

Ontology-Based Exception Handling for
Semantic Business Process Execution

Kai Zhao1,2

1School of Information Science and Engineering, Xinjiang University, Urumqi, China
Email: zhawkk@xju.edu.cn

Linlin Zhang1 and Shi Ying2

2State Key Laboratory of Software Engineering (Wuhan University), Wuhan, China
Email: zllnadasha@xju.edu.cn, yingshi2968@yahoo.com.cn

Abstract—Along with the widespread acceptance of business
process management (BPM) and Semantic Web services
composition technologies, Semantic Web service oriented
programming is becoming an efficient way to develop
modern business applications. As Semantic Web services are
inherently unreliable, how to develop reliable service
oriented applications is a significant and challenging
problem, especially in complex, untamed and dynamic
services environment. However, current business process
programming languages for Semantic Web services provide
almost no support for exception handling, and runtime
environments are weak in providing reliability and
adaptability. In this paper, we propose an ontology based
exception handling method for semantic business processes
using Semantic Programming Language (SPL). We identity
a new exception taxonomy described as exception ontology
and devise an event-driven exception events detection
mechanism. We also devise an exception handling
framework based on Multi agent system for SPL program.
Especially, the framework provides forward recovery
support with dynamically substituting failed services when
an exception arises during execution by semantically
equivalent or semantically similar Web services.

Index Terms—Exception handling, Semantic Web services,
Ontology, Semantic Programming Language, Agent

I. INTRODUCTION

At the crossing of the semantic Web and Service
Oriented Computing domains, research in the field of
semantic Web services [1] and related program
development approaches is very active. The semantic
Web and semantic Web service technologies have already
attracted significant attention during the last decades,
while these technologies are now becoming a well-
established branch of software engineering. The
proliferation of semantic Web services standards reflects
the industry interest and demand for distributed enterprise
applications. Depending on such loosely coupled
components with rich semantic descriptions makes it
easier to develop, maintain, and modify the applications.
Even though, issues of exception handling, recovery and
adaptation are still far from being extensively studied in
areas such as semantic Web service-oriented

programming languages, workflow systems, especially in
semantic business process management systems [2].
Traditional approaches to exception handling in
workflow and business process management rely on
exception handling primitives built into the program
language. For example, WS-BPEL [3] provide basic
exception handling activities, such as fault handlers and
compensation handlers, then programmers can specify
process control logic with exceptions and perform
exception detection, handling and propagation. However,
exception handling mechanism in WS-BPEL does not
provide any explicit and direct support for semantic Web
services-based software systems.

Current standards and proposals for semantic Web
services (such as OWL-S[4], WSMO[5], SAWSDL[6]
and BPEL4SWS[7]) enhance Web service standards with
rich semantic annotations to facilitate dynamic discovery,
invocation and composition resiliently, but provide
partially, even not support for above mentioned exception
handling problems. In this paper, we focus on presenting
a systematic method to handle failures of semantic
application level during execution of semantic Web
services-based software systems. Specifically, we
consider Semantic Programming Language (SPL) [8] and
illustrate automatic handling of semantic application level
exceptions in SPL programs, but we believe our method
has a great potential for the reliable execution of semantic
Web services-based software systems and has benefits in
a way that is independent from SPL.

Our main contribution revolves around a proposal for
augmenting SPL with fault handlers so that programmers
can specify a reliable, possibly adaptive program using
SPL. This proposal consists of: (1) an augment for SPL
with fault handlers, which handle exception conditions
with appropriate semantic information that aid to resolve
the exceptions; (2) an exception ontology built on the
notion of semantic information to support explicit
description of exception conditions; (3) a Multi Agent
System (MAS) [9] based framework for the reliable
execution of SPL programs, which handle exception
conditions using exception ontology and Web services’
contexts. Our proposal allows for a dynamic detect
exception conditions and modify the control flow of SPL

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1791

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1791-1798

program at runtime in the presence of exceptions. As long
as an exception happen, our proposed framework reason
about semantic equivalence or most semantic similarity
of services and apply a forward failure recovery for
substituting a semantically equivalence or at least
semantically similar service for the failed service by find,
diagnosis and select dynamically.

There are some basic assumptions of our method,
including: (1) exception conditions, which encounter
during execution of a semantic Web services-based
application, have some special characteristics with
respect to traditional Web services-based applications.
Despite the fact that some of the programming languages
for Web services have a wide adoption, such as WS-
BPEL, which act as the de facto standard for Web
services, these languages still remain focused on the
syntax aspects without emphasis on the semantic level.
Many approaches of exception handling are not initially
considered to meet the peculiar requirements of a
successful semantic exchange. Semantic exchange makes
partners understand the content of messages what the
send and receive. However, these approaches do not
exploit the potential that exception information offers
when it comes to describing the different aspects of
exception data for effectively exception handling. (2)
Existing lots of Web services that are semantically
equivalent and/or similar in dynamic Web environment.
Due to the fact that more and more enterprises and
organizations can provide Web services to their business
partners freely so that we can speculate that some Web
services might have exactly the same and/or similar
functionality while still differ in non-functional properties.

