T3
are executed in the order of T1(A), T3(B), T2(A).

Example 1 (Pattern 3, Problem P3):
Consider a database with a single relation
staff(Employee ID, Position, Salary), denoted by
r(X,Y, Z), and a DBA which contains the following:

1856 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

ChangeSalary(y, a) which first changes the salaries of
employees whose position is y by a percentage a and
then for employees with the position y, reports their total
salary, their average salary and the standard deviation of
their salaries.

AddStaff(x, y, z) which inserts a new employee into r.
The details of ChangeSalary(y, a) and AddStaff(x, y, z)

are given below.
ChangeSalary(y, a)
{ int x, z;
Transaction T1:
UPDATE r SET Z=:Z*(1+a) WHERE Y=:y
SELECT SUM(Z) INTO :z FROM r WHERE Y=:y
printf(”Employees of position, %s, make a total of $,%d
after salary changes”, y, z); commit
Transaction T2:
SELECT COUNT(X) INTO :x FROM r WHERE Y=:y
printf(”Number of employees of position, %s is %d and
they make $,%d on average ”,y, x, z/x);
SELECT STDEV(Z) INTO :z FROM r WHERE Y=:y
printf(”The standard deviation of the salaries is %d”,z);
commit }
AddStaff(:x, :y, :z)
{ Transaction T3:
INSERT INTO r VALUES(:x, :y, :z)
commit }

Table III shows how the problem P3 is generated
considering the values of the attribute Z in r and when
the value of y is the same in both A and B.

TABLE III.
EXAMPLE OF PROBLEM P3 IN PATTERN 3

Transactions Operation Description
T1 R(Z) increases salaries of employees
T3 W(Z) adds a new employee with position y
T2 R(Z) computes average salary

Observe from Table III that the problem P3 in Pattern
3 (R W R) occurs. The reason is that the newly added
employee with position y is not counted in the sum of
employees salaries whose position is y, but is counted
in the standard deviation of employees salaries whose
position is y.

Example 2 (Pattern 7, Problem P2):
Consider a database that contains a single rela-
tion flights(flight num, vacancy, price), denoted by
r(W,Y,Z), and a DBA which contains the following:

CancelBooking(w) which cancels a booking of a flight
w, increases the number of vacancies of the flight w by
1 and shows the number of seats available.

Reserve(w) which reserves a booking in a flight w and
decreases the number of vacancies of the flight w by 1.

The details of CancelBooking(w) and Reserve(w) are
as follows:
CancelBooking(w)
{ int y;
Transaction T1:
SELECT Y INTO :y FROM r WHERE W=:w
UPDATE r SET Y=:y+1 WHERE W=:w

commit
Transaction T2:
SELECT Y INTO :y FROM r WHERE W=:w
printf(”Flight %d now has %d seats available for book-
ing”, w,y); commit }
Reserve(w)
{ int y;
Transaction T3:
SELECT Y INTO :y FROM r WHERE W=:w
if(y>0) { UPDATE r SET Y=:y-1 WHERE W=:w
commit } }

Now assume that in r there are two seats available
before of the execution of the transactions. Table IV
shows how the problem P2 is generated considering the
values of the attribute Y in r. The table also shows the
values of Y and the host variable y during the execution
of the transactions.

Observe from Table IV that the problem P2 in Pattern
7 (W W R) occurs. The reason is that after A updates
Y there are 3 seats available for the flight w but later A
reads and outputs Y which shows that there are only 2
available seats. This happens because B updates the value
of Y before A reads Y again.

Example 3 (Pattern 8, Problem P1):
Consider the relation flights(flight num, vacancy, price)
in the previous example and a DBA which contains the
following:

SetPromotion(w) which sets the ticket price of a flight
w to 80% of the original price if the flight has more than
20 vacancies and also ensures that no seat has a price
lower than $195.

Surcharge(w) which adds a new charge of $30 to the
price of a seat for the flight w.

The details of SetPromotion(w) and Surcharge(w) are
given below.
SetPromotion(w)
{ int z;
Transaction T1:
UPDATE r SET Z=:Z*.08 WHERE W=:w
SELECT Z INTO :z FROM r WHERE W=:w
SELECT Y INTO :y FROM r WHERE W=:w AND Z=:z
if(y<20) rollback else commit
Transaction T2:
if(z<195) UPDATE r SET Z=195 WHERE W=:w
commit }
Surcharge(w)
{ Transaction T3: UPDATE r SET Z=Z+30 WHERE
W=:w
commit }

Now assume that in r there are 21 seats available for
the flight w and the price of the ticket is $200 before
the execution of the transactions. Table V shows how the
problem P1 is generated considering the values of the
attribute Z in r. The table also shows the values of Z
and the host variables y and z during the execution of the
transactions.

