
The Research on XML Filtering Model using
Lazy DFA

Zhao Heji and Xia Weijian

School of Computer Science and Technology
Shandong University

Jinan, China
E-mail: hejizh@sdu.edu.cn

Zhao Jiasheng

School of Mechanical,Electrical & Information Engineering
Shandong University At Weihai

Weihai,China
E-mail:983298132@qq.com

Abstract—Parsing the XML document is generally accepted
to be a major bottleneck in XML processing,especially when
meeting the invalid elements,it will reduce the parsing's
efficiency.In order to skip the invalid elements of the XML
document,we propose a new XML filtering method based on
hash table and stream index.The hash table stores the
location information of elements, in order to judge the
relationships of elements; the stream index locates the
elements accurately, in order to skip the invalid elements
quickly.We apply them to lazy DFA and get experimental
results. The experimental results show that our method has
a good filtering performance,which can improve the
efficiency obviously.
Index Terms—XML;Hash Table;Stream index;Filtering

I. INTRODUCTION

Since XML was born in 1998,it has been the standard
of data interchange format on internet.A large number of
associated applications,such as message notification
system and personal personalized information
system,need to filter the information.How to improve
XML filtering efficiency,has been one of the hot issues in
recent years.

In XML filtering,researchers mainly improve the
filtering efficiency by reducing its time cost and space
cost.For this purpose, in the past few years, a series
techniques of XML filtering have been proposed.

XFilter establishes a independent finite state
automaton for each path expression,uses the inverted
index to the filtration,in the filtration,the automatons run
at the same time.YFilter combines all the finite state
automatons together corresponding to the path
expressions,which forms a single automaton.It shares the
prefix of a large number of path expressions,which
reduce the number of automaton's states obviously.The
DFA corresponds to the path expression,making each
transformation from a state to another state.Lazy DFA
reduces the number of DFA's states greatly,which
improve the XML filtering efficiency obviously.

Generally speaking,the main bottleneck of XML
document process is the parsing.In the traditional filtering
method,to lazy DFA,the parser need to parse every
element of the document,if one element can not be
matched,all of its offsprings could not be matched
either.The offsprings that can not be matched are
invalid.Parsing the invalid offsprings will waste a lot of
both time and space.If we can detect the invalid elements
and skip them in the filtering,jump to their following
elements directly,it will undoubtedly accelerate the
filtering rate,improve the efficiency.It is what we will
discuss in this paper.

In this paper,we reduce the time cost and space cost in
XML filtering by reducing the processing of invalid
elements.Our method includes two aspects,the first aspect
is to detect the invalid elements in the ancestry – posterity
relationships of XML document,which can be realized
through hash table,as the hash table stores the location
information of the elements,by comparing the location
information and the filtering requirements,we can judge
which elements are invalid;the second aspect is to skip
the invalid elements,which can be realized by stream
index,by stream index,we can go to the successor of
invalid elements.During the running process of lazy
DFA,the hash table and stream index are not independent,
but interrelated.

II. RELATED WORK

A. XML Document Tree
An XML document tree corresponds to an XML

document,the tree node corresponds to the element of
XML document,the tree edge corresponds to the
'element-child element' relationship of XML document.

Given an XML document tree as shown in figure
1.The tree has a root named 'book',the book node has
three children nodes - title,author and publisher.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1759

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1759-1766

 Figure 1 An XML document tree

The corresponding XML document is as follows:
<book>
 <title>XML</title>
 <author>
 <name>Keith</name>
 <birthdate>Jan-4,1986</birthdate>
 </author>
<publisher>SDU Press</publisher>
</book>
 From figure 1 we can see,in the XML document

tree,its every node corresponds to a node of the XML
document.For example,the node 'book' is the root node of
the tree,it's the start element in the document.Also,the
tree maintains the level relationships of the document,and
the level relationships are more intuitive in the tree.