On the basis of SPL, in this paper, we propose a novel
and flexible framework to handle and resolve semantic
exceptions occurring in the execution of SPL programs.
The rest of this article is organized as follows. Section II
introduces the classification of exception and language
foundations of our method in detail. Section III presents
our framework based on MAS and describes how this
framework has been implemented. Section IV
summarizes related work. Section V outlines our plans
for future works and concludes.

II. EXCEPTION HANDLING AND SEMANTIC
PROGRAMMING LANGUAGE

A. Semantic Programming Language
Semantic Programming Language (SPL) is an

extension of WS-BPEL that facilitates to orchestrate
semantic Web services, traditional Web services and an
admixture of them. A XML-style SPL program which has
been transformed and deployed successfully can be
exposed both as semantic Web services and conventional
Web services. SPL extends WS-BPEL via defining a
mechanism to attach the semantic descriptions on the
activity level and process level using RDF4S [10]
ontologies. Therefore, SPL enables semantic Web
service-oriented program development and semantic
business process-driven application integration. To
developing application at semantic layer based on

ontologies, SPL introduces five new constructs which
decouple from WSDL: (1) The Semantic Data Type. It
defines data types with specific semantic information
which is described by ontological concepts. (2) The
Semantic Variable. It defines the semantic data structures
of a SPL program according to Semantic Data Types. It
provides the means for holding semantic messages that
interacting with external services, and also hold state data
that are related to the business processes and business
rules. (3) The Semantic Service. It describes the external
partners’ services using semantic information
(classification semantics, data semantics, functionality
semantics etc.) based on the semantic Web services
ontology. The definition of semantic service consists of a
collection of semantically defined messages and
operations, thus they abstractly represent the partner
services that cooperate to fulfill the program requirements.
(4) The Semantic Rule. It semantically defines the
business decisions, policies and constraints on the
behavior of business process. (5) The Semantic Process.
It defines the process procedures logic, composed from
activities (for Semantic Web Services). The definition of
semantic business process is a model for describing the
behavior of a business process based on interactions with
external semantic Web services. The main SPL constructs
and activities are summarized in Table I.

SPL makes use of semantically annotated data types to
enhance data processing by means of ontology-based
semantic data adaption process. That is, SPL directly use
ontologies as data model. Activities implementation in
SPL can be described using other SWS frameworks such
as OWL-S or WSMO. As the first class citizen of SPL,
Semantic Service that offers functionality to user can also
be defined using other SWS frameworks. SPL uses
RDF4S ontologies as data model and annotates data types
by referring to ontological concepts directly. With the
hierarchy of ontology concepts, an implicit semantic data
flow has been introduced in SPL via Semantic Data Type
& Variables. Semantic Variable can be defined either
global or local (scope). Then, different semantic activities

TABLE I.
SUMMARY OF SPL SEMANTIC ACTIVITIES

Name Description
invoke Semantic Web service call.
receive Wait for a Semantic message to arrive.
assign Manipulate Semantic variables.
reply Respond to a remote operation.
call Semantic sub-process call.
wait Delay execution for a while or deadline.
throw Indicate occurrence of Semantic exception.
try-catch Capture and handle Semantic exception.
terminate Terminate a Semantic Process instance.

Structured Semantic Activities

Activity Description

sequence Execute activities in sequential order.
if Selection an execution path with condition.
while Repeat execution a code block
parallel Concurrent execution

1792 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Exception

ServiceInvocationException

SemanticProcessModel
ProcessingException

ProcessRuntimeException

ResourceAccessException

QoSException

CommunicationException

DataAccessException

ServiceProtocolBindingException

ExternalInterfaceMissingException

ServiceInternalLocalException

NoResponseException

IncompleteResponseException

ServiceInterfaceMismatchingException

TimeoutException

OntologyParseException

DocumentParseException

PreconditionNotExistException

ParametersException
ParametersMissingException

ParametersTypeException

Figure 2. SPL exceptions classification.

Figure 1. Level structure of SPL exception knowledge ontology.

in SPL program can use these Semantic Variables as
input/output containers and access semantic data
respectively. Additionally, Semantic Data can be
duplicated from one variable to another.

