
Complexity Measurement and Fault Detection 
Techniques for H.264 Optimized Functions 

 
Hao Zhang 

School of Information Science and Engineering Central South University, Changsha, Hunan ,China 
Email: hao@csu.edu.cn 

 
Yuetang Deng2, Zhenye Liu3, Yuan Zhao1 , Haiyan Zhan1 

1School of Information Science and Engineering Central South University, Changsha, Hunan, China 
2Tencent, Inc. ShenZhen, China 

3AT&T Labs, CA, USA 
Email:hyzhanm@gmail.com  

 
 

Abstract—In this paper, we systematically studied the 
complexity measurement, SIMD (Single Input Multiple 
Data) fault types and testing methodologies for H.264 codec. 
To the best of our knowledge, it is the first attempt to 
address these problems. Firstly, two complexity metrics are 
calculated for various optimized functions in H.264 
reference software. These measures have been found to be 
strongly correlated to the number of faults in software 
testing. Secondly, we introduced a new category of SIMD 
faults. Conformance testing, random testing and manual 
testing are proposed to deal with these SIMD faults as well 
as conventional faults. Results have shown that, 
conformance testing, often used as a mechanism to verify 
the conformity of a decoder under test (DUT), can also be 
used to discover faults in the studied optimized functions. 
Random testing is able to detect simple faults at both 
encoder and decoder functions. Manual testing is especially 
effective for difficult faults. In practice, one or more of the 
three techniques can be chosen as needed to increase fault 
detection rate and speed for H.264 video codec testing. 
 
Index Terms—video coding, software testing, single input 
multiple data, optimized functions 

I.  INTRODUCTION 

Video coding standards have been developing rapidly 
in recent years. Compression ratios have been greatly 
improved with greater coder complexity [1], [2]. The 
upcoming High Efficiency Video Coding (HEVC) could 
be more computationally expensive than H.264 with 
further improvement on compression efficiency [3]. 
Although advancement of hardware is speeding up the 
encoding/decoding process, computational efficiency is 
still considered as an important performance metric for 
video codec.  

It has been found that some functions in H.264 video 
decoder such as deblock filter and interpolation are of 
considerable computational complexity [4], [5]. A 
common way to reduce their execution time is hand 
optimizing them with SIMD technologies that are 
available in various hardware platforms, e.g., CPU, GPU, 
DSP, etc. [5], [6]. Because each platform supports a 
unique SIMD instruction set, various optimized versions 
are required to be developed, tested and maintained for 

each function. It is well known that functions coded with 
assembly languages are generally hard to read and 
maintain and thus very likely to contain faults that might 
generate mismatches. Deploying such a system leads to 
unpleasant artifacts and finally costs system makers a lot 
of time and money on patch distributions. Fig.1 gives 
such an example when decoding the conformance 
bitstream 'BA1_FT_C' [7] with a faulty decoder. 
Subjective viewing could be employed to find easy faults, 
while it is insufficient to detect difficult faults in the 
required time frame. This is due to many reasons, e.g., the 
condition to intrigue the fault is not met, or the fault 
related artifacts are only visible after a long period of 
time. Therefore, it is essential to conduct thorough 
software testing before deployment. 

Recommendation ITU-T H.264.1 specifies bitstreams 
to check the conformance of decoders under test (DUT) 
[7]. A decoder is considered conformant to the 
specification if the decoded frames are identical as those 
decoded by reference software. Those bitstreams are 
provided to test various H.264 features for different 
profiles. However, whether the conformance test could be 
used to detect programming faults in the source code of a 
DUT is unknown. This issue is going to be investigated in 
this paper. 

Conformance testing is insufficient for video codec 
testing because it can only test decoders. Moreover, it is 
time consuming compared to some other testing 
techniques. Lastly, it is not able to locate faulty functions. 
Therefore, other software testing techniques are needed. 
Among them, unit testing is one of the most important 
procedures for quick error revelation. To unit test 
different versions of an optimized function, a correct 
version should be obtained before hand. This version is 
usually coded with a high level language (such as C) and 
considered error free (by thorough code review, 
comparisons with the specifications or reference software, 
extensive experiments, etc.). Unit testing is then 
performed to find out whether the outputs of the 
optimized versions match that of the correct version with 
some selected test cases. 
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Figure 1.  A decoded image demonstrating some artifacts with a fault 

Actually, thoroughly testing all the optimized function 
is sometimes a formidable task due to the limitation of 
engineer resource. Two widely adopted software 
complexity metrics--- LOC (line of code) and Cyclomatic 
Complexity measures could be used to predict bug 
densities. Furthermore, two code coverage metrics are 
calculated when random testing is used. These metrics 
reveal the software complexity of various optimized 
functions that is helpful to codec engineers in task 
prioritization. 