Observe from Table V that the problem P1 in Pattern
8 (W W W) occurs. The reason is that B assigns a value

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1857

© 2012 ACADEMY PUBLISHER

TABLE IV.
EXAMPLE OF PROBLEM P2 IN PATTERN 7

Transaction Operation Read Value (Y) Value in y Updated Value (Y)
T1 W 2 2 3
T3 W 3 3 2
T2 R 2 2 2

TABLE V.
EXAMPLE OF PROBLEM P1 IN PATTERN 8

Transaction Operation Read Value (Z) Value of z, y Updated Value (Z)
T1 W 200 160, 21 160
T3 W 160 190
T2 W 160 160,21 195

to Z which does not exist due the later update of Z by
the transaction T2 in A.

The remaining four additional patterns that are associ-
ated with the problem P1 are the same as the problem
P1 associated with Pattern 6 (W, R, W) because all the
Ds and Us in these four patterns must indeed be DEFs
and USEs of those host variables that are related to the
attribute that is written in order to potentially cause the
problem P1. Thus, these four patterns are the same as
Pattern 6. Hence we give an example for the problem P1
exhibited by this pattern. Examples for the problem P1
for the four additional patterns can easily be constructed
by variations of this example.

Example 4 (Pattern 6, Problem P1):
Consider a DBA which contains the following: a new
version of SetPromotion(w) of Example 3, (called SP2
below), which sets the price of flight w to 80% of the
original price if it has more than 20 vacancies, but also
makes sure the price is not lower than 195 and Quote(w)
which shows the price for a specified flight w.

The details of SetPromotion(w) and Surcharge(w) are
given below.
SetPromotion(w) //SP2
{ int z;
Transaction T1:
SELECT Z INTO :z FROM r WHERE W = :w
UPDATE r SET Z = :z*0.8 WHERE W = :w AND Y >
20
commit
Transaction T2:
SELECT Z INTO :z FROM r WHERE W = :w
if (z < 195) UPDATE r SET Z = 195 WHERE W = :w
commit }
Quote(w)
{ int z;
Transaction T3:
SELECT Z INTO :z FROM r WHERE W = :w
printf(”The price for flight %d, is, %d”, w, z); commit
}

Now assume that in r there are 21 seats available for
the flight w and the price of the ticket is $200 before
the execution of the transactions. Table VI shows how
the problem P2 is generated considering the values of
the attribute Z in r. The table also shows the values of
Z and the host variable z during the execution of the

transactions.
Observe from Table VI that the problem P1 in Pattern

6 (W R W) occurs since B reads a value of Z that does
not exist in the database.

B. Justification of Non-problematic Patterns
From Tables I and II we observe that there are patterns

that do not create any concurrency problems, and some
patterns only create specific subsets of problems P0, P1,
P2, P3. Below, we show why these patterns cannot lead
to any or some potential offline concurrency problems.

Pattern 1: All three occurrence types in Ti, Tj , Tk are
READ. The value of the attribute read by these transitions
will not be changed by any of these transactions, thus its
value will be kept consistent among instances A and B.
Therefore we will not have any concurrency problems.

Pattern 2: The last occurrence type is WRITE, which
changes the value of the attribute read by Ti and Tj . Tj

in instance B will have an old value of this attribute
after Tk changes the value of the attribute. There will
not be any concurrency problem unless instance B uses
this value later in its execution. But even then, that usage
together with this READ in Tj will be caught by some
other pattern. Therefore this pattern will not have any
concurrency problems.

Pattern 3: This pattern will result in two different
values of the same attribute in instance A and only one
of these two values is consistent with the value of the
same attribute in instance B. It is a typical description
of P2 or P3. Both P0 and P1 require Tk to change the
value of the attribute read in Ti, thus cannot occur for this
pattern. Therefore this pattern cannot lead to concurrency
problems P0 and P1.

Pattern 4: This pattern will result in using the value
of an attribute by instance A that is read before instance
B changes the value of this attribute. It is a typical
description of P0. P1 cannot happen because Ti does
not change the value of the attribute in instance A. P2
and P3 need Tk in instance A to read the value of the
attribute again in order to have a different value than first
read in Ti in instance A. Thus they cannot occur for this
pattern. Therefore this pattern cannot lead to concurrency
problems P1, P2 and P3.

Pattern 5: The first occurrence type is WRITE in Ti of
instance A, which changes the value of the attribute. Tj

1858 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

TABLE VI.
EXAMPLE OF PROBLEM P1 IN PATTERN 6

Transaction Operation Read Value (Z) Value of z Updated Value (Z)
T1 W 200 200 160
T3 R 160 160 160
T2 W 160 160 195

in instance B reads this attribute after its value is changed
by instance A. Then, Tk in instance A reads the attribute.
The attribute’s value will be the same for both instances
A and B after Ti, Tj , Tk are executed. Therefore, we will
not have any concurrency problems.

