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Abstract—Along with the widespread acceptance of business 
process management (BPM) and Semantic Web services 
composition technologies, Semantic Web service oriented 
programming is becoming an efficient way to develop 
modern business applications. As Semantic Web services are 
inherently unreliable, how to develop reliable service 
oriented applications is a significant and challenging 
problem, especially in complex, untamed and dynamic 
services environment. However, current business process 
programming languages for Semantic Web services provide 
almost no support for exception handling, and runtime 
environments are weak in providing reliability and 
adaptability. In this paper, we propose an ontology based 
exception handling method for semantic business processes 
using Semantic Programming Language (SPL). We identity 
a new exception taxonomy described as exception ontology 
and devise an event-driven exception events detection 
mechanism. We also devise an exception handling 
framework based on Multi agent system for SPL program. 
Especially, the framework provides forward recovery 
support with dynamically substituting failed services when 
an exception arises during execution by semantically 
equivalent or semantically similar Web services. 
 
Index Terms—Exception handling, Semantic Web services, 
Ontology, Semantic Programming Language, Agent 
 

I.  INTRODUCTION 

At the crossing of the semantic Web and Service 
Oriented Computing domains, research in the field of 
semantic Web services [1] and related program 
development approaches is very active. The semantic 
Web and semantic Web service technologies have already 
attracted significant attention during the last decades, 
while these technologies are now becoming a well-
established branch of software engineering. The 
proliferation of semantic Web services standards reflects 
the industry interest and demand for distributed enterprise 
applications. Depending on such loosely coupled 
components with rich semantic descriptions makes it 
easier to develop, maintain, and modify the applications. 
Even though, issues of exception handling, recovery and 
adaptation are still far from being extensively studied in 
areas such as semantic Web service-oriented 

programming languages, workflow systems, especially in 
semantic business process management systems [2]. 
Traditional approaches to exception handling in 
workflow and business process management rely on 
exception handling primitives built into the program 
language. For example, WS-BPEL [3] provide basic 
exception handling activities, such as fault handlers and 
compensation handlers, then programmers can specify 
process control logic with exceptions and perform 
exception detection, handling and propagation. However, 
exception handling mechanism in WS-BPEL does not 
provide any explicit and direct support for semantic Web 
services-based software systems. 

Current standards and proposals for semantic Web 
services (such as OWL-S[4], WSMO[5], SAWSDL[6] 
and BPEL4SWS[7]) enhance Web service standards with 
rich semantic annotations to facilitate dynamic discovery, 
invocation and composition resiliently, but provide 
partially, even not support for above mentioned exception 
handling problems. In this paper, we focus on presenting 
a systematic method to handle failures of semantic 
application level during execution of semantic Web 
services-based software systems. Specifically, we 
consider Semantic Programming Language (SPL) [8] and 
illustrate automatic handling of semantic application level 
exceptions in SPL programs, but we believe our method 
has a great potential for the reliable execution of semantic 
Web services-based software systems and has benefits in 
a way that is independent from SPL. 

Our main contribution revolves around a proposal for 
augmenting SPL with fault handlers so that programmers 
can specify a reliable, possibly adaptive program using 
SPL. This proposal consists of: (1) an augment for SPL 
with fault handlers, which handle exception conditions 
with appropriate semantic information that aid to resolve 
the exceptions; (2) an exception ontology built on the 
notion of semantic information to support explicit 
description of exception conditions; (3) a Multi Agent 
System (MAS) [9] based framework for the reliable 
execution of SPL programs, which handle exception 
conditions using exception ontology and Web services’ 
contexts. Our proposal allows for a dynamic detect 
exception conditions and modify the control flow of SPL 
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program at runtime in the presence of exceptions. As long 
as an exception happen, our proposed framework reason 
about semantic equivalence or most semantic similarity 
of services and apply a forward failure recovery for 
substituting a semantically equivalence or at least 
semantically similar service for the failed service by find, 
diagnosis and select dynamically. 