Another important procedure in software testing is 
fault injection. We use typical faults in the software 
testing literature to mimic faults in real applications. 
Additionally, we consider the conventional fault types 
insufficient for optimized functions and we introduce a 
new SIMD fault category. With various faults injected 
into the optimized functions, test cases are designed by 
random and manual testing and their effectiveness is 
compared. Random testing generates random input of all 
the parameters within their admissible ranges; for the 
manual test case design, each test case is designed 
manually based on past experiences. This technique aims 
at difficult faults that could not be efficiently detected by 
conformance testing and random testing techniques. 

The paper is organized as follows. Sec.Ⅱ  briefly 
describes related work on video codec testing. A brief 
introduction of SIMD technologies is then given in Sec.
Ⅲ. Two complexity metrics are calculated in Sec.Ⅳ. Sec.
Ⅴ  describes the proposed new fault category. Sec.Ⅵ 
gives two examples of the manual test case design 
technique. In Sec.Ⅶ, experiments are conduct to compare 
the effectiveness of the three testing techniques. Finally, 
conclusions and future work are described in Sec.Ⅷ. 

II.  RELATED WORK 

Software testing has long been investigated. It helps 
find all sorts of faults to make the final product work as 
expected. There exist various testing methods such as 
random testing, mutation testing, data flow testing, etc. 
[8-10]. Although these testing techniques have been used 
widely in many fields, their applications to video coding 
are still very limited. The only known research activities 
focus on the conformance testing of standard compliant 
decoders [11-13]. These conformance bitstreams may be 

useful to test whether the features in some specific profile 
and level are supported. Their effectiveness is not verified 
for general software faults, especially in optimized 
functions written with SIMD instructions. In this paper, 
we consider the video codec testing from a different angle 
--- what are the frequently encountered SIMD faults and 
how to detect them effectively. 

III  A BRIEF INTRODUCTION TO SIMD TECHNOLOGIES 

SIMD was a technology exploited by super computers, 
but nowadays it is deployed in all sorts of hardware 
platforms and widely exploited to accelerate various 
applications, e.g., image processing, video coding, etc. 
Big corporations are pushing this technology to a new 
level. For example, Altivec was used in Powerpc to 
support various computationally expensive operations. 
Moreover, starting from 64-bit MMX registers, Intel and 
Amd have been frequently introducing new instructions 
into their powerful SIMD instruction sets. For example, 
the SIMD instruction set in Intel CPUs has been evolving 
from MMX to SSE(Streaming SIMD Extensions), SSE2, 
SSE3, SSSE3 and SSE4. During this process, eight 128-
bit SIMD registers are added for better performance. 
AMD recently developed SSE5 and introduced more 
instructions. Longer registers will be available in 
Advanced Vector Extensions (AVX). Some DSPs also 
support SIMD instruction sets and this could be very 
useful in embedded applications. For convenience, we 
would like to use Intel CPUs to generate our test cases, 
though many of them could be used by other processors. 

Basically, SIMD instructions realize parallelization 
and improve the computational efficiency by processing 
multiple operations simultaneously. Intel&Amd gradually 
add extensions to their SIMD instruction set. For 
backward compatibility, programmers need to write 
various versions of optimized functions for all the 
supported CPUs. A CPUID instruction could be used to 
find the supported instruction sets [14]. However, the 
coexistence of different code versions for the same 
functionality creates a potential source of fault generation. 
To make things worse, SIMD programmers may choose 
various assemblers under different operating systems. For 
instance, some compilers (such as GAS) support AT&T 
syntax, while others (such as NASM) support Intel syntax. 
These two assembly syntaxes differ in many places such 
as function names, register locations, constant 
representations, etc. Those different assembly syntaxes 
further increase the number of optimized versions. One 
way to avoid developing the same function in two 
syntaxes is to use (or write your own) automatic syntax 
converters, however, any fault in the converter may 
generate new faults and finally result in a correct version 
for one OS and a wrong version for the other OS. 
Mismatch problem will arise when two clients using such 
code versions in different OSs talk to each other. Another 
option is to use intrinsic instead of pure assembly [14]. 
For convenience, we will use intrinsic to create all the 
optimized versions in our experiments. 

IV  COMPLEXITY MEASUREMENT 
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Function Start 
 
Void forward4x4(int **block, 
int **tblock, int pos_y, int 
pos_x) 
{ 
1…… 
1  int *pTmp = tmp, *pblock; 
1…… 
 

//Horizontal 
2  for (i=pos_y; 

i<pos_y+BLOCK_SIZE;
i++) 

   { 
 
3  …… 
 
    } 
 

//Vertical 
4 for 
(i=0;i<BLOCK_SIZE;i++) 
  { 
 
5  …… 
 
   } 

} 
Function End 

 
S 

1 

2 

5 

4 

3 

E 
 

Figure 2.  A decoded image demonstrating some artifacts with a fault in 
the optimized code of luma interpolation. 