Pattern 6: In this pattern, instance A changes the value
of an attribute twice. P0, P2 and P3 all require instance
B to change the value of this attribute, which does not
happen in the pattern. Therefore this pattern cannot lead
to concurrency problems P0, P2 and P3.

Pattern 7: Instance A changes the value of an attribute
before instance B changes the value of the same attribute.
Instance A does not attempt to change the value of
this attribute later thus contradicts to definition of P1.
Therefore this pattern cannot lead to concurrency problem
P1.

Pattern 8: P2 and P3 are caused by the difference
of two READs of an attribute in one instance. In this
pattern, instance A does two WRITEs instead. Therefore
this pattern cannot lead to concurrency problems P2 and
P3.

Patterns 9, 10, 13 and 14: All concurrency problem
definitions except that of P1 require instance B to change
the value of the attribute in Tj . Therefore this pattern
cannot lead to concurrency problems P0, P2 and P3.

Pattern 16: P0, P1 are not possible because instance A
redefines its variable in Tk using the value of the attribute
that is changed by instance B. Even if instance A changes
the value of this attribute later, the value it will be using
is based on the changes made in instance B. Therefore
this pattern cannot lead to concurrency problems P0 and
P1.

C. Problem Patterns in Other Isolation levels

We also observe that all the patterns at SERIALIZ-
ABLE level also be problematic at lower isolation levels
(Read Uncommitted, Read Committed, and Repeatable
Read). However, from SERIALIZABLE downwards, at
each isolation level there is one additional offline concur-
rency problem from P1 to P3. Tables VII, VIII, and IX
show the additional problematic patterns at different iso-
lation levels. Note that the problem P0 is not possible at
any of the isolation levels from 0 to 2 [12]. Therefore, all
occurrences of P0 in Table VIII and Table IX refer to the
offline concurrency problem P0 as discussed in Section II-
B. In this case we consider only two transactions Ti and
Tj .

III. RELATED WORK

There is significant research work focusing on testing
and analysis of programs, however, less attention is given

TABLE VII.
PROBLEM PATTERNS AT ISOLATION LEVEL 2

Ti R U U D D
Tj W W W W W
Ti R U D U D

Concurrency Yes Yes Yes Yes Yes
problems P3

TABLE VIII.
PROBLEM PATTERNS AT ISOLATION LEVEL 1

Ti R R U U D D
Tj W W W W W W
Ti R W U D U D

Concurrency Yes Yes Yes Yes Yes Yes
problems P2 P0 P2

specifically to examine and detect offline concurrency
problems for database-centric applications. Related work
on database-centric application testing use control flow
and data flow aspects of the database application to
be tested. Chan and Cheung propose a technique that
tests database applications that are written in a general
purpose programming languages, such as Java, C, or
C++, and include embedded structured query language
statements that are designed to interact with a relational
database [13], [14]. However, their focus on the control
flow of a program ignores important information about the
flow of data between the program and the databases. Daou
et al. use data flow information to support the regression
testing of database-centric applications [15]. However,
their use of data flow analysis does not consider either
a representation for a database-centric application or a
complete description of a database interaction association.
Data flow coverage measures are also used to determine
the adequacy of SQL select queries in light of a database
that has already been populated with data [16].

Chays et al. discuss several problems associated with
testing database applications and propose the AGENDA
tool as a solution to some of these problems [17]–[19] .
In [17], the authors propose a partially automated soft-
ware testing technique, inspired by the category-partition
method [20], that attempts to determine if a program
behaves according to its specification. In [18], Chays
and Deng have extended AGENDA to support testing
of database transaction concurrency by using a data flow
analysis to determine database transaction schedules that
may reveal program faults.

Neufeld et al. propose techniques that are similar to
[17]–[19] because they generate database states using
knowledge of the constraints in the relational schema
[21], [22]. However, neither of these approaches explicitly

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1859

© 2012 ACADEMY PUBLISHER

TABLE IX.
PROBLEM PATTERNS AT ISOLATION LEVEL 0

Ti W R W W U U D D
Tj R W W R R R R R
Ti R W W W U D U D

Concurrency Yes Yes Yes Yes Yes Yes Yes Yes
problems P1 P0 P1

provides a framework to support offline concurrency
issues of database applications.

IV. CONCLUSION AND FUTURE WORK

In this paper we have identified additional offline
concurrency problems in the SERIALIZABLE isolation
level and justified why some patterns do not create offline
concurrency problems and why some patterns create only
some subset of {P0, P1, P2, P3}. We have also shown
the problematic patterns that can occur in other isolation
levels (i.e., READ UNCOMMITTED, READ COMMIT-
TED, and REPEATABLE READ).