There are some basic assumptions of our method, 
including: (1) exception conditions, which encounter 
during execution of a semantic Web services-based 
application, have some special characteristics with 
respect to traditional Web services-based applications. 
Despite the fact that some of the programming languages 
for Web services have a wide adoption, such as WS-
BPEL, which act as the de facto standard for Web 
services, these languages still remain focused on the 
syntax aspects without emphasis on the semantic level. 
Many approaches of exception handling are not initially 
considered to meet the peculiar requirements of a 
successful semantic exchange. Semantic exchange makes 
partners understand the content of messages what the 
send and receive. However, these approaches do not 
exploit the potential that exception information offers 
when it comes to describing the different aspects of 
exception data for effectively exception handling. (2) 
Existing lots of Web services that are semantically 
equivalent and/or similar in dynamic Web environment. 
Due to the fact that more and more enterprises and 
organizations can provide Web services to their business 
partners freely so that we can speculate that some Web 
services might have exactly the same and/or similar 
functionality while still differ in non-functional properties.  

On the basis of SPL, in this paper, we propose a novel 
and flexible framework to handle and resolve semantic 
exceptions occurring in the execution of SPL programs. 
The rest of this article is organized as follows. Section II 
introduces the classification of exception and language 
foundations of our method in detail. Section III presents 
our framework based on MAS and describes how this 
framework has been implemented. Section IV 
summarizes related work. Section V outlines our plans 
for future works and concludes. 

II.  EXCEPTION HANDLING AND SEMANTIC 
PROGRAMMING LANGUAGE 

A.  Semantic Programming Language 
Semantic Programming Language (SPL) is an 

extension of WS-BPEL that facilitates to orchestrate 
semantic Web services, traditional Web services and an 
admixture of them. A XML-style SPL program which has 
been transformed and deployed successfully can be 
exposed both as semantic Web services and conventional 
Web services. SPL extends WS-BPEL via defining a 
mechanism to attach the semantic descriptions on the 
activity level and process level using RDF4S [10] 
ontologies. Therefore, SPL enables semantic Web 
service-oriented program development and semantic 
business process-driven application integration. To 
developing application at semantic layer based on 

ontologies, SPL introduces five new constructs which 
decouple from WSDL: (1) The Semantic Data Type. It 
defines data types with specific semantic information 
which is described by ontological concepts. (2) The 
Semantic Variable. It defines the semantic data structures 
of a SPL program according to Semantic Data Types. It 
provides the means for holding semantic messages that 
interacting with external services, and also hold state data 
that are related to the business processes and business 
rules. (3) The Semantic Service. It describes the external 
partners’ services using semantic information 
(classification semantics, data semantics, functionality 
semantics etc.) based on the semantic Web services 
ontology. The definition of semantic service consists of a 
collection of semantically defined messages and 
operations, thus they abstractly represent the partner 
services that cooperate to fulfill the program requirements. 
(4) The Semantic Rule. It semantically defines the 
business decisions, policies and constraints on the 
behavior of business process. (5) The Semantic Process. 
It defines the process procedures logic, composed from 
activities (for Semantic Web Services). The definition of 
semantic business process is a model for describing the 
behavior of a business process based on interactions with 
external semantic Web services. The main SPL constructs 
and activities are summarized in Table I. 

SPL makes use of semantically annotated data types to 
enhance data processing by means of ontology-based 
semantic data adaption process. That is, SPL directly use 
ontologies as data model. Activities implementation in 
SPL can be described using other SWS frameworks such 
as OWL-S or WSMO. As the first class citizen of SPL, 
Semantic Service that offers functionality to user can also 
be defined using other SWS frameworks. SPL uses 
RDF4S ontologies as data model and annotates data types 
by referring to ontological concepts directly. With the 
hierarchy of ontology concepts, an implicit semantic data 
flow has been introduced in SPL via Semantic Data Type 
& Variables. Semantic Variable can be defined either 
global or local (scope). Then, different semantic activities 

TABLE I.   
SUMMARY OF SPL SEMANTIC ACTIVITIES 

Name Description 
invoke Semantic Web service call. 
receive Wait for a Semantic message to arrive. 
assign Manipulate Semantic variables. 
reply Respond to a remote operation. 
call Semantic sub-process call. 
wait Delay execution for a while or deadline.
throw Indicate occurrence of Semantic exception.
try-catch Capture and handle Semantic exception.
terminate Terminate a Semantic Process instance.