There exist many metrics for program complexity 
evaluation, where LOC and Cyclomatic Complexity are 
widely used. Both LOC and Cyclomatic Complexity have 
been shown to be correlated to fault density [15], and 
hence, it is necessary to calculate these metrics for H.264 
optimized functions. LOC is the number of lines in the 
source code, and it could be easily calculated from the 
source code of each function. Cyclomatic Complexity is a 
software metric based on the control flow graph. It is 
given by the following formula [15], [16]: 

pneG +−=)(ν                                       (1) 
Where )(Gv denotes the Cyclomatic Complexity of 

the control flow graph G, which contains e edges, 
n vertices and p  connected components. It is actually 
equal to the number of linearly independent path in graph 
G and it is known that larger Cyclomatic Complexity 
values correspond to more test cases for path coverage 
[15], [16]. An example is given in Fig.2, based on the 
specification and source code of JM16.0. In the graph, S  
denotes the entry point and E represents the exit point. 
For this simple example, 1,7,9 === pne , so 
Cyclomatic Complexity is calculated as 3=+− pne . 

LOC and Cyclomatic Complexity metrics are 
calculated for the optimized functions as shown in Tab.Ⅰ. 
A simplified calculation method for Cyclomatic 
Complexity is used: it is equal to the number of 
predicates plus one in a structured program with only one 
entrance point and one exit point [16]. Among the tested 
modules in Tab. Ⅰ , Luma Deblock and Luma 
Interpolation have larger complexity values than other 

functions. It is recommended that Cyclomatic Complexity 
should be no more than 10 [16]. We can see that the 
complexity metrics of these two modules are much larger 
than this recommended value. Therefore, codec engineers 
should pay attention to these functions and conduct 
thorough testing for them. 

V  LIST OF FAULTS 

A.  Regular Faults 

We are attempting to attack two categories of faults. 
The first category in Tab.Ⅱ includes regular faults used 
in [17]. These faults could occur in modules written with 
any programming language and so they will be used in 
our tests for H.264 optimized functions. 

B.  SIMD Faults 
Other than the regular faults listed in Sec.Ⅴ-A, we 

propose a new category of faults, which are caused by 

incorrect implementations of various SIMD instructions. 
It consists of five types as shown in Tab. : overflow, Ⅲ
incorrect signed/unsigned right shift, incorrect 
signed/unsigned extension, incorrect signed/unsigned 
saturation, incorrect rounding.  Please note that Tab.Ⅲ 
only includes those faults we encountered in the past. We 
It consists of five types as shown in Tab. : overflow, Ⅲ

TABLE II 
FAULT TYPES IN CATEGORY I 

Fault types 
Missing path faults 

Incorrect predicate 
faults 

Relational operator replacement 
Logical operator replacement 

 
Incorrect 

Computation 
Statement 

Incorrect initialization 
Incorrect constant

Incorrect precedence
Incorrect array element reference

Incorrect pointer operation
Same type variable replacement
Arithmetic operator replacement

Miscellaneous 
Missing computation 

statement 
Delete a complete statement 
Delete a part of a statement 

Incorrect number of loop iterations 
Missing clause in predicates 

 

TABLEI 
COMPLEXITY METRICS FOR VARIOUS ENCODER MODULES 

IN JM16.0 

Module Names Loc Cyclomatic 
Complexity 

Forward 
Transform4x4 40 3 

Inverse 
transform4x4 40 3 

Quant+Dequant4x4 56 7 

Luma Interpolation 527 88 

Luma Deblock 108 18 
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TABLEIII 
FAULT TYPES IN CATEGORY II 

Fault Types 
Overflow 

Incorrect signed/unsigned right shift 
Incorrect signed/unsigned extension 
Incorrect signed/unsigned saturation 

Incorrect rounding 

incorrect signed/unsigned right shift, incorrect 
signed/unsigned extension, incorrect signed/unsigned 
saturation, incorrect rounding.  Please note that Tab.Ⅲ 
only includes those faults we encountered in the past. We 
hope to see more discussions and results on this topic in 
the future. 

1)  Overflow: 
A 128-bit XMM register can only hold eight 16-bit or 

four 32-bit integers. Without careful analysis of variable 
dynamic ranges, SIMD programmers may allocate 16 bits 

for a variable when 32 bits are actually needed. This is 
usually intrigued by ambitions to simultaneously process 
as many pixels as possible (so higher coding speeding 
may be achieved). The quantization equation shown in (2) 
provides a good example for this fault type.  

( )
)()( ijij

ijij

WsignZsign

qbitsfMFWZ

=

>>+⋅=
              (2) 

Variables in (2) are explained in [18]: f is 3/2qbits for 

Intra blocks or 6/2qbits for Inter blocks, qbits = 
15+floor(QP/6), MF  is the multiplication factor defined 
in Tab. Ⅳ , ‘>>’ denotes a binary right shift, 

T
ff XCCW =  is the horizontal and vertical forward 

transform of residual matrix X  with T
fC  being the 

transpose of fC . 

fC  is given as below[18]: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−−
=

1221
1111
2112

1111

fC  

With C programming, only one element in W  can be 
processed at a time with (2). Using 16 bits for each 
element in W  enables a XMM register to load 8 
variables. However, using 16 bits in this case will cause 
the overflow fault because the multiplication MFWij  

could easily go out of the 16-bit range ( ijW  has a 

dynamic range of   -9180 to 9180 and MF  could be as 
large as 13107 [18]). The field testing may not 
immediately result in artifacts, because sometimes the 
residual signal aptitudes are too small to lead to the 
overflow. In the experimental section, it can be seen that 
this fault is detectable with random testing.  

