
Complexity Measurement and Fault Detection
Techniques for H.264 Optimized Functions

Hao Zhang

School of Information Science and Engineering Central South University, Changsha, Hunan ,China
Email: hao@csu.edu.cn

Yuetang Deng2, Zhenye Liu3, Yuan Zhao1 , Haiyan Zhan1

1School of Information Science and Engineering Central South University, Changsha, Hunan, China
2Tencent, Inc. ShenZhen, China

3AT&T Labs, CA, USA
Email:hyzhanm@gmail.com

Abstract—In this paper, we systematically studied the
complexity measurement, SIMD (Single Input Multiple
Data) fault types and testing methodologies for H.264 codec.
To the best of our knowledge, it is the first attempt to
address these problems. Firstly, two complexity metrics are
calculated for various optimized functions in H.264
reference software. These measures have been found to be
strongly correlated to the number of faults in software
testing. Secondly, we introduced a new category of SIMD
faults. Conformance testing, random testing and manual
testing are proposed to deal with these SIMD faults as well
as conventional faults. Results have shown that,
conformance testing, often used as a mechanism to verify
the conformity of a decoder under test (DUT), can also be
used to discover faults in the studied optimized functions.
Random testing is able to detect simple faults at both
encoder and decoder functions. Manual testing is especially
effective for difficult faults. In practice, one or more of the
three techniques can be chosen as needed to increase fault
detection rate and speed for H.264 video codec testing.

Index Terms—video coding, software testing, single input
multiple data, optimized functions

I. INTRODUCTION

Video coding standards have been developing rapidly
in recent years. Compression ratios have been greatly
improved with greater coder complexity [1], [2]. The
upcoming High Efficiency Video Coding (HEVC) could
be more computationally expensive than H.264 with
further improvement on compression efficiency [3].
Although advancement of hardware is speeding up the
encoding/decoding process, computational efficiency is
still considered as an important performance metric for
video codec.

It has been found that some functions in H.264 video
decoder such as deblock filter and interpolation are of
considerable computational complexity [4], [5]. A
common way to reduce their execution time is hand
optimizing them with SIMD technologies that are
available in various hardware platforms, e.g., CPU, GPU,
DSP, etc. [5], [6]. Because each platform supports a
unique SIMD instruction set, various optimized versions
are required to be developed, tested and maintained for

each function. It is well known that functions coded with
assembly languages are generally hard to read and
maintain and thus very likely to contain faults that might
generate mismatches. Deploying such a system leads to
unpleasant artifacts and finally costs system makers a lot
of time and money on patch distributions. Fig.1 gives
such an example when decoding the conformance
bitstream 'BA1_FT_C' [7] with a faulty decoder.
Subjective viewing could be employed to find easy faults,
while it is insufficient to detect difficult faults in the
required time frame. This is due to many reasons, e.g., the
condition to intrigue the fault is not met, or the fault
related artifacts are only visible after a long period of
time. Therefore, it is essential to conduct thorough
software testing before deployment.

Recommendation ITU-T H.264.1 specifies bitstreams
to check the conformance of decoders under test (DUT)
[7]. A decoder is considered conformant to the
specification if the decoded frames are identical as those
decoded by reference software. Those bitstreams are
provided to test various H.264 features for different
profiles. However, whether the conformance test could be
used to detect programming faults in the source code of a
DUT is unknown. This issue is going to be investigated in
this paper.

Conformance testing is insufficient for video codec
testing because it can only test decoders. Moreover, it is
time consuming compared to some other testing
techniques. Lastly, it is not able to locate faulty functions.
Therefore, other software testing techniques are needed.
Among them, unit testing is one of the most important
procedures for quick error revelation. To unit test
different versions of an optimized function, a correct
version should be obtained before hand. This version is
usually coded with a high level language (such as C) and
considered error free (by thorough code review,
comparisons with the specifications or reference software,
extensive experiments, etc.). Unit testing is then
performed to find out whether the outputs of the
optimized versions match that of the correct version with
some selected test cases.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1845

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1845-1854

Figure 1. A decoded image demonstrating some artifacts with a fault

Actually, thoroughly testing all the optimized function
is sometimes a formidable task due to the limitation of
engineer resource. Two widely adopted software
complexity metrics--- LOC (line of code) and Cyclomatic
Complexity measures could be used to predict bug
densities. Furthermore, two code coverage metrics are
calculated when random testing is used. These metrics
reveal the software complexity of various optimized
functions that is helpful to codec engineers in task
prioritization.

Another important procedure in software testing is
fault injection. We use typical faults in the software
testing literature to mimic faults in real applications.
Additionally, we consider the conventional fault types
insufficient for optimized functions and we introduce a
new SIMD fault category. With various faults injected
into the optimized functions, test cases are designed by
random and manual testing and their effectiveness is
compared. Random testing generates random input of all
the parameters within their admissible ranges; for the
manual test case design, each test case is designed
manually based on past experiences. This technique aims
at difficult faults that could not be efficiently detected by
conformance testing and random testing techniques.

The paper is organized as follows. Sec.Ⅱ briefly
describes related work on video codec testing. A brief
introduction of SIMD technologies is then given in Sec.
Ⅲ. Two complexity metrics are calculated in Sec.Ⅳ. Sec.
Ⅴ describes the proposed new fault category. Sec.Ⅵ
gives two examples of the manual test case design
technique. In Sec.Ⅶ, experiments are conduct to compare
the effectiveness of the three testing techniques. Finally,
conclusions and future work are described in Sec.Ⅷ.