The algorithm given by [18], [19], [23] can be aug-
mented to detect the additional problematic patterns we
have identified. One drawback of this algorithm is that
it is based on a restricted notion of influence, which
is identical to the definition-use association [9]. This
restricts the identification of potential offline concurrency
problems to those instances which are associated with a
pair of elements forming the definition-use association.
This algorithm needs to be generalized to identify po-
tential offline concurrency problems which are associated
with elements on a chain of definition-use associations.

Like potential offline concurrency problems, there can
be potential offline recoverability problems. Our ongoing
work considers the questions of how and why the patterns
can cause potential offline recoverability problems.

REFERENCES

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman, “Concur-
rency control and recovery in database systems,” Addison
Wesley, Reading, 1987.

[2] M. Fowler, Patterns of enterprise application architecture.
Addison Wesley and Benjamin Cummings, 1987.

[3] Y. Deng, P. Frankl, and Z. Chen, “Testing database transac-
tion concurrency,” in Proc. of the 18th IEEE International
Conference on Automated Software Engineering, 2003.

[4] Y. Deng, “Testing database transactions,” Ph.D. disserta-
tion, Department of Computer Science, Polytechnic Uni-
versity in Brooklyn, USA, 2005.

[5] E. Frances and J. Cocke, “Graph theoretic constructs
for program flow analysis,” T.J. Watson Research Center,
Yorktown Heights, Tech. Rep., 1972.

[6] E. Weyuker, “The complexity of data flow criteria for
test data selection,” Information Processing Letters (IPL),
vol. 19, no. 3, pp. 103–109, 1984.

[7] G. Fraser and F. Wotawa, “Ordering coverage goals in
model checker based testing,” in Proc. of the ICST, 2008,
pp. 31–40.

[8] K. Kennedy and L. Zucconi, “Applications of a graph
grammar for program control flow analysis,” in Proc. of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming languages, 1977, pp. 72–85.

[9] S. Rapps and E. Weyuker, “Data flow analysis techniques
for test data selection,” in Proc. of the IEEE International
Conference on Software Engineering, 1982.

[10] A. Aho, R. Sethi, and J. Ullman, Compiler: Priciples,
Techniques, and Tools. Addison Wesley, 2007.

[11] H. Ural, K. Saleh, and A. Williams, “Test generation
based on control and data dependencies within system
specifications in sdl,” Computer Communications, vol. 23,
no. 7, pp. 609–627, 2000.

[12] H. Berenson, “A critique of ansi sql isolation levels,” in
Proc. of the ACM Special Interest Group on Management
of Data Conference, 1995.

[13] M. Chan and S. Cheung, “Applying white box testing to
database applications,” Hong Kong University of Science
and Technology, Department of Computer Science, Tech.
Rep., 1999.

[14] ——, “Testing database applications with sql semantics,”
in Proc. of the 2nd International Symposium on Coopera-
tive Database Systems for Advanced Applications, 1999.

[15] B. Daou, R. Haraty, and N. Mansour, “Regression testing
of database applications,” in Proc. of the ACM Symposium
on Applied Computing, 2001.

[16] M. Suarez-Cabal and J. Tuya, “Using an sql coverage
measurement for testing database applications,” in Proc.
of the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2004.

[17] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J.
Weyuker, “A framework for testing database,” in Proc. of
the 7th International Symposium on Software Testing and
Analysis, 2000.

[18] D. Chays and Y. Deng, “Demonstration of agenda tool set
for testing relational database applications,” in Proc. of the
International Conference on Software Engineering, 2003.

[19] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos,
and E. J. Weyuker, “Agenda: A test generator for relational
database applications,” Department of Computer and In-
formation Sciences, Polytechnic University, Brooklyn, NY,
Tech. Rep., 2002.

[20] T. Ostrand and M. J. Balcer, “The category-partition
method for specifying and generating functional tests,”
Communications of the ACM, vol. 31, no. 6, pp. 676–686,
1988.

[21] A. Neufeld, G. Moerkotte, , and P. Lockemann, “Gener-
ating consistent test data: Restricting the search space by
a generator formula,” VLDB Journal, vol. 2, pp. 173–213,
1993.

[22] J. Zhang, C. Xu, and S. Cheung, “Automatic generation
of database instances for whitebox testing,” in Proc. of
the 25th Annual International Computer Software and
Applications Conference, 2001.

[23] D. Chays, Y. Deng, P. Frankl, S. Dan, F. Vokolos, and
E. Weyuker, “An agenda for testing relational database ap-
plications,” Software Testing, Verification, and Reliability,
vol. 14, no. 1, pp. 17–44, 2004.

1860 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