2) Incorrect Signed/Unsigned Right Shift:  
  Right shifts are widely used in video coding. It's known 
that there are two types of right shifts: the so called 
'logical right shift' and 'arithmetic right shift'. Arithmetic 
right shift differs from logical right shift by preserving a 
number's sign bit [14]. C programmers can solely use 
'>> ' and the compiler will automatically convert it into 
the right instruction. On the contrary, SIMD programmers 
have to select the correct instruction by themselves (e.g., 
psrlw and psraw represent logical and arithmetic right 
shift of each 16-bit element in a XMM register 
respectively). This should be done carefully; otherwise, 
faults could be made out of incorrect right shift 
implementations.  An example of this fault occurred in 
the Luma Deblock function is given in (3) [19]: 

)1()1)1((

(,,(3

100

2001
'
1

<<−>>++

+−+=

pqp

pttclippp CC       (3) 

where 02 ppap −= . 
The last right shift is an arithmetic one. A fault is 

created when it is replaced by a logical right shift. This 
fault is not difficult to detect with both random testing 
and conformance testing. 

3) Incorrect Signed/Unsigned Extension: 
In SIMD implementations, it is up to the programmer 

to decide the number of bits for each variable. During 
calculation, some intermediate results may have wider 
dynamic ranges than the original input and so signed or 
unsigned extensions are needed. However, before SSE4.1, 
there are no signed SIMD extension instructions for Intel 
CPUs, i.e., only unsigned zero extension instructions such 
as ‘punpcklbw’ and ‘punpcklwd’ are supported. Faults 
could be generated if a SIMD programmer uses zero 
extensions when signed extensions are required.  An 
example for this can be found in Half-pel Luma 
Interpolation formula shown in (4) [19], where A, C, G, 
M, R, T denote the pixel values at integer positions with a 
dynamic range of 0 to 255, inclusive; cc, dd, ee, m1, ff are 
half-pel pixel values derived in the same manner as the 
derivation of h1, which have a dynamic range of -2550 to 
10710, inclusive [19],[20]. Suppose h1 is represented by 
16 bits within a XMM register, signed extensions should 
be used because the dynamic range of j1 exceeds 16 bits. 
If zero extensions are used here instead, a fault is 

TABLE IV.   
MULTIPLICATION FACTOR MF [18] 

QP Position 
(0,0),(2,0),(2,2),(0,2) 

Positions 
(1,1),(1,3),(3,1),(3,3) 

Other 
positions

0 13107 5243 8066 
1 11916 4660 7490 
2    10082    4194 6554 
3 9362 3647 5825 
4 8192 3355 5243 
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TABLE V.   
A MODIFIED ROUNDING OFFSET TABLE 

_declspec(align(16)) short constArray [] = { 
         1,1,1,1,1,1,1,1, 
         2,2,2,2,2,2,2,2, 
         4,4,4,4,4,4,4,4, 

}; 

TABLE VI.   
 AN EXAMPLE OF INCORRECT ROUNDING FAULTS 

short x[8] = {1,2,3,4,5,6,7,8}; 
short x[8] = {1,1,1,1,1,1,1,1}; 
_declspec(align(16)) short constArray[] = { 
       2,2,2,2,2,2,2,2, 
       4,4,4,4,4,4,4,4, 
}; 
for (int i= 0; i< 8; i++) 
      z[i] = (x[i]+y[i]+4)>>3; 
_asm { 
               movdqu xmm1, [x] 
               movdqu xmm2, [y] 
               paddw   xmm1, xmm2 
               paddw   xmm1, [constArray+16] 
               psraw    xmm1, 3 
               movdqu [z], xmm1 

} 

generated that is detectable with random testing and 
conformance testing. 

ffeemhddccj
TRMGCAh
+∗−∗+∗+∗−=

+∗−∗+∗+∗−=
520205(

)520205(

111

1  

(4) 
4) Incorrect Signed/Unsigned Saturation: 
One of signed/unsigned saturation instructions in 

MMX/SSE2 is PACKSSWB/PACKUSWB, which packs 
signed 16-bit integers into 8-bit signed/unsigned integers 
and saturate [14]. Signed and unsigned saturations map 
variables into different ranges, e.g., '-1' would be mapped 
into 0 with unsigned saturation and '-1' with signed 
saturation. Hence, faults are generated when incorrect 
instructions are used. 

5) Incorrect Rounding: 
Code lines like nyx n >>++ − )2( 1 appear 

frequently in many functions. It is not a rare case for a 
programmer to forget adding the rounding offset 12 −n  in 
this expression. Additionally, a programmer may use a 
wrong rounding offset value 12 −m  with nm ≠  . 
Furthermore, in the case when various rounding offsets 
are stored in a constant array, it is not uncommon for 
programmers to modify the constant array without 
changing the values of corresponding address registers.  