II. RELATED WORK

Software testing has long been investigated. It helps
find all sorts of faults to make the final product work as
expected. There exist various testing methods such as
random testing, mutation testing, data flow testing, etc.
[8-10]. Although these testing techniques have been used
widely in many fields, their applications to video coding
are still very limited. The only known research activities
focus on the conformance testing of standard compliant
decoders [11-13]. These conformance bitstreams may be

useful to test whether the features in some specific profile
and level are supported. Their effectiveness is not verified
for general software faults, especially in optimized
functions written with SIMD instructions. In this paper,
we consider the video codec testing from a different angle
--- what are the frequently encountered SIMD faults and
how to detect them effectively.

III A BRIEF INTRODUCTION TO SIMD TECHNOLOGIES

SIMD was a technology exploited by super computers,
but nowadays it is deployed in all sorts of hardware
platforms and widely exploited to accelerate various
applications, e.g., image processing, video coding, etc.
Big corporations are pushing this technology to a new
level. For example, Altivec was used in Powerpc to
support various computationally expensive operations.
Moreover, starting from 64-bit MMX registers, Intel and
Amd have been frequently introducing new instructions
into their powerful SIMD instruction sets. For example,
the SIMD instruction set in Intel CPUs has been evolving
from MMX to SSE(Streaming SIMD Extensions), SSE2,
SSE3, SSSE3 and SSE4. During this process, eight 128-
bit SIMD registers are added for better performance.
AMD recently developed SSE5 and introduced more
instructions. Longer registers will be available in
Advanced Vector Extensions (AVX). Some DSPs also
support SIMD instruction sets and this could be very
useful in embedded applications. For convenience, we
would like to use Intel CPUs to generate our test cases,
though many of them could be used by other processors.

Basically, SIMD instructions realize parallelization
and improve the computational efficiency by processing
multiple operations simultaneously. Intel&Amd gradually
add extensions to their SIMD instruction set. For
backward compatibility, programmers need to write
various versions of optimized functions for all the
supported CPUs. A CPUID instruction could be used to
find the supported instruction sets [14]. However, the
coexistence of different code versions for the same
functionality creates a potential source of fault generation.
To make things worse, SIMD programmers may choose
various assemblers under different operating systems. For
instance, some compilers (such as GAS) support AT&T
syntax, while others (such as NASM) support Intel syntax.
These two assembly syntaxes differ in many places such
as function names, register locations, constant
representations, etc. Those different assembly syntaxes
further increase the number of optimized versions. One
way to avoid developing the same function in two
syntaxes is to use (or write your own) automatic syntax
converters, however, any fault in the converter may
generate new faults and finally result in a correct version
for one OS and a wrong version for the other OS.
Mismatch problem will arise when two clients using such
code versions in different OSs talk to each other. Another
option is to use intrinsic instead of pure assembly [14].
For convenience, we will use intrinsic to create all the
optimized versions in our experiments.

IV COMPLEXITY MEASUREMENT

1846 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Function Start

Void forward4x4(int **block,
int **tblock, int pos_y, int
pos_x)
{
1……
1 int *pTmp = tmp, *pblock;
1……

//Horizontal
2 for (i=pos_y;

i<pos_y+BLOCK_SIZE;
i++)

 {

3 ……

 }

//Vertical
4 for
(i=0;i<BLOCK_SIZE;i++)
 {

5 ……

 }

}
Function End

S

1

2

5

4

3

E

Figure 2. A decoded image demonstrating some artifacts with a fault in
the optimized code of luma interpolation.

There exist many metrics for program complexity
evaluation, where LOC and Cyclomatic Complexity are
widely used. Both LOC and Cyclomatic Complexity have
been shown to be correlated to fault density [15], and
hence, it is necessary to calculate these metrics for H.264
optimized functions. LOC is the number of lines in the
source code, and it could be easily calculated from the
source code of each function. Cyclomatic Complexity is a
software metric based on the control flow graph. It is
given by the following formula [15], [16]:

pneG +−=)(ν (1)
Where)(Gv denotes the Cyclomatic Complexity of

the control flow graph G, which contains e edges,
n vertices and p connected components. It is actually
equal to the number of linearly independent path in graph
G and it is known that larger Cyclomatic Complexity
values correspond to more test cases for path coverage
[15], [16]. An example is given in Fig.2, based on the
specification and source code of JM16.0. In the graph, S
denotes the entry point and E represents the exit point.
For this simple example, 1,7,9 === pne , so
Cyclomatic Complexity is calculated as 3=+− pne .

LOC and Cyclomatic Complexity metrics are
calculated for the optimized functions as shown in Tab.Ⅰ.
A simplified calculation method for Cyclomatic
Complexity is used: it is equal to the number of
predicates plus one in a structured program with only one
entrance point and one exit point [16]. Among the tested
modules in Tab. Ⅰ , Luma Deblock and Luma
Interpolation have larger complexity values than other

functions. It is recommended that Cyclomatic Complexity
should be no more than 10 [16]. We can see that the
complexity metrics of these two modules are much larger
than this recommended value. Therefore, codec engineers
should pay attention to these functions and conduct
thorough testing for them.

V LIST OF FAULTS

A. Regular Faults

We are attempting to attack two categories of faults.
The first category in Tab.Ⅱ includes regular faults used
in [17]. These faults could occur in modules written with
any programming language and so they will be used in
our tests for H.264 optimized functions.