In particular, the exception handling mechanism of
SPL is based on a standard notion of explicit fault
handlers known from programming languages such as
WS-BPEL. For well understanding and using the content
of semantic exception messages, SPL explicitly describe
the semantic information of exception and other related
information, and aim at propelling exception handling to
the level of semantic. The exception handling of SPL
provides flexibility and reliability for SPL program to
meet the requirements of a semantic exception processing
in SPL based on the runtime support environment.

B. Exception Detection Knowledge
As mentioned earlier, SPL remains focused on the

semantic aspects of composition of Web services.
Business processes-centric applications specified using
SPL will interact with their partners through operation
invocations of semantic Web services using ontologies as
agreements on a common vocabulary. Semantic Web
services are still based on loosely coupled Service
Oriented Architecture (SOA). The communication
between services is done over Internet connections that
may or may not be highly reliable. Semantic Web
services could also raise faults due to logical errors and
execution errors arising from defects in the infrastructure.

By analyzing exception knowledge of SPL program,
exception pattern and exception transmitting mechanism,
we fuse Semantic knowledge and ontology technology.
Based on the decomposition of exception knowledge, we
construct exception ontology from the top down based on
analyzing exception process of SPL program and the
logic relation between exception reasons and symptom in
complex Internet environment. The exception knowledge
base level structure is shown in Fig. 1. The domain layer
illustrates the top concepts of SPL exception knowledge.
Class layer classify all concepts with relation of category
and inheritance. Property layer includes concepts and
property information. Instance level includes information
of instance on the relevant property concepts.

SPL programs will need to handle exceptions
appropriately. SPL programs may also need to signal
exceptions themselves. Exception detecting, handling and
signaling is an important aspect of programs designed
using SPL. For the purpose of handling exceptions
effectively, we clarify the conditions under which
exceptions may occur during the execution of SPL
programs. Based on the exception knowledge base level
structure, exceptions in SPL can arise be distinguished
three main categories, see Fig. 2.

• Service Invocation Exception: exceptions are
related to the invocation of services. For example,
communication error, service unavailable, no
response, malformed results, time out etc. These
exceptions are driven by the improper execution or
the unsuccessful logical outcome of external
services execution. In addition, when external
services complete, but the predefined SLA
properties have been degraded due to various
reasons, so an exception will be notified.

• Semantic process runtime exception: include all
erroneous states specific to the application logic of
a SPL program. Exceptions are driven by the
inconsistencies or discrepancies on the semantic
process model in SPL programs that may occur
during the execution, and predefined the known or
declared exceptions on the interfaces of semantic
Web services, namely semantic application
exceptions or user defined exceptions. When
designing a SPL program, it's responsibility of
programmer to specify the different exceptions a
SPL program can throw so that exception can be
appropriately catch and handle.

• Semantic process model processing exception:
exceptions caused by parsing/syntax level
problems and problems with malformed SPL
program or ontologies files. For example,
Semantic services or data transformation errors,
Semantic rules processing failure etc.

These categories are application independent and are
specified in the exception ontology, so different kinds of
exceptions raised during execution of SPL program can
be recognized or identified during the design and runtime
phases with domain ontologies and reason engine support.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1793

© 2012 ACADEMY PUBLISHER

<try-catch name="NCName">
 <try> activity+ </try>
 <catch exceptionType="QName"? exceptionIdentifier? >*
 activity*
 </catch>
 <catch exceptionName="QName"?

exceptionVariable="VariableName"?
 (Type="QName" | exceptionType="QName")? >*
 activity*
 </catch>
 <catchAll>? activity* </catchAll>
 <finally>? activity+ </finally>
</try-catch>

Figure 3. SPL exception handling syntax structure.

<semanticExceptionType name="noServiceFoundST"

ontologyReference="onto4t#ServiceUnavilableException"/>
<semanticExceptionType name="engineNotExistST"

 ontologyReference="onto4t#BusinessException" >
<semanticElement name="TimeStamp" SType="TimeST"/>
<semanticElement name="Model" SType="ModelST"/>
<semanticElement name="DetailDesc" SType="DescST"/>

</semanticExceptionType>

<semanticExceptionVariables>

<semanticExceptionVariable name="err1"
exceptionType="noServiceFoundST"/>

 <semanticExceptionVariable name="err2"
exceptionType="engineNotExistST"/>

</semanticExceptionVariables>

Figure 4. Example of semantic exception type and variable.

C. Exception Handling Constructor
The exception handling approach of SPL is based on a

standard notion of explicit fault handlers known from
Java, C#. For well understanding and using the content of
semantic exception messages, SPL explicitly describe the
semantic of exception and other related information, and
aim at propelling exception handling to the level of
semantic. Such approaches use exception ontology to
meet requirements of a successful semantic processing.