An example is given in Tab. Ⅴ , where a simple 
program is shown with two versions: a pure C code 
version on the top of the table and a SIMD version 
written with inline assembly (Intel syntax). The function 
includes eight additions and right shift operations, which 
is replaced by three SSE2 instructions. The rounding 
offset is added by ‘paddw xmm1, [constArray+16]’. A 
fault is generated if a programmer modifies constarray by 

adding into it another constant (Tab.Ⅵ) while forgetting 
to change the address offset in the assembly code.  

Another example is incorrect implementation of 
instruction ‘pavgb xmm1, xmm2’, which calculates the 
average of xmm1 and xmm2 with rounding. A 

programmer creates a fault by mistakenly implementing it 
as an average instruction without rounding. 

VI  TEST CASE DESIGN VIA MANUAL TESTING 

Since the number of optimized functions in H.264 
video codec is not very large, and most of those functions 
(at least in the decoder) are not revisable after the 
standards are finalized, it is meaningful and useful to 
design a test suite for those faults that are difficult if not 
possible to detect by random testing and conformance 
testing. Test cases for some faults are easy to design. For 
instance, for the incorrect signed/unsigned right shift fault 
described in Sec.Ⅴ-B2, ,18,255,1 === βαbS  

1,0,2 10200 ===== pqpptC can be used a test 
case: the correct code would generate an output 

,11 −=′p while the faulty code with a logical right shift 
would generate a different output. However, it is not so 
obvious to design test cases for Incorrect constant and 
Incorrect rounding faults, which are shown to be difficult 
to detect. The designing process for these two fault types 
are described as below. 

A. Incorrect Constant 
Another example is incorrect implementation of 

instruction ‘pavgb xmm1, xmm2’, which calculates the 
average of xmm1 and xmm2 with rounding. A 
programmer creates a fault by mistakenly implementing it 
as an average instruction without rounding. 

Incorrect constant faults will be generated in the 
quantization defined in (2) if an incorrect multiplication 
factor (denoted by EMF) is used. Experiments in Tab.Ⅶ 
and Tab.Ⅻ demonstrate that such faults are difficult to 
detect by random testing. A test case is X can be used to 
detect this fault if ji,∃ , the following inequality holds: 

qbitsfMFijWqbitsfEMFijW >>+≠>>+ ).|(|).|(|  

 (5) 
We observe that if ijW  is found to detect the fault with  

EMF = MF - 1, i.e., 
qbitsfMFijWqbitsfEMFijW >>+<>>+ ).|(|).|(|

(6) 
then all faults for EMF < MF can be detected by this test 
case. Similarly, all faults for EMF > MF can be detected 
by the test case for EMF = MF + 1. Therefore, we only 
need to design test cases for EMF = MF - 1 and EMF = 
MF + 1. 
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The first step is to find two values for each ijW  so that 
the inequality (5) and (6) hold respectively. Then the 
input matrix X can be estimated through T

ff XCCW = . 

For each i,j, we use a brute-force search with ijW  varying 
from zero to the upper bound and QP varying from 0 to 
51. Proper values ijW  and QP would thus be found so (5) 
and (6) are satisfied. Although the upper bound for each 

ijW  is not explicitly given in [21] (only the upper bound 
9180 for all elements in W is given), we could easily 
derive them as below: 

            

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

9180612091806120
6120408061204080
9180612091806120
6120408061204080

                     (7) 

Since MF is decided by QP as shown in Tab.Ⅳ, ijW  
should be searched for each QP. For simplicity, here we 
only consider the case when 06% =QP . By searching 
through the values from 0 to the upper bounds defined in 
(7), W could be obtained for EMF = MF - 1 as below: 

             

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

249495249495
49536574953657
249495249495
49536574953657

                       (8) 

The QP matrix for the above W is given by: 

                     

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0000
018018
0000
018018

                               (9) 

In the same manner, W could be obtained for EMF = MF 
+1 as below: 

         

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

980109980109
10913671091367
980109980109
10913671091367

                      (10) 

All QPs are zero for this case. 
Now that we find ijW  for (5) and (6), it is not difficult 

to find a proper input matrix X using T
ff XCCW = . For 

example, at position (0, 0), if the correct matrix element 
13107 is replaced by 13106, the test case W00 =3657 is 

found for (6). Since ∑ ==

==
=

4,4

0,000
ji

ji ijXW , the following X 

could be used as a test case: 

            

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

087255255
255255255255
255255255255
255255255255

                      (11) 

That is to say, using X defined in (11), QP=18 (as 
given in (9) and INTER block mode as input to the 
optimized function Trans&Quant4x4, we obtain W00 = 
3657, qbits = 15 + QP/6 = 18, f = 2 qbits / 6 =43690 and 
have the following equalities: 
       1821843690131063657 =>>+×               (12) 
       1831843690131073657 =>>+×               (13) 

The result obtained with the wrong constant 13106 in 
(12) is not equal to the result obtained with the correct 
constant in (13), meaning the fault is detected. 