B. SIMD Faults
Other than the regular faults listed in Sec.Ⅴ-A, we

propose a new category of faults, which are caused by

incorrect implementations of various SIMD instructions.
It consists of five types as shown in Tab. : overflow, Ⅲ
incorrect signed/unsigned right shift, incorrect
signed/unsigned extension, incorrect signed/unsigned
saturation, incorrect rounding. Please note that Tab.Ⅲ
only includes those faults we encountered in the past. We
It consists of five types as shown in Tab. : overflow, Ⅲ

TABLE II
FAULT TYPES IN CATEGORY I

Fault types
Missing path faults

Incorrect predicate
faults

Relational operator replacement
Logical operator replacement

Incorrect

Computation
Statement

Incorrect initialization
Incorrect constant

Incorrect precedence
Incorrect array element reference

Incorrect pointer operation
Same type variable replacement
Arithmetic operator replacement

Miscellaneous
Missing computation

statement
Delete a complete statement
Delete a part of a statement

Incorrect number of loop iterations
Missing clause in predicates

TABLEI
COMPLEXITY METRICS FOR VARIOUS ENCODER MODULES

IN JM16.0

Module Names Loc Cyclomatic
Complexity

Forward
Transform4x4 40 3

Inverse
transform4x4 40 3

Quant+Dequant4x4 56 7

Luma Interpolation 527 88

Luma Deblock 108 18

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1847

© 2012 ACADEMY PUBLISHER

TABLEIII
FAULT TYPES IN CATEGORY II

Fault Types
Overflow

Incorrect signed/unsigned right shift
Incorrect signed/unsigned extension
Incorrect signed/unsigned saturation

Incorrect rounding

incorrect signed/unsigned right shift, incorrect
signed/unsigned extension, incorrect signed/unsigned
saturation, incorrect rounding. Please note that Tab.Ⅲ
only includes those faults we encountered in the past. We
hope to see more discussions and results on this topic in
the future.

1) Overflow:
A 128-bit XMM register can only hold eight 16-bit or

four 32-bit integers. Without careful analysis of variable
dynamic ranges, SIMD programmers may allocate 16 bits

for a variable when 32 bits are actually needed. This is
usually intrigued by ambitions to simultaneously process
as many pixels as possible (so higher coding speeding
may be achieved). The quantization equation shown in (2)
provides a good example for this fault type.

()
)()(ijij

ijij

WsignZsign

qbitsfMFWZ

=

>>+⋅=
 (2)

Variables in (2) are explained in [18]: f is 3/2qbits for

Intra blocks or 6/2qbits for Inter blocks, qbits =
15+floor(QP/6), MF is the multiplication factor defined
in Tab. Ⅳ , ‘>>’ denotes a binary right shift,

T
ff XCCW = is the horizontal and vertical forward

transform of residual matrix X with T
fC being the

transpose of fC .

fC is given as below[18]:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−−
=

1221
1111
2112

1111

fC

With C programming, only one element in W can be
processed at a time with (2). Using 16 bits for each
element in W enables a XMM register to load 8
variables. However, using 16 bits in this case will cause
the overflow fault because the multiplication MFWij

could easily go out of the 16-bit range (ijW has a

dynamic range of -9180 to 9180 and MF could be as
large as 13107 [18]). The field testing may not
immediately result in artifacts, because sometimes the
residual signal aptitudes are too small to lead to the
overflow. In the experimental section, it can be seen that
this fault is detectable with random testing.

2) Incorrect Signed/Unsigned Right Shift:
 Right shifts are widely used in video coding. It's known
that there are two types of right shifts: the so called
'logical right shift' and 'arithmetic right shift'. Arithmetic
right shift differs from logical right shift by preserving a
number's sign bit [14]. C programmers can solely use
'>> ' and the compiler will automatically convert it into
the right instruction. On the contrary, SIMD programmers
have to select the correct instruction by themselves (e.g.,
psrlw and psraw represent logical and arithmetic right
shift of each 16-bit element in a XMM register
respectively). This should be done carefully; otherwise,
faults could be made out of incorrect right shift
implementations. An example of this fault occurred in
the Luma Deblock function is given in (3) [19]:

)1()1)1((

(,,(3

100

2001
'
1

<<−>>++

+−+=

pqp

pttclippp CC (3)

where 02 ppap −= .
The last right shift is an arithmetic one. A fault is

created when it is replaced by a logical right shift. This
fault is not difficult to detect with both random testing
and conformance testing.

3) Incorrect Signed/Unsigned Extension:
In SIMD implementations, it is up to the programmer

to decide the number of bits for each variable. During
calculation, some intermediate results may have wider
dynamic ranges than the original input and so signed or
unsigned extensions are needed. However, before SSE4.1,
there are no signed SIMD extension instructions for Intel
CPUs, i.e., only unsigned zero extension instructions such
as ‘punpcklbw’ and ‘punpcklwd’ are supported. Faults
could be generated if a SIMD programmer uses zero
extensions when signed extensions are required. An
example for this can be found in Half-pel Luma
Interpolation formula shown in (4) [19], where A, C, G,
M, R, T denote the pixel values at integer positions with a
dynamic range of 0 to 255, inclusive; cc, dd, ee, m1, ff are
half-pel pixel values derived in the same manner as the
derivation of h1, which have a dynamic range of -2550 to
10710, inclusive [19],[20]. Suppose h1 is represented by
16 bits within a XMM register, signed extensions should
be used because the dynamic range of j1 exceeds 16 bits.
If zero extensions are used here instead, a fault is

TABLE IV.
MULTIPLICATION FACTOR MF [18]