SPL has built-in exception handling constructor that
can be used to build reliable business process driven by
Semantic Web services. Every business process can
define a list of fault handlers to respond to exceptions and
to perform possibly recovery. A fault handler has the
following form using the XML syntax, see Fig. 3:

It is same with WS-BPEL, the built-in construction
element of exception handling in SPL is based on the
notion of scopes. SPL provides fault handlers for trying
to capture, deal with and recover from exception
situations. SPL relies on exception ontology to describe
the SPL exception classification, context, and other
information. It introduces the <semanticExceptionType>
and <semanticExceptionVariable> elements, see Fig. 4.
They facilitate defining of semantic application
exceptions and thus enable exchange complex exception
message between SPL program and the runtime
supporting environment. Fig. 4 helps illustrate some
details of the semantic exception types and semantic
exceptions variables in SPL with XML form. With regard
to the syntax and usage of fault handlers in SPL, More
details of can be found in [8].

When an exception occurs, the regular process control
flow is interrupted and moves from the activity or sub-
process that raises the exception to the interrelated
scope’s fault handler through semantically reasoning on
captured exception. If there is no suitable scope level
fault handler, then the execution moves to the process’
fault handler. A fault handler can have many activities or
have one activity that can be a structured activity. Once a
fault handler is triggered to execute, all contained
activities of the related scope are forced to terminate.
Generally, once an exception arises, it is considered that
the scope has not completed normally and is required for
compensation or recovery. Exceptions are not handled by
any explicit fault handler will resolved by an implicit
default fault handler. This fault handler is always
provided to catch all exceptions except those for which
without any fault handler is attached.

D. Semantic Event Detection
SPL program contains rich Semantic information to

further facilitate resilient dynamic Web service discovery,
binding, invocation and execution. Since all these tasks
are expected to be performed in dynamically changing
environments with semi automatically, during execution,
many practical exception or unusual problems are prone
to arise. Execution infrastructure must able to effectively
monitor and detect the exception, so that it can be able to
interpret the reason and the effects of the exception, and
support to deal with exception states. How to detect SPL
program exceptions is an important task. Through
exception detection, it can trace the sources of exceptions
so that program can rescue, and avoid the conditions next
time if possible.

To solve the problem of exception detection during the
SPL program execution, an event-driven exception
monitor and detection method is proposed, and two
questions have been resolved: first, what exactly should
be monitored and detected; second, what implementation
method should be chosen. For the first question, by
analyzing the structure and semantics of SPL program, it
is possible to identify important events with relation to
exceptions which might be detected. These event types
that occur during the execution of the SPL program are
summarized as follows:

• Service invocation. This type may be the most
important event type. A service call by invoke
activity can be identify as one event together with
its inputs, outputs and effects parameters.

• Sub-process call. Similar as Service invocation
type, sub-process call can be recorded as on event.

• Input assignment. Semantic data of input can be
provided either by the data binding or user.
Usually performed by assign activity.

• Output processing. Semantic data of output are
obtained as a result of the Semantic Web service
invocation. Usually performed by assign activity.

• Preconditions evaluation. Evaluates the
preconditions of the activity (especially invoke
activity) with Semantic data assigned and with the
true or false.

1794 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Figure 5. The exception handling framework based on MAS.

• Effect evaluation. Evaluates the effect of the
activity with Semantic data assigned and with the
true or false.

• Primitive activity execution. It defines primitive
activity (except invoke, assign, call activity etc.)
execution events, such as reply activity.

• Structure activity execution. This type event
associated with structure activity such as if, while,
represents and captures its start and one its end.

• Exception event. It defines different categories of
exception specific event types. Actually, exception
knowledge is part of the event ontology.

It is important to note that presented event types are
neutral to the application domain, so it can implement
easily by SPL runtime environment. On the basis of this
analysis, a hierarchy of event types is proposed; we
construct events ontology to serve as a sound basis for the
detection of SPL exception. The SPL runtime
environment adopted the event-driven model to realize
the exception detection. During the SPL program
execution, SPL runtime environment emits exception
events specific to the SPL program instance execution.
These emitted exception events are instances of exception
types defined in the events ontology. The content of
raised exception event instances describes the context
information once the exception occurred. The content is
semantically annotated by the domain ontology concepts
and events ontology concepts; it enables more flexible
exception event detection techniques than those syntactic
key-words matching. And more importantly, based on
matching exception event type and related content, a
Semantic reasoning for detecting exception events can be
employed, also, the defined types can be used in
exception handler as part of parameters.