B. Incorrect Rounding 
As for the incorrect rounding fault, test cases could be 

designed based on the following theorem. 
Theorem 1: Assume the correct code is (x + y + 2n-

1) >> n and the faulty code is (x + y + r) >> n, where x, y, 
r, n are non-negative integers and r≠2n-1, n > 0. The 
fault could be detected by the test cases x = 2n-1, 2n-1-1, 
y = 0. 

Proof: The original faulty code becomes (x + r) >> n 
with y = 0. Obviously, we have the following inequalities: 

nnr nnn >>+≠>>+ −−− )22()2( 111 )2( 1−< nr         (14) 

nnr nnn >>+−≠>>+− −−− )212()12( 111  )2( 1−> nr  
 (15) 

This shows that the test cases x = 2n-1, 2n-1-1, y = 0 
could be used to detect all the faults. 

Theorem.1 provides an efficient way of designing test 
cases for incorrect rounding faults. For instance, suppose 
the correct equation is (x+y+2)>>2, test cases x=2,y=0 
and x=1,y=0 are able to detect faulty equations with 
incorrect rounding, e.g., (x+y+1)>>2, (x +y)>>2, 
(x+y+4)>>2, etc. 

VII  EXPERIMENTS 

Experimental results are outlined in this section. Three 
test techniques: conformance testing, random testing and 
manual testing are compared. Simulations are conducted 
in a Lenovo notebook with 2.53GHz Intel Core 2 Dual, 
2.99GB memory and Windows XP Home Edition 2002 
(Service Pack 3). In conformance testing, there are totally 
135 bitstreams for baseline profile. We test those 
bitstreams in the order listed in the specification [7]. Both 
regular and SIMD faults are used. For conformance 
testing, a fault is considered not detectable if the faulty 
DUT does not report nonconformity for any of the 135 
bitstreams. For random testing, a fault is considered not 
detectable if the faulty function does not report error after 
a maximum number of test runs, which is set to 105 in the 
experiment. The seed value for the pseudo-random 
number generator is set to 1 to make the experimental 
results replicable. As for the manual testing technique, 
two fault types are analyzed in detail and the design 
procedure is demonstrated. Functions under test include: 
forward transform and quantization, inverse transform, 
deblock filter across horizontal boundaries and luma 
interpolation. Forward transform and quantization is an 
encoder side function, so it is not implemented for 
conformance testing. For each function, a correct C 
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Figure 4.  Branch Coverage with Random Testing 

 
Figure 3.  Statement Coverage with Random Testing. 

version, a correct SIMD version, and several faulty SIMD 
versions are created based on the fault types listed in 
Sec.Ⅴ. Without loss of generality, all SIMD instructions 
are implemented with SSE2 intrinsic for Intel CPUs. 

To simulate faults in real applications, a number of 
faulty versions for the aforementioned four functions are 
created. For convenience, each version only contains a 
single fault. For each function, 0~3 faults are manually 
created for every fault type. As shown in Tab.Ⅶ---Tab.Ⅹ, 
the first column denotes the fault name, e.g., Incorrect 
constant #2 denotes the second Incorrect constant fault. 
The second column contains experimental results for 
random testing with the format of t/n, where t and n 
denote the required fault detection time in million 
seconds and the number of required test runs, respectively. 
For example, 12.17/1100 means it takes 1100 runs and 
12.17ms to detect the fault. The third column contains 
experimental results for conformance testing with the 
format of m/n/t, where m is the total number of bitstreams 
(out of total 135) that reveal the fault, n represents the 
bitstream firstly reveals the fault, t stands for the fault 
detection time in seconds. For instance, 98/5/5.15 means 
that, the DUT is reported non-conformant by 98 
bitstreams (out of 135). The first bitstream that reveals 
the fault is the 5th bitstream, and it takes 5.15 seconds to 
finish decoding the first 5 bitstreams. 

These experiments show that all the faults are 
detectable via random testing except for the Incorrect 
constant #1 in the Trans&Quant4x4 function. 
Conformance testing is capable of detecting all the faults 
in the decoder (faults in the encoder functions are marked 
as 'N/A'). Although most faults are detectable, the 
difficulty levels are not identical. Faults planted in 
Trans&Quant4x4 and IDCT4x4 are easier to detect in 
most cases, either with random testing or conformance 
testing. For random testing, it only takes one run to reveal 
faults in most cases, and all the 135 bitstreams report 
nonconformity (Tab.Ⅶ,Tab.Ⅷ). For Luma Interpolation 
and Luma Deblock, it takes much longer to reveal faults. 
For example, it takes 50.53s to detect Incorrect 
sign/unsigned right shift fault #1 for Luma Interpolation 
using conformance testing (Tab.Ⅸ), and it takes random 
testing 51033 runs to detect Incorrect constant #2 for 
Luma Deblock (Tab.Ⅹ). 