B. XPath
 XPath is a kind of query language,which is uesd to

navigate the elements and their attributes of XML
document. XPath defines the elements and operators of
path expression, including axis,elements and one or more
attributes of elements.The axis is used for judging the
relationship of each element and its properties,such as the
father-son relationship of symbol ‘/’,the ancestry-
posterity relationship of the symbol ‘//’, the choice
relationship among the paths of the symbol ‘|’.

XPath uses path expression to select element of the
document.The element is selected by path or by step.

The following table 1 lists several most commonly
used path expressions.

Table I
THE MOST COMMONLY USED PATH EXPRESSIONS AND THEIR

DESCRIPTIONS
Expressi

ons Descriptions

nodename Select all children of the node
/ Select from the root

//
Select the match node from

current node, regard less of their
depth

. Select the current node

.. Select the father node of current
node

@ Select the attributes
In the following table 2,we give out some examples of

path expressions and results of the expressions.

Table II
SOME EXAMPLES OF PATH EXPRESSIONS

Path
expressions Results

book Select all children nodes of book

/book
Select root node book,if the path

start from '/',then the path represents
absolute path

book/titl
e

Select all children nodes 'title' of
book

//book Select all children of
book,regardless the depth of them

book//titl
e

Select all offsprings nodes 'title' of
book,regardless the depeth

//@lang Select all attributes that named
'lang'

According to XPath grammar, any XPath expression

can be converted into a regular expression.Based on
automaton theory, then there must be a Finite State
Machine[6] to match it.

Given XPath expression: Q=/book//press, its
equivalent NFA is shown in figure 2:

Figure 2 The NFA of expression Q

C. SAX Parser
 In XML filtering process, we usually use SAX to

parse XML document.
SAX(Simple API for XML) is based on event-

driven(different from DOM,which is base on document-
driven),its working mechanism likes the tag library.When
the tag begins,ends or the errors happen,SAX will call
corresponding interfaces to deal with the problems.As
SAX is based on event-driven,SAX parse the documents
sequentially and hierarchically.It focuses on the
continuous processing of the current incidents, as it dose
not need to read the document as a whole,it dose not read
the whole document into the memory in one time.To
SAX,the document's being read process is also the
processing process,that is,SAX parses the document
while it reading the document,which is different from
DOM.

SAX has several interfaces,as shown in figure 3:

1760 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Figure 3 The interfaces of SAX
The most commonly used interface of SAX is

ContentHandler. It contains the following five methods:
startDocument (), endDocument (), startElement (String
uri, String localName, String qName, Attributes atts),
endElement (String uri, String localName, String qName) and
characters (char[] ch, int start, int length).

This interface encapsulates several methods for events
processing.When SAX begins to parse XML documents,
it will meet several special events, such as document
begins and ends, element begins and ends, the character
data of the elements.When meeting these events, SAX
will call the methods of the ContentHandler interface to
response to these events.

D. The Lazy DFA
According to XPath grammar and automaton

theory,any XPath expression can be converted into a
corresponding NFA.The property of NFA is uncertain,as
at the same converting conditions,the NFA may reach
different states.In the states converting,the NFA reaches a
collection of states,but not a single state,which makes the
execute efficiency degrades greatly with the increases of
XPath expressions.This is more obviously when XML
query requisitions are huge.

The DFA is the deterministic form of NFA,they are
equivalent.The DFA depends on XPath expression,when
XPath expression contains a lot of symbols "//" or
wildcard rings "*",the states number of DFA will increase
exponentially,which lead to the degrade of efficiency.In
order to improve the filtering efficiency of the XML
document,we introduce lazy DFA.

Lazy DFA includes two phases,the first phase is the
warm-up phase,the second phase is the stable phase.It is
constructed during the running process of the NFA.It
computes and creates its new state according to the
existing states of DFA.It only with the structure of the
XML document,but has nothing to do with XPath
expression.Therefore,it avoids the exponential growth of
lazy DFA with the number increase of XPath expression.