QP Position
(0,0),(2,0),(2,2),(0,2)

Positions
(1,1),(1,3),(3,1),(3,3)

Other
positions

0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243

1848 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

TABLE V.
A MODIFIED ROUNDING OFFSET TABLE

_declspec(align(16)) short constArray [] = {
 1,1,1,1,1,1,1,1,
 2,2,2,2,2,2,2,2,
 4,4,4,4,4,4,4,4,

};

TABLE VI.
 AN EXAMPLE OF INCORRECT ROUNDING FAULTS

short x[8] = {1,2,3,4,5,6,7,8};
short x[8] = {1,1,1,1,1,1,1,1};
_declspec(align(16)) short constArray[] = {
 2,2,2,2,2,2,2,2,
 4,4,4,4,4,4,4,4,
};
for (int i= 0; i< 8; i++)
 z[i] = (x[i]+y[i]+4)>>3;
_asm {
 movdqu xmm1, [x]
 movdqu xmm2, [y]
 paddw xmm1, xmm2
 paddw xmm1, [constArray+16]
 psraw xmm1, 3
 movdqu [z], xmm1

}

generated that is detectable with random testing and
conformance testing.

ffeemhddccj
TRMGCAh
+∗−∗+∗+∗−=

+∗−∗+∗+∗−=
520205(

)520205(

111

1

(4)
4) Incorrect Signed/Unsigned Saturation:
One of signed/unsigned saturation instructions in

MMX/SSE2 is PACKSSWB/PACKUSWB, which packs
signed 16-bit integers into 8-bit signed/unsigned integers
and saturate [14]. Signed and unsigned saturations map
variables into different ranges, e.g., '-1' would be mapped
into 0 with unsigned saturation and '-1' with signed
saturation. Hence, faults are generated when incorrect
instructions are used.

5) Incorrect Rounding:
Code lines like nyx n >>++ −)2(1 appear

frequently in many functions. It is not a rare case for a
programmer to forget adding the rounding offset 12 −n in
this expression. Additionally, a programmer may use a
wrong rounding offset value 12 −m with nm ≠ .
Furthermore, in the case when various rounding offsets
are stored in a constant array, it is not uncommon for
programmers to modify the constant array without
changing the values of corresponding address registers.

An example is given in Tab. Ⅴ , where a simple
program is shown with two versions: a pure C code
version on the top of the table and a SIMD version
written with inline assembly (Intel syntax). The function
includes eight additions and right shift operations, which
is replaced by three SSE2 instructions. The rounding
offset is added by ‘paddw xmm1, [constArray+16]’. A
fault is generated if a programmer modifies constarray by

adding into it another constant (Tab.Ⅵ) while forgetting
to change the address offset in the assembly code.

Another example is incorrect implementation of
instruction ‘pavgb xmm1, xmm2’, which calculates the
average of xmm1 and xmm2 with rounding. A

programmer creates a fault by mistakenly implementing it
as an average instruction without rounding.

VI TEST CASE DESIGN VIA MANUAL TESTING

Since the number of optimized functions in H.264
video codec is not very large, and most of those functions
(at least in the decoder) are not revisable after the
standards are finalized, it is meaningful and useful to
design a test suite for those faults that are difficult if not
possible to detect by random testing and conformance
testing. Test cases for some faults are easy to design. For
instance, for the incorrect signed/unsigned right shift fault
described in Sec.Ⅴ-B2, ,18,255,1 === βαbS

1,0,2 10200 ===== pqpptC can be used a test
case: the correct code would generate an output

,11 −=′p while the faulty code with a logical right shift
would generate a different output. However, it is not so
obvious to design test cases for Incorrect constant and
Incorrect rounding faults, which are shown to be difficult
to detect. The designing process for these two fault types
are described as below.

A. Incorrect Constant
Another example is incorrect implementation of

instruction ‘pavgb xmm1, xmm2’, which calculates the
average of xmm1 and xmm2 with rounding. A
programmer creates a fault by mistakenly implementing it
as an average instruction without rounding.

Incorrect constant faults will be generated in the
quantization defined in (2) if an incorrect multiplication
factor (denoted by EMF) is used. Experiments in Tab.Ⅶ
and Tab.Ⅻ demonstrate that such faults are difficult to
detect by random testing. A test case is X can be used to
detect this fault if ji,∃ , the following inequality holds:

qbitsfMFijWqbitsfEMFijW >>+≠>>+).|(|).|(|

 (5)
We observe that if ijW is found to detect the fault with

EMF = MF - 1, i.e.,
qbitsfMFijWqbitsfEMFijW >>+<>>+).|(|).|(|

(6)
then all faults for EMF < MF can be detected by this test
case. Similarly, all faults for EMF > MF can be detected
by the test case for EMF = MF + 1. Therefore, we only
need to design test cases for EMF = MF - 1 and EMF =
MF + 1.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1849

© 2012 ACADEMY PUBLISHER

The first step is to find two values for each ijW so that
the inequality (5) and (6) hold respectively. Then the
input matrix X can be estimated through T

ff XCCW = .