Structured Semantic Activities 

Activity Description 

sequence Execute activities in sequential order. 
if Selection an execution path with condition.
while Repeat execution a code block 
parallel Concurrent execution 
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Exception

ServiceInvocationException

SemanticProcessModel
ProcessingException

ProcessRuntimeException

ResourceAccessException

QoSException

CommunicationException

DataAccessException

ServiceProtocolBindingException

ExternalInterfaceMissingException

ServiceInternalLocalException

NoResponseException

IncompleteResponseException

ServiceInterfaceMismatchingException

TimeoutException

OntologyParseException

DocumentParseException

PreconditionNotExistException

ParametersException
ParametersMissingException

ParametersTypeException

Figure 2. SPL exceptions classification. 

 

Figure 1.  Level structure of SPL exception knowledge ontology. 

in SPL program can use these Semantic Variables as 
input/output containers and access semantic data 
respectively. Additionally, Semantic Data can be 
duplicated from one variable to another.  

In particular, the exception handling mechanism of 
SPL is based on a standard notion of explicit fault 
handlers known from programming languages such as 
WS-BPEL. For well understanding and using the content 
of semantic exception messages, SPL explicitly describe 
the semantic information of exception and other related 
information, and aim at propelling exception handling to 
the level of semantic. The exception handling of SPL 
provides flexibility and reliability for SPL program to 
meet the requirements of a semantic exception processing 
in SPL based on the runtime support environment. 

B.  Exception Detection Knowledge 
As mentioned earlier, SPL remains focused on the 

semantic aspects of composition of Web services. 
Business processes-centric applications specified using 
SPL will interact with their partners through operation 
invocations of semantic Web services using ontologies as 
agreements on a common vocabulary. Semantic Web 
services are still based on loosely coupled Service 
Oriented Architecture (SOA). The communication 
between services is done over Internet connections that 
may or may not be highly reliable. Semantic Web 
services could also raise faults due to logical errors and 
execution errors arising from defects in the infrastructure.  

By analyzing exception knowledge of SPL program, 
exception pattern and exception transmitting mechanism, 
we fuse Semantic knowledge and ontology technology. 
Based on the decomposition of exception knowledge, we 
construct exception ontology from the top down based on 
analyzing exception process of SPL program and the 
logic relation between exception reasons and symptom in 
complex Internet environment. The exception knowledge 
base level structure is shown in Fig. 1. The domain layer 
illustrates the top concepts of SPL exception knowledge. 
Class layer classify all concepts with relation of category 
and inheritance. Property layer includes concepts and 
property information. Instance level includes information 
of instance on the relevant property concepts. 

SPL programs will need to handle exceptions 
appropriately. SPL programs may also need to signal 
exceptions themselves. Exception detecting, handling and 
signaling is an important aspect of programs designed 
using SPL. For the purpose of handling exceptions 
effectively, we clarify the conditions under which 
exceptions may occur during the execution of SPL 
programs. Based on the exception knowledge base level 
structure, exceptions in SPL can arise be distinguished 
three main categories, see Fig. 2. 

• Service Invocation Exception: exceptions are 
related to the invocation of services. For example, 
communication error, service unavailable, no 
response, malformed results, time out etc. These 
exceptions are driven by the improper execution or 
the unsuccessful logical outcome of external 
services execution. In addition, when external 
services complete, but the predefined SLA 
properties have been degraded due to various 
reasons, so an exception will be notified. 

• Semantic process runtime exception: include all 
erroneous states specific to the application logic of 
a SPL program. Exceptions are driven by the 
inconsistencies or discrepancies on the semantic 
process model in SPL programs that may occur 
during the execution, and predefined the known or 
declared exceptions on the interfaces of semantic 
Web services, namely semantic application 
exceptions or user defined exceptions. When 
designing a SPL program, it's responsibility of 
programmer to specify the different exceptions a 
SPL program can throw so that exception can be 
appropriately catch and handle. 

• Semantic process model processing exception: 
exceptions caused by parsing/syntax level 
problems and problems with malformed SPL 
program or ontologies files. For example, 
Semantic services or data transformation errors, 
Semantic rules processing failure etc. 

These categories are application independent and are 
specified in the exception ontology, so different kinds of 
exceptions raised during execution of SPL program can 
be recognized or identified during the design and runtime 
phases with domain ontologies and reason engine support. 