Each state of lazy DFA corresponds to a NFA
table,which is to record the existing NFA state.And each
state of lazy DFA maintains a states transition hash
table,in order to record the trigger conditions of DFA's
states transition.The lazy DFA needs to maintain a
stack,stores all the intermediate states from initial state to
current state.During the running process of the lazy
DFA,the stack pushes or pops DFA state all the time.

E. The Related Issues
In the process of parsing XML document, if an

element can’t match any inquires,then all of its sons or
offsprings can't get any matching results too. Especially
in the ancestry - posterity relationship '//', it contains a
‘ε’ conversion and a wildcard ring ‘*’, which nested in a
large depth, when an element does not satisfy the filtering
conditions, its children will cause a lot of waste in time
and space.

For example, use the XML document shown in figure
1 as the input, use the NFA shown in figure 2 as the filter,

the running process of stack to the filtering is shown in
table 3.

Table III
THE RUNNING PROCESS OF STACK FOR THE NFA

 3 3

 3 3 3 3 3 3 3

 2,
3

2,
3

2,
3

2,
3

2,
3

2,
3

2,
3

2,
3

2,
3

2,
3

2,
3

1 1 1 1 1 1 1 1 1 1 1 1 1
-
<book><title></title><author><name></name><birthdate></birthdate></au
thor><publisher></publisher></book>

From the running process of the stack we can see,
based on the XML document and the filtering expression,
any offspring of the node 'book' can't match the
expression Q = / book/ / press, but in the filtration, we
still need to put them into stack to compare with the
filtering expression. It will cause a lot of waste both in
time and space, this kind of waste is more obvious when
XML document is large or there are a lot of ancestry -
posterity relationships in the filtering expression . If we
can judge certain elements in the document are invalid in
advance, that is,they can't match the filtering expression,
then we put them out of the running process,this will
undoubtedly improve the filtering efficiency,therefore,we
introduce stream index and hash table. The hash table is
used to judge any two elements of the document that
whether they exist the ancestry - posterity relationship,the
stream index is used to locate the position of elements
accurately,in order to skip the invalid elements quickly.
In the previous example ,by inquiring hash table in
advance, we can judge that all offspring nodes of node
‘book’ can’t match node ‘press’, then we can skip the
node ‘book’ and its offsprings while filtering through
stream index,so in this way we can get a better efficiency
in time and space.

III. THE INTRODUCTION OF STREAM INDEX AND ITS
GENERATING ALGORITHM

A. The Introduction of Stream Index
Parsing and tokenizing the XML document is generally

accepted to be a major bottleneck in XML processing. An
obvious solution is to represent an XML document in
binary, as a string of binary tokens. In an XML message
system,the messages are now binary representations,
rather than real XML tags, or they are converted into
binary when they enter the system.Some commercial
implementations adopt this approach in order to improve
performance.The disadvantage is that all servers in
network must understand that binary format. This defeats
the purpose of XML standard,which is supposed to
address precisely but lack interoperability,that is
associated with a binary format.

Stream IndeX (SIX) [1,4,7]is an additional structure of
XML document. It consists of a binary group (start,
finish), both 'start' and 'finish' are integer, respectively
marks the elements’ start position and end position.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1761

© 2012 ACADEMY PUBLISHER

Apply stream index to XML filtering,we use stream
index to locate the positions of elements,by the start
value and finish value we can get the elements' start
positions and finish positions accurately.We locate the
elements' position by start value, skip the invalid
elements by finish value,in this way we skip the invalid
elements and their offsprings,improve the efficiency of
filtration.

In filtering, if an element 's' meets the state transition
conditions, it drive the NFA to state transition, according
to the start value of stream index on element 's', jump to
element whose start value equals s.start+1; if the element
's' dose not meet the state transition conditions,then
according to s's finish value of its stream index,jump to
the element whose finish value equals s.finish+1.Through
this method,we skip the invalid elements directly.