For each i,j, we use a brute-force search with ijW varying
from zero to the upper bound and QP varying from 0 to
51. Proper values ijW and QP would thus be found so (5)
and (6) are satisfied. Although the upper bound for each

ijW is not explicitly given in [21] (only the upper bound
9180 for all elements in W is given), we could easily
derive them as below:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

9180612091806120
6120408061204080
9180612091806120
6120408061204080

 (7)

Since MF is decided by QP as shown in Tab.Ⅳ, ijW
should be searched for each QP. For simplicity, here we
only consider the case when 06% =QP . By searching
through the values from 0 to the upper bounds defined in
(7), W could be obtained for EMF = MF - 1 as below:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

249495249495
49536574953657
249495249495
49536574953657

 (8)

The QP matrix for the above W is given by:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0000
018018
0000
018018

 (9)

In the same manner, W could be obtained for EMF = MF
+1 as below:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

980109980109
10913671091367
980109980109
10913671091367

 (10)

All QPs are zero for this case.
Now that we find ijW for (5) and (6), it is not difficult

to find a proper input matrix X using T
ff XCCW = . For

example, at position (0, 0), if the correct matrix element
13107 is replaced by 13106, the test case W00 =3657 is

found for (6). Since ∑ ==

==
=

4,4

0,000
ji

ji ijXW , the following X

could be used as a test case:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

087255255
255255255255
255255255255
255255255255

 (11)

That is to say, using X defined in (11), QP=18 (as
given in (9) and INTER block mode as input to the
optimized function Trans&Quant4x4, we obtain W00 =
3657, qbits = 15 + QP/6 = 18, f = 2 qbits / 6 =43690 and
have the following equalities:
 1821843690131063657 =>>+× (12)
 1831843690131073657 =>>+× (13)

The result obtained with the wrong constant 13106 in
(12) is not equal to the result obtained with the correct
constant in (13), meaning the fault is detected.

B. Incorrect Rounding
As for the incorrect rounding fault, test cases could be

designed based on the following theorem.
Theorem 1: Assume the correct code is (x + y + 2n-

1) >> n and the faulty code is (x + y + r) >> n, where x, y,
r, n are non-negative integers and r≠2n-1, n > 0. The
fault could be detected by the test cases x = 2n-1, 2n-1-1,
y = 0.

Proof: The original faulty code becomes (x + r) >> n
with y = 0. Obviously, we have the following inequalities:

nnr nnn >>+≠>>+ −−−)22()2(111)2(1−< nr (14)

nnr nnn >>+−≠>>+− −−−)212()12(111)2(1−> nr
 (15)

This shows that the test cases x = 2n-1, 2n-1-1, y = 0
could be used to detect all the faults.

Theorem.1 provides an efficient way of designing test
cases for incorrect rounding faults. For instance, suppose
the correct equation is (x+y+2)>>2, test cases x=2,y=0
and x=1,y=0 are able to detect faulty equations with
incorrect rounding, e.g., (x+y+1)>>2, (x +y)>>2,
(x+y+4)>>2, etc.

VII EXPERIMENTS

Experimental results are outlined in this section. Three
test techniques: conformance testing, random testing and
manual testing are compared. Simulations are conducted
in a Lenovo notebook with 2.53GHz Intel Core 2 Dual,
2.99GB memory and Windows XP Home Edition 2002
(Service Pack 3). In conformance testing, there are totally
135 bitstreams for baseline profile. We test those
bitstreams in the order listed in the specification [7]. Both
regular and SIMD faults are used. For conformance
testing, a fault is considered not detectable if the faulty
DUT does not report nonconformity for any of the 135
bitstreams. For random testing, a fault is considered not
detectable if the faulty function does not report error after
a maximum number of test runs, which is set to 105 in the
experiment. The seed value for the pseudo-random
number generator is set to 1 to make the experimental
results replicable. As for the manual testing technique,
two fault types are analyzed in detail and the design
procedure is demonstrated. Functions under test include:
forward transform and quantization, inverse transform,
deblock filter across horizontal boundaries and luma
interpolation. Forward transform and quantization is an
encoder side function, so it is not implemented for
conformance testing. For each function, a correct C

1850 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Figure 4. Branch Coverage with Random Testing

Figure 3. Statement Coverage with Random Testing.

version, a correct SIMD version, and several faulty SIMD
versions are created based on the fault types listed in
Sec.Ⅴ. Without loss of generality, all SIMD instructions
are implemented with SSE2 intrinsic for Intel CPUs.

To simulate faults in real applications, a number of
faulty versions for the aforementioned four functions are
created. For convenience, each version only contains a
single fault. For each function, 0~3 faults are manually
created for every fault type. As shown in Tab.Ⅶ---Tab.Ⅹ,
the first column denotes the fault name, e.g., Incorrect
constant #2 denotes the second Incorrect constant fault.
The second column contains experimental results for
random testing with the format of t/n, where t and n
denote the required fault detection time in million
seconds and the number of required test runs, respectively.
For example, 12.17/1100 means it takes 1100 runs and
12.17ms to detect the fault. The third column contains
experimental results for conformance testing with the
format of m/n/t, where m is the total number of bitstreams
(out of total 135) that reveal the fault, n represents the
bitstream firstly reveals the fault, t stands for the fault
detection time in seconds. For instance, 98/5/5.15 means
that, the DUT is reported non-conformant by 98
bitstreams (out of 135). The first bitstream that reveals
the fault is the 5th bitstream, and it takes 5.15 seconds to
finish decoding the first 5 bitstreams.