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1793

© 2012 ACADEMY PUBLISHER



 

 
<try-catch name="NCName"> 
        <try>        activity+        </try> 
        <catch exceptionType="QName"?  exceptionIdentifier? >* 
                          activity* 
        </catch> 
        <catch exceptionName="QName"?   

exceptionVariable="VariableName"?  
                  ( Type="QName" | exceptionType="QName" )? >*  
             activity* 
        </catch> 
      <catchAll>?        activity*        </catchAll> 
        <finally>?  activity+  </finally> 
</try-catch> 

Figure 3. SPL exception handling syntax structure. 

 
<semanticExceptionType name="noServiceFoundST"  

ontologyReference="onto4t#ServiceUnavilableException"/> 
<semanticExceptionType name="engineNotExistST" 

                       ontologyReference="onto4t#BusinessException" > 
<semanticElement name="TimeStamp" SType="TimeST"/> 
<semanticElement name="Model" SType="ModelST"/> 
<semanticElement name="DetailDesc" SType="DescST"/> 

</semanticExceptionType> 
 
<semanticExceptionVariables> 

<semanticExceptionVariable name="err1" 
exceptionType="noServiceFoundST"/> 

               <semanticExceptionVariable name="err2" 
exceptionType="engineNotExistST"/> 

</semanticExceptionVariables> 

Figure 4. Example of semantic exception type and variable. 

C.  Exception Handling Constructor 
The exception handling approach of SPL is based on a 

standard notion of explicit fault handlers known from 
Java, C#. For well understanding and using the content of 
semantic exception messages, SPL explicitly describe the 
semantic of exception and other related information, and 
aim at propelling exception handling to the level of 
semantic. Such approaches use exception ontology to 
meet requirements of a successful semantic processing. 

SPL has built-in exception handling constructor that 
can be used to build reliable business process driven by 
Semantic Web services. Every business process can 
define a list of fault handlers to respond to exceptions and 
to perform possibly recovery. A fault handler has the 
following form using the XML syntax, see Fig. 3: 

It is same with WS-BPEL, the built-in construction 
element of exception handling in SPL is based on the 
notion of scopes. SPL provides fault handlers for trying 
to capture, deal with and recover from exception 
situations. SPL relies on exception ontology to describe 
the SPL exception classification, context, and other 
information. It introduces the <semanticExceptionType> 
and <semanticExceptionVariable> elements, see Fig. 4. 
They facilitate defining of semantic application 
exceptions and thus enable exchange complex exception 
message between SPL program and the runtime 
supporting environment. Fig. 4 helps illustrate some 
details of the semantic exception types and semantic 
exceptions variables in SPL with XML form. With regard 
to the syntax and usage of fault handlers in SPL, More 
details of can be found in [8]. 

When an exception occurs, the regular process control 
flow is interrupted and moves from the activity or sub-
process that raises the exception to the interrelated 
scope’s fault handler through semantically reasoning on 
captured exception. If there is no suitable scope level 
fault handler, then the execution moves to the process’ 
fault handler. A fault handler can have many activities or 
have one activity that can be a structured activity. Once a 
fault handler is triggered to execute, all contained 
activities of the related scope are forced to terminate. 
Generally, once an exception arises, it is considered that 
the scope has not completed normally and is required for 
compensation or recovery. Exceptions are not handled by 
any explicit fault handler will resolved by an implicit 
default fault handler. This fault handler is always 
provided to catch all exceptions except those for which 
without any fault handler is attached. 

D.  Semantic Event Detection 
SPL program contains rich Semantic information to 

further facilitate resilient dynamic Web service discovery, 
binding, invocation and execution. Since all these tasks 
are expected to be performed in dynamically changing 
environments with semi automatically, during execution, 
many practical exception or unusual problems are prone 
to arise. Execution infrastructure must able to effectively 
monitor and detect the exception, so that it can be able to 
interpret the reason and the effects of the exception, and 
support to deal with exception states. How to detect SPL 
program exceptions is an important task. Through 
exception detection, it can trace the sources of exceptions 
so that program can rescue, and avoid the conditions next 
time if possible. 