B. The Generating Algorithm of Stream Index
Stream index can be generated by SAX ,that we use

SAX to parse XML document in a traverse. In the process
of creating stream index,it needs to maintain a global
variable ‘count’ and a stack,the ‘count’ is a counter,and
the stack determines analytic sequence,the generating
process is as follows:

1) Call startDocument() method to parse the
document;

2) Analyse the element’s startElement() event, add
1 to the value of count, order the element’s start value of
stream index equal count, put the start value into the stack;

3) Analyse the element’s endElement() event, pop
the top element out of stack, order the element's finish
value of stream index equal count;

4) Analyse the endDocument() event, which means
the end of XML document, all the elements' stream index
have been created.

By the algorithm above,we can generate stream index
for the XML document.

IV. THE INTRODUCTION OF HASH TABLE AND ITS
GENERATING ALGORITHM

A. The Introduction of Hash Table and Its Filtering
Principle

In the stream index section above,we locate the
elements' positions accurately,but we have not given out
the level relationships among them.In XML document
filtering,if XPath expression contains symbol "//",the
node that followed the symbol can match any element of
the document that corresponding to the node after symbol
"//" ,no matter whatever depth it is.If there are too many
"//" symbols in XPath or there are too many nested
relationships in the document,it will affect the filtering
efficiency greatly.Therefore,we need to introduce a
mechanism to judge the level relationships of any two
elements in the document.Therefore,we introduce hash
table,we give an example as follows.

Figure 4 The XML document tree with marks

Traverse the XML document tree of figure 1 in depth
first traverse,set two separate integer variable attached to
XML document tree-start and finish,the initial value both
are 0,used to mark the start position and finish position of
the elements.The rules are as follows:

Traverse the XML document in depth first
traverse,when push the element into stack,add 1 to
start;when pop the element out of stack,add 1 to finish.

After that,we can get the result as shown in figure
4.From the figure we can see,by comparing the start value
and finish value of any elements,we can get the level
relationships between any two nodes,namely,it’s the
ancestry - posterity relationship.The rules are as
follows:For any two nodes a and b in an XML document,
a is b's ancestral node, if and only if a.start<b.start and
a.finish>b.finish; similarly, b is the offspring of node a, if
and only if b.start>a.start and b.finish<a.finish.

For example,the node 'name' is the grandson of node
'book',therefore,they satisfy the following
relationships:name.start(5)>book.start(1)&name.finish(4)<boo
k.finish(10).At the same time,the node 'author' and the node
'publisher' don't have the ancestry-posterity relationship,so
their start value and finish value do not meet the rules
above.

As we can see,there are many common characteristics
between the location marks attached to the nodes and the
stream index,they both mark the element's start position
and finish position,the difference is:the start value and
finish value share the same counter in stream index while
they are independent in location marks.In order to
traverse the XML document to generate the stream index
and location marks in one time by SAX,we need to
combine them together,therefore,we use the stream index
as the location marks.So,in order to judge the level
relationships of the elements,we modify the level-
relationships rules referred above as follows:for any two
nodes a and b in an XML document, a is b's ancestral
node, if and only if a.start<b.start and a.finish ≥
b.finish;similarly,b is the offspring of node a, if and only
if b.start>a.start and b.finish≤a.finish.

Next,we discuss the storage mechanism of location
marks,according to the relationships of element mark and
location marks,we use hash table to store them.

On hash table's mapping structure,the key value(index
value,in hash table named h_key) of hash table uses the
start value of stream index, that's because the start value
is unique and increases gradually, the search work can be

1762 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

finished in linear time; the hash table address stores the
element's tag and finish value of stream index(in hash
table named h_addr).