The metrics are averaged in Tab.Ⅺ, where Incorrect 
constant faults are not counted for Trans&Quant4x4 
function because Incorrect constant #1 is not detectable. 
It shows that Luma Deblock requires the largest number 
of runs in average for random testing. As for 
conformance testing, it takes 4.90 and 7.83 seconds for 
fault detection in Luma Deblock and Luma Interpolation, 
respectively. Overall, in most cases, conformance testing 
takes much longer (in the order of seconds instead of 
million seconds) to detect a fault compared with random 
testing. 

Code coverage analysis could be used to analyze the 
sufficiency of the generated test cases. Here we use a tool 
'gcov' to calculate two metrics: statement coverage and 
branch coverage to measure the fraction of statements 
and branches in the function that are covered by executed 

test cases. Achieving high coverage can be seen as a 
requirement for test case generation. Fig.3 and Fig.4 
report that, the studied four functions increase their 
coverage by executing more test cases. Trans&Quant 4x4 
and Inverse Transform 4x4 achieve full coverage with 
only a few test runs, Luma Interpolation and Luma 
Deblock require more test runs. It is consistent with the 
experimental results. 

Manual test case design could be used to attack 
difficult faults listed in Sec.Ⅵ, i.e., Incorrect constant in 
the Trans&Quant4x4 function and Incorrect rounding in 
Luma Deblock. To verify the effectiveness of the 
designed test cases, eight faults for each type are planted 
as shown in Tab. Ⅻ . Moreover, manual testing is 
compared with random testing in terms of fault detection 
effectiveness. With random testing, Incorrect Constant #1 
and #3 are not detectable within 105 test runs, and it takes 
random testing more than 104 runs to reveal Incorrect 
Constant #5, #7. For Incorrect rounding faults, most 
faults require more than 1000 random test runs. For 
manual testing, all faults are detected within the 
maximum number of designed test cases (e.g., 2 runs for 
Incorrect rounding faults). The results demonstrate that 
manual test case design is more efficient in terms of fault 
detection rate and speed for these difficult faults. 

 

VIII  CONCLUSION AND FUTURE WORK 
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The issue of testing optimized H.264 functions is 
presented and studied in this paper. Two software 
complexity and code coverage metrics are used to 
measure the function complexity and help decide testing 
priorities. By analyzing those functions and their SIMD 
implementations, we firstly present a new category of 
SIMD faults and use three techniques to attack those 
faults. The results show that the conformance bitstreams 
can be used to efficiently test the optimized functions in 
decoders. Random testing is capable of testing easy faults  
at both encoders and decoders. As for difficult faults, 
manual testing is proposed and proved very effective. 

TABLE VII.   
FAULT DIAGNOSIS FOR TRANS&QUANT4X4 

Fault Random 
Testing 

Conformanc
e Testing 

Relational operator replacement #1 0.28/1 N/A 
Logical operator replacement #1 0.19/1 N/A 
Logical operator replacement #2 0.18/1 N/A 

Incorrect initialization #1 0.17/1 N/A 
Incorrect constant #1   >105 N/A 
Incorrect constant #2    7.29/9118 N/A 

Incorrect array element reference 
#1  

0.17/1 N/A 

Incorrect array element reference 
#2  

0.17/1 N/A 

Incorrect array element reference 
#3  

0.18/1 N/A 

Incorrect pointer operation #1   0.18/1 N/A 
Same type variable replacement #1 0.18/1 N/A 
Same type variable replacement #2 0.18/1 N/A 
Arithmetic operator replacement #1 0.18/1 N/A 
Arithmetic operator replacement #2 0.18/1 N/A 

Delete a complete statement #1  0.17/1 N/A 
Delete a complete statement #2  0.17/1 N/A 
Delete a part of a statement #1 0.18/1 N/A 
Delete a part of a statement #2  0.18/1 N/A 

Incorrect number of loop iterations 
#1 

0.18/1 N/A 

Incorrect rounding #1  0.18/1 N/A 

TABLE VIII.   
FAULT DIAGNOSIS FOR IDC4X4  

Fault Random 
Testing 

Conformance 
Testing 

Incorrect array element reference  
#1 

0.20/1 135/1/0.26 

Incorrect array element reference  
#2  

0.18/1 135/1/2.07 

Same type variable replacement #1 0.21/1 135/1/0.80 
Arithmetic operator replacement 

#1  
0.18/1 135/1/0.59 

Arithmetic operator replacement 
#2 

0.18/1 135/1/0.71 

Delete a complete statement #1  0.19/1 135/1/0.69 
Delete a complete statement #2  0.16/1 135/1/0.65 
Delete a part of a statement #1  0.18/1 135/1/0.66 
Delete a part of a statement #2 0.18/1 135/1/0.85 

Incorrect number of loop iterations 
#1  

0.16/1 135/1/0.99 

Incorrect signed/unsigned right 
shift #1  

0.18/1 135/1/0.66 

Incorrect signed/unsigned right 
shift #2  

0.17/1 135/1/0.68 

 