To solve the problem of exception detection during the 
SPL program execution, an event-driven exception 
monitor and detection method is proposed, and two 
questions have been resolved: first, what exactly should 
be monitored and detected; second, what implementation 
method should be chosen. For the first question, by 
analyzing the structure and semantics of SPL program, it 
is possible to identify important events with relation to 
exceptions which might be detected. These event types 
that occur during the execution of the SPL program are 
summarized as follows: 

• Service invocation. This type may be the most 
important event type. A service call by invoke 
activity can be identify as one event together with 
its inputs, outputs and effects parameters. 

• Sub-process call. Similar as Service invocation 
type, sub-process call can be recorded as on event. 

• Input assignment. Semantic data of input can be 
provided either by the data binding or user. 
Usually performed by assign activity. 

• Output processing. Semantic data of output are 
obtained as a result of the Semantic Web service 
invocation. Usually performed by assign activity. 

• Preconditions evaluation. Evaluates the 
preconditions of the activity (especially invoke 
activity) with Semantic data assigned and with the 
true or false. 
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Figure 5. The exception handling framework based on MAS. 

• Effect evaluation. Evaluates the effect of the 
activity with Semantic data assigned and with the 
true or false. 

• Primitive activity execution. It defines primitive 
activity (except invoke, assign, call activity etc.) 
execution events, such as reply activity. 

• Structure activity execution. This type event 
associated with structure activity such as if, while, 
represents and captures its start and one its end. 

• Exception event. It defines different categories of 
exception specific event types. Actually, exception 
knowledge is part of the event ontology. 

It is important to note that presented event types are 
neutral to the application domain, so it can implement 
easily by SPL runtime environment. On the basis of this 
analysis, a hierarchy of event types is proposed; we 
construct events ontology to serve as a sound basis for the 
detection of SPL exception. The SPL runtime 
environment adopted the event-driven model to realize 
the exception detection. During the SPL program 
execution, SPL runtime environment emits exception 
events specific to the SPL program instance execution. 
These emitted exception events are instances of exception 
types defined in the events ontology. The content of 
raised exception event instances describes the context 
information once the exception occurred. The content is 
semantically annotated by the domain ontology concepts 
and events ontology concepts; it enables more flexible 
exception event detection techniques than those syntactic 
key-words matching. And more importantly, based on 
matching exception event type and related content, a 
Semantic reasoning for detecting exception events can be 
employed, also, the defined types can be used in 
exception handler as part of parameters. 

III.  ONTOLOGY-CENTERED, MAS BASED FRAMEWORK 

As shown in Fig. 5, in order to handle all the semantic 
exceptions classified in the previous sections, we propose 
a exception handling framework based on MAS to fulfill 
the design principles for reliable executing SPL program. 
In this section we describe in detail the elements of the 
framework. The architecture that constitutes framework, 
which bases on technology of agent, ontology and 
semantic web services, consists of three main 
components: a set of agents that constitute MAS, four 
ontology libraries and an ontology reasoner. Our 
proposed framework incorporates a reasoner, which is 
central to the framework. All the agents use the ontology 
reasoned and are partly defined using the ontology 
repository. This module is able to deal with basic 
concepts, attributes and translate SWS descriptions. 

A.  Multi-Agent System 
The core brain of our proposed framework is a Multi-

Agent System (MAS). Its architecture consists of a group 
of soft agents that perform SPL-based semantic business 
process transformation, dynamic discovery & 
coordination, semantic service & data mediation, 
business rule execution, service dynamic binding and 
invocation and semantic exception handling. 

• The Semantic Business Process Manager (SBP 
Manager) is responsible for decoupling the static 
relation between business process and its external 
participants, converting the semantic information 
of business processes into the messages for 
facilitating the other component agents, triggering 
instance of semantic business processes, and 
monitoring and controlling the execution. 

• Transformation Agent is responsible for parsing 
SPL program in accordance with the semantic 
rules of SPL, extracting service’s semantics which 
is used as query conditions for Web services, 
mapping semantic Web services with appropriate 
Web services, and finally converting source 
program to executable semantic business process. 

• Discovery Agent is in charge of performing 
discovery in the semantic web services repository 
for the set of services that satisfy the requisites 
established by the process and coordination 
between agents and web services. Such an agent 
performs very complex reasoning tasks, including: 
interpreting web service semantic queries; finding 
the best provider based on semantic queries; 
interacting with the service provider as necessary 
to fulfill the query and returning query results. 