These experiments show that all the faults are
detectable via random testing except for the Incorrect
constant #1 in the Trans&Quant4x4 function.
Conformance testing is capable of detecting all the faults
in the decoder (faults in the encoder functions are marked
as 'N/A'). Although most faults are detectable, the
difficulty levels are not identical. Faults planted in
Trans&Quant4x4 and IDCT4x4 are easier to detect in
most cases, either with random testing or conformance
testing. For random testing, it only takes one run to reveal
faults in most cases, and all the 135 bitstreams report
nonconformity (Tab.Ⅶ,Tab.Ⅷ). For Luma Interpolation
and Luma Deblock, it takes much longer to reveal faults.
For example, it takes 50.53s to detect Incorrect
sign/unsigned right shift fault #1 for Luma Interpolation
using conformance testing (Tab.Ⅸ), and it takes random
testing 51033 runs to detect Incorrect constant #2 for
Luma Deblock (Tab.Ⅹ).

The metrics are averaged in Tab.Ⅺ, where Incorrect
constant faults are not counted for Trans&Quant4x4
function because Incorrect constant #1 is not detectable.
It shows that Luma Deblock requires the largest number
of runs in average for random testing. As for
conformance testing, it takes 4.90 and 7.83 seconds for
fault detection in Luma Deblock and Luma Interpolation,
respectively. Overall, in most cases, conformance testing
takes much longer (in the order of seconds instead of
million seconds) to detect a fault compared with random
testing.

Code coverage analysis could be used to analyze the
sufficiency of the generated test cases. Here we use a tool
'gcov' to calculate two metrics: statement coverage and
branch coverage to measure the fraction of statements
and branches in the function that are covered by executed

test cases. Achieving high coverage can be seen as a
requirement for test case generation. Fig.3 and Fig.4
report that, the studied four functions increase their
coverage by executing more test cases. Trans&Quant 4x4
and Inverse Transform 4x4 achieve full coverage with
only a few test runs, Luma Interpolation and Luma
Deblock require more test runs. It is consistent with the
experimental results.

Manual test case design could be used to attack
difficult faults listed in Sec.Ⅵ, i.e., Incorrect constant in
the Trans&Quant4x4 function and Incorrect rounding in
Luma Deblock. To verify the effectiveness of the
designed test cases, eight faults for each type are planted
as shown in Tab. Ⅻ . Moreover, manual testing is
compared with random testing in terms of fault detection
effectiveness. With random testing, Incorrect Constant #1
and #3 are not detectable within 105 test runs, and it takes
random testing more than 104 runs to reveal Incorrect
Constant #5, #7. For Incorrect rounding faults, most
faults require more than 1000 random test runs. For
manual testing, all faults are detected within the
maximum number of designed test cases (e.g., 2 runs for
Incorrect rounding faults). The results demonstrate that
manual test case design is more efficient in terms of fault
detection rate and speed for these difficult faults.

VIII CONCLUSION AND FUTURE WORK

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1851

© 2012 ACADEMY PUBLISHER

The issue of testing optimized H.264 functions is
presented and studied in this paper. Two software
complexity and code coverage metrics are used to
measure the function complexity and help decide testing
priorities. By analyzing those functions and their SIMD
implementations, we firstly present a new category of
SIMD faults and use three techniques to attack those
faults. The results show that the conformance bitstreams
can be used to efficiently test the optimized functions in
decoders. Random testing is capable of testing easy faults
at both encoders and decoders. As for difficult faults,
manual testing is proposed and proved very effective.

TABLE VII.
FAULT DIAGNOSIS FOR TRANS&QUANT4X4

Fault Random
Testing

Conformanc
e Testing

Relational operator replacement #1 0.28/1 N/A
Logical operator replacement #1 0.19/1 N/A
Logical operator replacement #2 0.18/1 N/A

Incorrect initialization #1 0.17/1 N/A
Incorrect constant #1 >105 N/A
Incorrect constant #2 7.29/9118 N/A

Incorrect array element reference
#1

0.17/1 N/A

Incorrect array element reference
#2

0.17/1 N/A

Incorrect array element reference
#3

0.18/1 N/A

Incorrect pointer operation #1 0.18/1 N/A
Same type variable replacement #1 0.18/1 N/A
Same type variable replacement #2 0.18/1 N/A
Arithmetic operator replacement #1 0.18/1 N/A
Arithmetic operator replacement #2 0.18/1 N/A

Delete a complete statement #1 0.17/1 N/A
Delete a complete statement #2 0.17/1 N/A
Delete a part of a statement #1 0.18/1 N/A
Delete a part of a statement #2 0.18/1 N/A

Incorrect number of loop iterations
#1

0.18/1 N/A

Incorrect rounding #1 0.18/1 N/A

TABLE VIII.
FAULT DIAGNOSIS FOR IDC4X4

Fault Random
Testing

Conformance
Testing

Incorrect array element reference
#1

0.20/1 135/1/0.26

Incorrect array element reference
#2

0.18/1 135/1/2.07

Same type variable replacement #1 0.21/1 135/1/0.80
Arithmetic operator replacement

#1
0.18/1 135/1/0.59

Arithmetic operator replacement
#2

0.18/1 135/1/0.71

Delete a complete statement #1 0.19/1 135/1/0.69
Delete a complete statement #2 0.16/1 135/1/0.65
Delete a part of a statement #1 0.18/1 135/1/0.66
Delete a part of a statement #2 0.18/1 135/1/0.85

Incorrect number of loop iterations
#1

0.16/1 135/1/0.99

Incorrect signed/unsigned right
shift #1

0.18/1 135/1/0.66

Incorrect signed/unsigned right
shift #2

0.17/1 135/1/0.68

TABLE IX.
DIAGNOSIS FOR LUMA INTERPOLATION

Fault Random
Testing

Conformance
Testing

Missing path #1 0.27/7 114/3/2.04
Missing path #2 0.29/11 113/3/1.86

Relational operator replacement #1 0.28/11 113/3/1.82
Logical operator replacement #1 0.27/6 113/3/1.71
Logical operator replacement #2 0.17/1 113/3/1.86