III. ONTOLOGY-CENTERED, MAS BASED FRAMEWORK

As shown in Fig. 5, in order to handle all the semantic
exceptions classified in the previous sections, we propose
a exception handling framework based on MAS to fulfill
the design principles for reliable executing SPL program.
In this section we describe in detail the elements of the
framework. The architecture that constitutes framework,
which bases on technology of agent, ontology and
semantic web services, consists of three main
components: a set of agents that constitute MAS, four
ontology libraries and an ontology reasoner. Our
proposed framework incorporates a reasoner, which is
central to the framework. All the agents use the ontology
reasoned and are partly defined using the ontology
repository. This module is able to deal with basic
concepts, attributes and translate SWS descriptions.

A. Multi-Agent System
The core brain of our proposed framework is a Multi-

Agent System (MAS). Its architecture consists of a group
of soft agents that perform SPL-based semantic business
process transformation, dynamic discovery &
coordination, semantic service & data mediation,
business rule execution, service dynamic binding and
invocation and semantic exception handling.

• The Semantic Business Process Manager (SBP
Manager) is responsible for decoupling the static
relation between business process and its external
participants, converting the semantic information
of business processes into the messages for
facilitating the other component agents, triggering
instance of semantic business processes, and
monitoring and controlling the execution.

• Transformation Agent is responsible for parsing
SPL program in accordance with the semantic
rules of SPL, extracting service’s semantics which
is used as query conditions for Web services,
mapping semantic Web services with appropriate
Web services, and finally converting source
program to executable semantic business process.

• Discovery Agent is in charge of performing
discovery in the semantic web services repository
for the set of services that satisfy the requisites
established by the process and coordination
between agents and web services. Such an agent
performs very complex reasoning tasks, including:
interpreting web service semantic queries; finding
the best provider based on semantic queries;
interacting with the service provider as necessary
to fulfill the query and returning query results.

• Mediation Agent is responsible for specifying
which semantic service and external web service
are connected and which type of mismatches can
be resolved between them.

• Service Invoker is responsible for invoking the
selected web service on the process’ behalf and
returns the results to the semantic business process.

• Exception handling Agent is responsible for
intervene in the default control flow of a SPL
program’s execution as soon as an exception has
happened by modifying its process specification
so as to get a semantically equivalent and to
successfully continue execution using the
substituted process version.

• Semantic Business Rule Agent is responsible for
determining which rules of semantic business
process could be trigger and how to trigger these
rules. This agent can dynamically change status of
SBP through operating variables of facts and
return the results to SBP Manager.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1795

© 2012 ACADEMY PUBLISHER

Figure 6. Ontology-centered method.

Accomplishing these tasks requires ontologies to
describe Web-service capabilities, interaction patterns,
and domains along with a logic that allows reasoning on
the information specified in those ontologies.

B. Ontologies Repositiory for MAS
Ontologies are the paramount technology as they

operate as the ‘glue’ for the interoperation and integration
of heterogeneous system: ontologies function as universal
vocabularies so that Semantic Web services and agents
share the same interpretation of the concepts contained in
the exchanged messages; ontologies are useful to
semantically describe web service capabilities and
processes. Our method builds on the base of ontologies,
namely ontology-centered, as Fig. 6 shown. From the
agents’ perspective, their local domain-related knowledge
may be extracted from the application domain ontology.
Ontologies composes importantly epistemological basis
for the proposed framework. Motivated by the design
principles, these ontologies provide semantic
relationships between the knowledge level components
describing semantic Web services and the conditions
related to its use, which also part of the RDF4S. On the
other hand, in order for Agents to successfully
accomplish their assigned tasks, those ones also provide
various data repositories containing the knowledge that is
necessary to perform the assignment.

In particularly, among these ontologies, we propose
exception ontology and context ontology for the purpose
of diagnosing and handling exceptions. These ontologies
facilitate the unambiguous interactions between agents
during an exception resolving process. The exception
ontology is a domain independent ontology that contains
domain independent concepts and predicates classes
about exceptional conditions. It identifies, summarizes
and defines different categories of exceptions types that
might happen during the execution of the SPL-based
business process. This ontology can be used in different
domains. In order to deal with the exceptions related to
the particular domain, the concepts in the ontology can be
augmented using domain concepts to provide the
exception handling agents with a capability of processing
the exceptions in relation to domain level concepts. The
context ontology contains any concepts that are relevant
to the interactions between a user and an environment. It
includes knowledge about the facts, constraints and the
assigned tasks, which is owned and maintained by agents.

It is depending on the exception occurred, agents with the
desire to handle exceptions would use context ontology.
Our framework includes five kinds of ontologies:

• Domain ontology: it represents a conceptualization
of the specific domain the framework will be
applied, so it contains knowledge items (concepts,
attributes, relationships and axioms etc.) that
model the application in which the framework is
to be used, and supports the communication
among the component agents in the framework
without misinterpretations.