• Mediation Agent is responsible for specifying 
which semantic service and external web service 
are connected and which type of mismatches can 
be resolved between them.  

• Service Invoker is responsible for invoking the 
selected web service on the process’ behalf and 
returns the results to the semantic business process. 

• Exception handling Agent is responsible for 
intervene in the default control flow of a SPL 
program’s execution as soon as an exception has 
happened by modifying its process specification 
so as to get a semantically equivalent and to 
successfully continue execution using the 
substituted process version.  

• Semantic Business Rule Agent is responsible for 
determining which rules of semantic business 
process could be trigger and how to trigger these 
rules. This agent can dynamically change status of 
SBP through operating variables of facts and 
return the results to SBP Manager. 
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Figure 6. Ontology-centered method. 

Accomplishing these tasks requires ontologies to 
describe Web-service capabilities, interaction patterns, 
and domains along with a logic that allows reasoning on 
the information specified in those ontologies. 

B.  Ontologies Repositiory for MAS 
Ontologies are the paramount technology as they 

operate as the ‘glue’ for the interoperation and integration 
of heterogeneous system: ontologies function as universal 
vocabularies so that Semantic Web services and agents 
share the same interpretation of the concepts contained in 
the exchanged messages; ontologies are useful to 
semantically describe web service capabilities and 
processes. Our method builds on the base of ontologies, 
namely ontology-centered, as Fig. 6 shown. From the 
agents’ perspective, their local domain-related knowledge 
may be extracted from the application domain ontology. 
Ontologies composes importantly epistemological basis 
for the proposed framework. Motivated by the design 
principles, these ontologies provide semantic 
relationships between the knowledge level components 
describing semantic Web services and the conditions 
related to its use, which also part of the RDF4S. On the 
other hand, in order for Agents to successfully 
accomplish their assigned tasks, those ones also provide 
various data repositories containing the knowledge that is 
necessary to perform the assignment. 

In particularly, among these ontologies, we propose 
exception ontology and context ontology for the purpose 
of diagnosing and handling exceptions. These ontologies 
facilitate the unambiguous interactions between agents 
during an exception resolving process. The exception 
ontology is a domain independent ontology that contains 
domain independent concepts and predicates classes 
about exceptional conditions. It identifies, summarizes 
and defines different categories of exceptions types that 
might happen during the execution of the SPL-based 
business process. This ontology can be used in different 
domains. In order to deal with the exceptions related to 
the particular domain, the concepts in the ontology can be 
augmented using domain concepts to provide the 
exception handling agents with a capability of processing 
the exceptions in relation to domain level concepts. The 
context ontology contains any concepts that are relevant 
to the interactions between a user and an environment. It 
includes knowledge about the facts, constraints and the 
assigned tasks, which is owned and maintained by agents. 

It is depending on the exception occurred, agents with the 
desire to handle exceptions would use context ontology. 
Our framework includes five kinds of ontologies: 

• Domain ontology: it represents a conceptualization 
of the specific domain the framework will be 
applied, so it contains knowledge items (concepts, 
attributes, relationships and axioms etc.) that 
model the application in which the framework is 
to be used, and supports the communication 
among the component agents in the framework 
without misinterpretations.  

• Context Ontology: it contains knowledge about 
the environment for each agent possesses. It 
generally includes knowledge about the facts, 
constraints and the assigned tasks, which is owned 
and maintained by agents.  

• Exception Ontology: it identifies, summarizes and 
defines different categories of exceptions types 
that might happen during the execution of the SPL 
program. It is important to note that described 
exception types are derived only from the logic of 
the SPL program and they are neutral to the 
purpose for which they can be used, exception 
ontology is application independent. 

• Negotiation ontology: it contains knowledge about 
the negotiation mechanisms for component agents 
coordinating their interactions. 

• Semantic Web Services Ontology: this ontology is 
the main part of ontologies libraries. It contains 
web service functional capabilities, Non-
functional properties, mediation information, 
knowledge for supporting discovery and 
orchestration, and grounding information. 