Incorrect initialization #1 0.23/5 96/3/1.73
Incorrect array element reference #1 0.27/9 95/3/1.73
Incorrect array element reference #2 0.20/2 113/3/1.67

Incorrect pointer operation #1 0.52/14 110/3/1.87
Same type variable replacement #1 0.42/14 110/3/1.94
Same type variable replacement #2 0.31/14 110/3/1.81
Arithmetic operator replacement #1 0.25/7 96/3/1.79
Arithmetic operator replacement #2 0.25/7 96/3/1.77

Delete a complete statement #1 0.25/7 96/3/1.71
Delete a complete statement #2 0.26/7 96/3/1.79
Delete a part of a statement #1 0.25/7 96/3/1.82
Delete a part of a statement #2 0.25/7 96/3/1.67

Incorrect signed/unsigned right shift
#1

0.26/7 39/25/50.53

Incorrect signed/unsigned right shift
#2

0.29/7 46/25/49.70

Incorrect sign/unsigned extension #1 0.21/2 54/25/49.72
Incorrect rounding #1 0.33/15 96/3/1.75
Incorrect rounding #2 0.20/2 113/3/1.76
Incorrect saturation #1 0.23/5 96/3/1.96
Incorrect saturation #2 0.27/7 96/3/1.84

TABLE X.

 FAULT DIAGNOSIS FOR LUMA HORIZONTAL DEBLOCK

Fault Random
Testing

Conformance
Testing

Relational operator replacement
#1

12.17/1100 98/5/5.15

Relational operator replacement
#2

1.17/94 85/5/4.89

Relational operator replacement
#3

0.22/3 98/5/4.77

Logical operator replacement #1 0.94/72 85/5/4.81
Logical operator replacement #2 0.25/5 85/5/4.79
Logical operator replacement #3 0.20/3 98/5/4.79

Incorrect constant #1 38.38/3415 85/5/4.81
Incorrect constant #2 554.23/51033 85/5/5.14

Incorrect array element reference
#1

0.20/3 98/5/4.68

Same type variable replacement
#1

0.23/5 85/5/5.13

Same type variable replacement
#2

0.22/5 85/5/4.93

Arithmetic operator replacement
#1

0.21/4 98/5/4.90

Arithmetic operator replacement
#2

15.10/1425 85/5/4.89

Delete a complete statement #1 15.74/1425 85/5/4.78
Delete a complete statement #2 0.70/50 98/5/4.80
Delete a part of a statement #1 16.32/1476 98/5/4.99
Delete a part of a statement #2 0.69/50 98/5/4.85
Missing clause in predicates #1 0.20/3 98/5/4.87
Missing clause in predicates #2 0.20/3 98/5/4.70
Incorrect signed/unsigned right

shift #1
0.75/54 98/5/4.88

Incorrect signed/unsigned right
shift #2

2.38/208 98/5/5.21

Incorrect rounding #1 105.31/9325 85/5/5.05
Incorrect rounding #2 74.42/5778 85/5/4.99

1852 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Based on these results, we recommend
managers/engineers to choose one or all of these three
methods based on their unique needs (e.g., engineer
resource limitation, time limitation, client requirements,
etc.). It is also worth mentioning that, although only four
optimized functions in H.264 are thoroughly analyzed
and tested, we see the proposed test techniques valuable
and potentially extendable to other video codec modules
and standards.

Test case design for SIMD faults are sometimes
platform specific. For example, the signed/unsigned
extension issue introduced in Sec.Ⅴ-B3 could be avoided
in Intel/Amd CPUs with SSE4.1 support. SSE4.1
contains signed extension instructions such as
PMOVSXWD, PMOVSXBW, etc. Algorithm
implementations also matter. The 16-bit Luma
Interpolation described in [20] requires no signed
extension. Furthermore, other SIMD instruction sets such
as Altivec may generate different faults. In our future
work, we would like to explore these topics.

Our future work would also include video coding
algorithm comparison and selection based on complexity
measures, where the efficiency of various video coding
algorithms (e.g., fast mode decision algorithms, rate
control algorithms, etc.) are not only judged by the
improved PSNR and coding speed, but also functional
complexity. Furthermore, test data adequacy criteria
could be used to help improve the efficiency of test case
generation [10], [22]. Lastly, we made an assumption in
this paper that C versions are error free. How to
effectively verify their correctness based on the
specification and reference software is not discussed in

this paper. We are currently investigating this important
issue and will report our results in the near future.

REFERENCES

[1] G. Sullivan, P.Topiwala, and A.Luthra, “The h.264/avc
advanced video coding standard: overview and
introduction to the fidelity range extensions”, in
Conference on Applications of Digital Image Processing.
SPIE, 2004, vol. XXVII, pp. 1–22.

[2] J.Ostermann, J.Bormans, P.List, D.Marpe, M.Narroschke,
F.Pereira, T. Stockhammer, and T.Wedi, “Video coding
with h.264/AVC: Tools, performance and complexity”,
IEEE Circuits and Systems Magazine, vol. 4, pp. 7–28,
First Quarter 2004.

[3] Gary J. Sullivan and Jens-Rainer Ohm, "Recent
developments in standardization of high efficiency video
coding (HEVC)", Proc. SPIE 7798, 2010.