• Context Ontology: it contains knowledge about
the environment for each agent possesses. It
generally includes knowledge about the facts,
constraints and the assigned tasks, which is owned
and maintained by agents.

• Exception Ontology: it identifies, summarizes and
defines different categories of exceptions types
that might happen during the execution of the SPL
program. It is important to note that described
exception types are derived only from the logic of
the SPL program and they are neutral to the
purpose for which they can be used, exception
ontology is application independent.

• Negotiation ontology: it contains knowledge about
the negotiation mechanisms for component agents
coordinating their interactions.

• Semantic Web Services Ontology: this ontology is
the main part of ontologies libraries. It contains
web service functional capabilities, Non-
functional properties, mediation information,
knowledge for supporting discovery and
orchestration, and grounding information.

In summary, the framework is independent both of the
specific domain and specific practical application. It can
be used as a reference and implemented in a complex
business environment. Ontologies provide semantic links
between the knowledge level components describing
semantic web services and the conditions related to its
use, which also part of the RDF4S.

IV. RELATED WORK

A. Semantic Web Services and Agents
The implementation of frameworks or infrastructures

is one of the major challenges towards the description,
reasoning and execution of Semantic Web services.
Different integrated frameworks have been presented.
OWL-S describes services in OWL-S ontology and use
OWL reasoning capabilities to determine whether the
features of the services to be composed match with the
functionality the new service requires. OVM [11] is a
generic implementation of OWL-S. ODE SWS [12]
considers a PSM-based approach that enables semantic
Web services design and composition in knowledge level
with a language-independent manner. WSMO provides
goal-based framework to discovery, composite, and
invokes semantic Web services. It has two reference
implementations: IRS-III [13] and WSMX [14]. Meteor-S
[15] introduces framework for configuring and executing

1796 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

dynamic Web processes that focus on flexible process
composition and QoS properties. On the other hand,
numerous research projects have been carried out that try
to put semantic Web services and agents technologies
together into integrated frameworks. However, there is
much discussion on how to actually achieve this
integration (e.g. the Semantic Web FRED project [16],
Goal-Oriented Discovery for SWS system [17]). These
solutions provide many different methods of combining
agent technology with ontologies and semantic Web
services in order to develop a system for automated
cooperation. The main difference between our approach
and those proposals mentioned above is that we introduce
SPL to describe business logic and design a set of
lightweight-agents for building up the run-time
infrastructure which can quickly respond to competitions
and changing regulations. These approaches cannot
handle the issue of runtime adaptability and dynamism.

B. Exception Handling and Web Service-based Business
Process Management
We review some efforts on exception handling in

workflows, especially in business process based on Web
services. Casati et al. [18] design an active rule-based
language to specify fault-handling logic in workflow
systems. Liu et al [19] define Event-Condition-Action
(ECA) exception handling rules combined with the WS-
BPEL process model. Similarly, Zeng et al. [20] propose
a policy driven exception management framework for
composite Web services. All these works have same idea
of separating normal control flow from exception flow.
Furthermore, Cao et al [21] introduce an approach to
handling exceptions based on mobile agent in distributed
Workflow Management System. When dealing with
exceptions in service-based business processes, Wang et
al. [22] research the issue of dynamic and fault tolerance
Web services composition based on WS-BPEL fault
handling mechanism and development a constraint
integration and violation handling technique. Friedirich et
al [23] describe a model-based approach to handle
exceptions in service-based processes and to repair the
faulty activities based on self-healing and planning
techniques. Once an exception arise, the support tool
platform can monitor, diagnosis, generate and execute
corresponding repair plans. Regarding exception handling
of semantic Web services, Vaculin et al [24] design an
method for specification of exception handling and
recovery of semantic Web services based on OWL-S.
They extend the OWL-S process model definition with
fault handlers, constraint violation handlers and event
handlers, and introduce explicit recovery actions for
recovery from errorsand violations of constraints. Moller
and Schuldt [25] propose an approach to flexible and
automatic semantic failure handling for composite
services. Our approach shares many similarities with their
work and augments to facilitate the reason of
semantically equivalent services. By Comparing with
these works, our approach support directly to define
exception handling logic in the process model of SPL
program, and proposed framework will provide flexible
forward recovery for reliable execution of SPL program.