In summary, the framework is independent both of the 
specific domain and specific practical application. It can 
be used as a reference and implemented in a complex 
business environment. Ontologies provide semantic links 
between the knowledge level components describing 
semantic web services and the conditions related to its 
use, which also part of the RDF4S. 

IV.  RELATED WORK 

A.  Semantic Web Services and Agents 
The implementation of frameworks or infrastructures 

is one of the major challenges towards the description, 
reasoning and execution of Semantic Web services. 
Different integrated frameworks have been presented. 
OWL-S describes services in OWL-S ontology and use 
OWL reasoning capabilities to determine whether the 
features of the services to be composed match with the 
functionality the new service requires. OVM [11] is a 
generic implementation of OWL-S. ODE SWS [12] 
considers a PSM-based approach that enables semantic 
Web services design and composition in knowledge level 
with a language-independent manner. WSMO provides 
goal-based framework to discovery, composite, and 
invokes semantic Web services. It has two reference 
implementations: IRS-III [13] and WSMX [14]. Meteor-S 
[15] introduces framework for configuring and executing 

1796 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER



 

dynamic Web processes that focus on flexible process 
composition and QoS properties. On the other hand, 
numerous research projects have been carried out that try 
to put semantic Web services and agents technologies 
together into integrated frameworks. However, there is 
much discussion on how to actually achieve this 
integration (e.g. the Semantic Web FRED project [16], 
Goal-Oriented Discovery for SWS system [17]). These 
solutions provide many different methods of combining 
agent technology with ontologies and semantic Web 
services in order to develop a system for automated 
cooperation. The main difference between our approach 
and those proposals mentioned above is that we introduce 
SPL to describe business logic and design a set of 
lightweight-agents for building up the run-time 
infrastructure which can quickly respond to competitions 
and changing regulations. These approaches cannot 
handle the issue of runtime adaptability and dynamism. 

B.  Exception Handling and Web Service-based Business 
Process Management 
We review some efforts on exception handling in 

workflows, especially in business process based on Web 
services. Casati et al. [18] design an active rule-based 
language to specify fault-handling logic in workflow 
systems. Liu et al [19] define Event-Condition-Action 
(ECA) exception handling rules combined with the WS-
BPEL process model. Similarly, Zeng et al. [20] propose 
a policy driven exception management framework for 
composite Web services. All these works have same idea 
of separating normal control flow from exception flow. 
Furthermore, Cao et al [21] introduce an approach to 
handling exceptions based on mobile agent in distributed 
Workflow Management System. When dealing with 
exceptions in service-based business processes, Wang et 
al. [22] research the issue of dynamic and fault tolerance 
Web services composition based on WS-BPEL fault 
handling mechanism and development a constraint 
integration and violation handling technique. Friedirich et 
al [23] describe a model-based approach to handle 
exceptions in service-based processes and to repair the 
faulty activities based on self-healing and planning 
techniques. Once an exception arise, the support tool 
platform can monitor, diagnosis, generate and execute 
corresponding repair plans. Regarding exception handling 
of semantic Web services, Vaculin et al [24] design an 
method for specification of exception handling and 
recovery of semantic Web services based on OWL-S. 
They extend the OWL-S process model definition with 
fault handlers, constraint violation handlers and event 
handlers, and introduce explicit recovery actions for 
recovery from errorsand violations of constraints. Moller 
and Schuldt [25] propose an approach to flexible and 
automatic semantic failure handling for composite 
services. Our approach shares many similarities with their 
work and augments to facilitate the reason of 
semantically equivalent services. By Comparing with 
these works, our approach support directly to define 
exception handling logic in the process model of SPL 
program, and proposed framework will provide flexible 
forward recovery for reliable execution of SPL program. 

V.  CONCLUSION AND FUTURE WORK 

The paper introduces an ontology based exception 
handling method, which integrating semantic Web 
services, agents and ontologies for Semantic Business 
Process using SPL. The proposed framework aims to 
exploit the striking potential of these technologies based 
on SPL and support for reliable executing business 
process based Semantic Web Services, the MAS can 
change the behavior of business processes and handle 
exceptions without redeployment. While SPL and the 
framework cover some adaptability and dynamism of 
service-oriented application, there are other adaptive and 
dynamic aspects that are not currently covered which 
including transaction and self-healing mechanism. We are 
currently working to address these aspects. 
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