[4] M. Horowitz, A.Joch, F.Kossentini, and A. Hallapuro,
“H.264/avc baseline profile decoder complexity
analysis”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, pp. 704–716, July 2003.

[5] Y.L. Lai, Y.Y.Tseng, C.W. Lin, Z. Zhou, and M.T.Sun,
“H.264 encoder speed-up via joint algorithm/code-level
optimization”, in Visual Communications and Image
Processing. SPIE, 2005, vol.5960, pp. 1089–1100.

[6] J.Lee, S. Moon, and W. Sung, “H.264 decoder
optimization exploiting simd instructions”, in Asia-
Pacific Conference on Circuits and Systems. IEEE,
2004, vol. 2, pp. 1149–1152.

[7] Joint Video Team, “Conformance specification for itu-t
h.264 advanced video coding”, ITU-T Rec. H.264.1,
April 2010.

[8] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An
experimental evaluation of data flow and mutation testing”,
Software - Practice and Experience, 26(2):165–176,
February 1996.

[9] P. Thévenod-Fosse, H. Waeselynck and Y. Crouzet, “An
experimental study on software structural testing:
deterministic versus random input generation”, Proc. 21st
International Symposium on Fault-Tolerant Computing,
Montreal, Canada, pp. 410-417, June, 1991.

[10] P.G. Frankl, S.N. Weiss, and C. Hu, “All-uses versus
mutation testing: An experimental comparison of
effectiveness”, Journal of Systems and Software, vol. 38,
pp. 235–253, September 1997.

[11] P. Meehan, N. Hurst, M. Isnardi, and P. Shah, “Mpeg
compliance bitstream design”, in International Conference
on Consumer Electronics, June 1995, pp. 174–175.

[12] C.M. Kim, B.U. Lee, and R.H. Park, “Design of mpeg-2
video test bitstreams”, IEEE Transactions on Consumer
Electronics, vol. 45, pp. 1213–1220, 1999.

[13] J. Cho, S.Choi, and S.I. Chae, “Constrained-Random
Bitstream Generation for H.264/AVC Decoder
Conformance Test”, IEEE Transactions on Consumer
Electronics, vol. 56, pp. 848–855, May 2010.

[14] Intel Architecture Software Developer’s Manual, Volume
2: Instruction Set Reference, 1999.

[15] S.Yu and S. Zhou, “A survey on metric of software
complexity”, in Int. Conf. on Information
Management and Engineering, April 2010, pp. 352–356.

[16] T.J.Mccabe, “A complexity measure”, IEEE Transactions
on Software Engineering, vol. SE-2, pp. 308–320,
December 1976.

[17] W.E. Wong, J.R. Horgan, S. London,and A.P. Mathur,
“Effect of test set minimization on fault detection

TABLE XII.
COMPARISON BETWEEN RANDOM TESTING AND MANUAL TESTIN

Fault Random Testing Manual Testing
Incorrect constant #1 >105 0.34/1
Incorrect constant #2 7.29/9118 0.34/2
Incorrect constant #3 >105 0.36/3
Incorrect constant #4 1.61/1863 0.36/4
Incorrect constant #5 26.87/37043 0.38/5
Incorrect constant #6 1.68/1993 0.38/6
Incorrect constant #7 19.75/24220 0.39/7
Incorrect constant #8 0.62/562 0.42/8
Incorrect rounding #1 1.70/141 0.41/1
Incorrect rounding #2 74.42/5778 0.42/1
Incorrect rounding #3 23.32/2086 0.42/1
Incorrect rounding #4 15.58/1425 0.54/2
Incorrect rounding #5 15.86/1425 0.52/2
Incorrect rounding #6 15.72/1425 0.55/2
Incorrect rounding #7 15.57/1425 0.44/1
Incorrect rounding #8 23.16/2086 0.42/1

TABLE XI.
INTERPOLATION AVERAGED TEST RESULTS

MODULE NAMES Random Testing Conformance Testing
Forward Tansform4x4 0.18/1 N/A
Inverse Transform4x4 0.18/1 135/1/0.80
Luma Interpolation 0.27/7.54 96.5/5.75/7.83
Luma Deblock Filter 36.53/3284.3 91.78/5/4.90

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1853

© 2012 ACADEMY PUBLISHER

effectiveness”, in Proceedings of the 17th international
conference on Software engineering, April 1995, pp. 41–50.

[18] I.E.G. Richardson, H.264 and MPEG-4 Video
Compression: Video Coding for Next-generation
Multimedia, Wiley, 2003.

[19] Joint Video Team, “Advanced video coding for generic
audiovisual services”, ITU-T Rec. H.264 & ISO/IEC
14496-10 AVC, March 2005.

[20] F. Bossen, “Full 16-bit implementation of 1/4 pel motion
compensation”, in Doc. JVT-C37. Joint Video Team (JVT)
of ISO/IEC MPEG and ITU-T VCEG, May 2002.

[21] L. Kerofsky, “Notes on jvt idct,” in Doc. JVT-C24.
Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG, May 2002.

[22] H. Zhu, P.A.V. Hall, and J.H.R. May, “Software unit test
coverage and adequacy”, ACM Computing Surveys,
Vol.29, pp. 366–427, December 1997.

Hao Zhang received the Ph.D. degree in electrical and
computer engineering form Polytechnic University (now
Polytechnic Institute of New York University), New York, USA,
in 2006. He is currently an associate professor in the School of
Information Science and Technology at Central South
University, ChangSha, China.

His current research interests include software testing ,
evaluation system analysis and video coding.

1854 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