V. CONCLUSION AND FUTURE WORK

The paper introduces an ontology based exception
handling method, which integrating semantic Web
services, agents and ontologies for Semantic Business
Process using SPL. The proposed framework aims to
exploit the striking potential of these technologies based
on SPL and support for reliable executing business
process based Semantic Web Services, the MAS can
change the behavior of business processes and handle
exceptions without redeployment. While SPL and the
framework cover some adaptability and dynamism of
service-oriented application, there are other adaptive and
dynamic aspects that are not currently covered which
including transaction and self-healing mechanism. We are
currently working to address these aspects.

ACKNOWLEDGMENT

This work was supported in part by a grant from the
National High Technology Research and Development
Program of China (863 Program) (No. 2006AA01Z168),
National Natural Science Foundation of China (No.
61070012/F020202), Xinjiang Uygur Autonomous
University Research Fund for Young Teacher (NO.
XJEDU2009S15) and Xinjiang University Doctoral
Graduate Research Startup Fund (NO. BS090142).

REFERENCES

[1] M. Burstein, C. Bussler, M. Zaremba, T. Finin, M. N.
Huhns, M. Paolucci, A. P. Sheth, S. Williams and M.
Zaremba, “A Semantic Web Services Architecture,” IEEE
Internet Computing, vol. 19, no. 5, Sept.-Oct. 2005, pp. 72-
81, doi: 10.1109/MIC.2005.96.

[2] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D.
Fen sel. “Semantic Business Process Management: a
Vision towards Using Semantic Web Services for Business
Process Management,” Proc. IEEE International
Conference on e-Business Engineering (ICEBE 2005),
IEEE Press, Oct, 2005, pp. 535-540, doi: 10.1109/ICEBE
.2005.110.

[3] BPEL. Web Service Business Process Execution Language
Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf, April 2007.

[4] OWL-S. Semantic Markup for Web Services.
http://www.w3.org/submission/OWL-S/, 2004.

[5] D. Roman, H. Laursen and U. Keller eds, “Web Service
Modeling Ontology-standard,” WSMO working draft,
http://www.wsmo.org/2004/d2/v0.2/20040306.

[6] J. Opecky, T. Vitvar, C. Bournez,and J. Farrell. “SAWSDL:
Semantic Annotations for WSDL and XML Schema,”
IEEE Internet Computing, vol. 11, no. 6, Nov. 2007, pp.
60-67, doi: 10.1109/MIC.2007.134.

[7] J. Nitzsche, T.van Lessen, D. Karastoyanova, and F.
Leymann. “BPEL for Semantic Web Services
(BPEL4SWS),” On the Move to Meaningful Internet
Systems 2007: OTM 2007 Workshops, Springer, LNCS,
vol. 4805, pp.179-188, doi:10.1007/978-3-540-76888-3_37.

[8] H. Cao, S.Ying, D. Du, and Y. Xiao. “Orchestrating
Semantic Web Services with Semantic Programming
Language,” Proc. IEEE International Workshop on
Semantic Computing and Systems (WSCS 2008), IEEE
Press, July, 2008, pp. 101-106,doi:10.1109/WSCS.2008.22.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1797

© 2012 ACADEMY PUBLISHER

[9] P. A. Buhler, J. M. Vidal, “Towards adaptive workflow
enactment using multiagent systems,” Information
Technology and Management, vol. 6, no. 1, Jan. 2005, pp.
61-87, doi: 10.1007/s10799-004-7775-2.

[10] D. Xie, S. Ying, J. Yao, B. Xiao, “A Resource Description
Framework for Service,” Proc. International Conference on
Wireless Communications, Networking and Mobile
computing (WiCom 2007), IEEE Press, Sept. 2007, pp.
3351-3354, doi: 10.1109/WICOM.2007.830.

[11] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. P.
Sycara. “The DAML-S virtual machine,” Proc.
International Semantic Web Conference (ISWC 2003),
Springer-Verlag, Oct. 2003, vol. 2870, pp. 290–305, doi:
10.1007/978-3-540-39718-2_19.

[12] A. Gomez-Perez, R. Gonzalez-Cabero, M. Lama, “ODE
SWS: a framework for designing and composing semantic
Web services,” IEEE Intelligent Systems, vol. 19, no. 4,
May. 2005, pp. 24-31, doi: 10.1109/MIS.2004.32.

[13] F. Hakimpour, D. Sell, L. Cabral, J. Domingue, and E.
Motta. "Semantic Web service composition in IRS-III: the
structured approach," Proc. Seventh IEEE International
Conference on E-Commerce Technology (CEC 2005),
IEEE Press, July, 2005, pp.484-487, doi: 10.1109/ICECT
.2005.79.

[14] A. Haller, E.Cimpian, A. Mocan, E. Oren, C. Bussler.
"WSMX - a semantic service-oriented architecture," Proc.
IEEE International Conference on Web Services (ICWS
2005), IEEE Press, July 2005, pp. 321- 328, doi:
10.1109/ICWS.2005.139.