TABLE IX.   
DIAGNOSIS FOR LUMA INTERPOLATION 

Fault Random 
Testing 

Conformance 
Testing 

Missing path #1 0.27/7 114/3/2.04 
Missing path #2  0.29/11 113/3/1.86 

Relational operator replacement #1 0.28/11 113/3/1.82 
Logical operator replacement #1 0.27/6 113/3/1.71 
Logical operator replacement #2  0.17/1 113/3/1.86 

Incorrect initialization #1 0.23/5 96/3/1.73 
Incorrect array element reference #1  0.27/9 95/3/1.73 
Incorrect array element reference #2  0.20/2 113/3/1.67 

Incorrect pointer operation #1 0.52/14 110/3/1.87 
Same type variable replacement #1  0.42/14 110/3/1.94 
Same type variable replacement #2 0.31/14 110/3/1.81 
Arithmetic operator replacement #1  0.25/7 96/3/1.79 
Arithmetic operator replacement #2  0.25/7 96/3/1.77 

Delete a complete statement #1  0.25/7 96/3/1.71 
Delete a complete statement #2  0.26/7 96/3/1.79  
Delete a part of a statement #1  0.25/7 96/3/1.82 
Delete a part of a statement #2  0.25/7 96/3/1.67 

Incorrect signed/unsigned right shift 
#1  

0.26/7 39/25/50.53 

Incorrect signed/unsigned right shift 
#2  

0.29/7 46/25/49.70 

Incorrect sign/unsigned extension #1  0.21/2 54/25/49.72 
Incorrect rounding #1  0.33/15 96/3/1.75 
Incorrect rounding #2  0.20/2 113/3/1.76 
Incorrect saturation #1  0.23/5 96/3/1.96 
Incorrect saturation #2  0.27/7 96/3/1.84 

 
TABLE X.   

 FAULT DIAGNOSIS FOR LUMA HORIZONTAL DEBLOCK 

Fault  Random 
Testing 

Conformance 
Testing 

Relational operator replacement 
#1  

12.17/1100 98/5/5.15 

Relational operator replacement 
#2  

1.17/94 85/5/4.89 

Relational operator replacement 
#3 

0.22/3 98/5/4.77 

Logical operator replacement #1 0.94/72 85/5/4.81 
Logical operator replacement #2 0.25/5 85/5/4.79 
Logical operator replacement #3 0.20/3 98/5/4.79 

Incorrect constant #1  38.38/3415 85/5/4.81 
Incorrect constant #2 554.23/51033 85/5/5.14 

Incorrect array element reference 
#1 

0.20/3 98/5/4.68 

Same type variable replacement 
#1  

0.23/5 85/5/5.13 

Same type variable replacement 
#2  

0.22/5 85/5/4.93 

Arithmetic operator replacement 
#1 

0.21/4 98/5/4.90 

Arithmetic operator replacement 
#2 

15.10/1425 85/5/4.89 

Delete a complete statement #1 15.74/1425 85/5/4.78 
Delete a complete statement #2 0.70/50 98/5/4.80 
Delete a part of a statement #1 16.32/1476 98/5/4.99 
Delete a part of a statement #2  0.69/50 98/5/4.85 
Missing clause in predicates #1 0.20/3 98/5/4.87 
Missing clause in predicates #2 0.20/3 98/5/4.70 
Incorrect signed/unsigned right 

shift #1  
0.75/54 98/5/4.88 

Incorrect signed/unsigned right 
shift #2  

2.38/208 98/5/5.21 

Incorrect rounding #1 105.31/9325 85/5/5.05 
Incorrect rounding #2 74.42/5778 85/5/4.99 
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Based on these results, we recommend 
managers/engineers to choose one or all of these three 
methods based on their unique needs (e.g., engineer 
resource limitation, time limitation, client requirements, 
etc.). It is also worth mentioning that, although only four  
optimized functions in H.264 are thoroughly analyzed 
and tested, we see the proposed test techniques valuable 
and potentially extendable to other video codec modules 
and standards. 

Test case design for SIMD faults are sometimes 
platform specific. For example, the signed/unsigned 
extension issue introduced in Sec.Ⅴ-B3 could be avoided 
in Intel/Amd CPUs with SSE4.1 support. SSE4.1 
contains signed extension instructions such as 
PMOVSXWD, PMOVSXBW, etc. Algorithm 
implementations also matter. The 16-bit Luma 
Interpolation described in [20] requires no signed 
extension. Furthermore, other SIMD instruction sets such 
as Altivec may generate different faults. In our future 
work, we would like to explore these topics. 

Our future work would also include video coding 
algorithm comparison and selection based on complexity 
measures, where the efficiency of various video coding 
algorithms (e.g., fast mode decision algorithms, rate 
control algorithms, etc.) are not only judged by the 
improved PSNR and coding speed, but also functional 
complexity. Furthermore, test data adequacy criteria 
could be used to help improve the efficiency of test case 
generation [10], [22]. Lastly, we made an assumption in 
this paper that C versions are error free. How to 
effectively verify their correctness based on the 
specification and reference software is not discussed in 

this paper. We are currently investigating this important 
issue and will report our results in the near future. 
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