[15] R. Aggarwal, V. Kunal, J.Miller, and W.Milnor.
"Constraint driven Web service composition in METEOR-
S," Proc. IEEE International Conference on Services
Computing (SCC 2004), IEEE Press, Sept. 2004, pp. 23-
30, doi: 10.1109/SCC.2004.1357986.

[16] M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P.
Zugmann and D. Fensel. "Semantic Web Fred - Automated
Goal Resolution on the Semantic Web," Proc. of the 38th
Annual Hawaii International Conference on System
Sciences (HICSS '05), IEEE Press, Jan. 2005, pp. 111c, doi:
10.1109/HICSS.2005.536.

[17] J. M. Gomez, M. Rico-Almodovar, F. Garcıa-Sanchez, I.
Toma, and S. Han. “GODO: Goal oriented discovery for
semantic webservices,” Discovery on the WWW
Workshop (SDISCO’06), 2006, Beijin, China.

[18] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi,
“Specification and Implementation of Exceptions in
Workflow Management Systems,” ACM Transactions on
Database Systems, vol.24, no.3, Sept. 1999, pp.405-451,
doi: 10.1145/328939.328996.

[19] A. Liu, Q. Li, L. Huang, M. Xiao. "FACTS: A Framework
for Fault-Tolerant Composition of Transactional Web
Services." IEEE Transactions on Services Computing,
vol.3, no.1, Jan.-March 2010, pp.46-59, doi: 10.1109/T
SC.2009.28.

[20] L. Zeng, H. Lei, J. Jeng, J. Chung, and B. Benatallah,
“Policy-Driven Exception Management for Composite
Web Services,” Proc. Seventh IEEE International
Conference on E-Commerce Technology (CEC 2005),
IEEE Press, July 2005, pp. 355-363, doi: 10.1109/IC
ECT.2005.66

[21] J. Cao, J. Yang, W.T. Chan, and C. Xu, “Exception
Handling in Distributed Workflow Systems Using Mobile
Agents,” Proc. IEEE International Conference on e-
Business Engineering (ICEBE 2005), IEEE Press, Oct.
2005, pp. 48-55, doi: 10.1109/ICEBE.2005.65.

[22] M. Wang, K.Y. Bandara, C. Pahl. "Constraint Integration
and Violation Handling for BPEL Processes," Proc. Fourth
International Conference on Internet and Web Applications
and Services (ICIW 2009), IEEE Press, May 2009, pp.337-
342, doi: 10.1109/ICIW.2009.56.

[23] G. Friedrich, M. Fugini, E. Mussi, B. Pernici and G. Tagni.
"Exception Handling for Repair in Service-Based
Processes," IEEE Transactions on Software Engineering,
vol. 36, no. 2, March/April 2010, pp: 198-215, doi:
10.1109/TSE.2010.8.

[24] R. Vaculin, K. Wiesner, K. Sycara. “Exception Handling
and Recovery of Semantic Web Services”. Proc. Fourth
International Conference on Networking and Services
(ICNS 2008). IEEE Press, March 2008, pp. 217-222, doi:
10.1109/ICNS.2008.35.

[25] T. Moller and H. Schuldt. “OSIRIS Next: Flexible
Semantic Failure Handling for Composite Web Service”
Proc. IEEE Fourth International Conference on Execution.
Semantic Computing (ICSC 2010), IEEE Press, Sept. 2010,
pp. 212-217, doi: 10.1109/ICSC.2010.38.

Kai Zhao is a Ph.D. candidate of State
Key Lab of Software Engineering
(SKLSE) at Wuhan University (WHU)
in Wuhan, China. He received his M.S.
degree in Computer Science from
Dalian University. His research interests
include the Semantic Web, Web Service
and Service-Oriented Architecture.

Linlin Zhang received the Ph.D. degree
in Software Engineering from State Key
Lab of Software Engineering (SKLSE)
at Wuhan University (WHU), China, in
2009. She is currently an associate
professor at School of Information
Science and Engineering, Xinjiang
University. Her research interests
include trustworthy software, Aspect-

Oriented software engineering and Service-Oriented
architecture.

Shi Ying received the Ph.D. degree in
computer science from the Wuhan
University, China, in 1999. He is
currently a professor at Wuhan
University, where he is vice dean in the
Computer School and he is also the
deputy director of the State Key
Laboratory of Software Engineering. He
has authored or coauthored more than

100 referred papers in the area of software engineering. His
current research interests include service-oriented software
engineering, Semantic Web service, and trustworthy software.

1798 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