Through the method above, after marking the elements
by location marks,whatever degree of the elements'
depth and circulation are in the document, with an input
XML document containing n elements, whether the
elements meet the filterring conditions can be judged in
linear time (O (n)) .According to the filtering
expression,we start to parse the input XML
document,when meeting the filtering symbol '/' of the
filtering expression, put the input elements into the stack
directly to compare with the filtering expression;when
meeting the filtering symbol '//' in the filtering expression,
do not put the input elements into the stack, but to look
up the hash table,according to the rules referred
above,compare the two elements' 'h_key' values and
'h_addr' values ,which corresponding to the two elements
that before and after the filtering symbol '//' in the
filtering expression.In this way,we can judge whether the
two elements meet the ancestry - posterity relationships.
If meet, then put the input element into the stack to
continue the parsing; if not meet, that means the input
element is invalid, then skip it and its offsprings through
the stream index.

For example, given the XPath expression Q = a //b, in
the filtering, we don't need to put the element 'b' of the
document into stack, but through the h_key value to look
up the hash table to find a's and b's 'h_key' value and
'h_addr' value.By comparing their 'h_key' value and
'h_addr' value,we can judge whether a and b exist the
ancestry - posterity relations.If exist, put b into stack to
continue the parsing;if not, then skip element b by stream
index,we avoid to put b and b's offsprings of the
document into stack,which is in order to compare them
with the filtering expression .

B. The Generating Algorithm of Hash Table
Since hash table and stream index both need to be

created by the SAX,and their values are the same,so they
can be generated in the same time while using SAX to
scan the XML document in a traverse.

The generating algorithm of hash table and stream is as
follows:

1) Call startDocument () method to start the parsing
of XML document, and set a global variable count;

2) When analysing the startElement () event, add 1
to the count value, create the element's stream index and
hash table, order this element's start value of stream index
equal count, the hash table's h_key value equal start, add
this element's tag to the hash table's address,then put the
start value into stack;

3) When analysing the endElement () event, pop
the top element out of stack,order this element's finish
value equal count,then according to the corresponding
h_key value, add the finish value to the address of hash
table,in this way,we set the element's h_addr value equals
the finish value.

4) When analysing the endDocument() event,it
means we reach the end of the XML document,all the

stream index and hash table for the whole XML
document have been created.

For example, given the following XML document:
<a><c><d><e>text</e></d></c><f>text</f>

Call the algorithm above,we can create the hash table

for each element of the document, the result is shown in
table 4.

Table IV
THE HASH TABLE CORRESPONDING TO THE DOCUMENT

V. THE APPLICATION OF HASH TABLE AND STREAM INDEX
ON LAZY DFA

A. Apply the Hash Table and SIX to Lazy DFA
We have referred above,according to XPath grammar

and automaton theory,any XPath expression can be
converted a corresponding NFA,but the NFA is
uncertain,at the same converting conditions,it may reach
different states.It requires us to generate the determined
form of NFA,that is the DFA.In this process,in order to
save space,improve the efficiency of filtration,we not
only need to omit some invalid states of NFA that could
not be reached,we also need to avoid the DFA's states
number grows exponentially, which with the increase of
XPath's amount.So,we introduce lazy DFA.The lazy
DFA's working mechanism we have discussed in the
'Related Work' section,in this part,we only discuss the
lazy DFA's working mechanism that after introducing the
hash table and stream index.

Next,we mainly talk about how to judge which
elements in the XML document are invalid elements and
how to skip them in the filtering.

Apply the hash table and stream index to lazy DFA,
traverse the input document for a pretreatment,establish
the stream index and hash table for the elements.The hash
table stores the location information about the elements,in
order to judge any two elements whether exists the
ancestry - posterity relations,the stream index is used to
locate the elements’ positions.In the generative process of
lazy DFA, according to NFA that transformed from the
filtering expression, when meet the ancestry - posterity
relations, go to look up the hash table first, in order to
look for the two elements in the input document which
corresponding to the two elements that before and after
the symbol ‘//’.By comparing their ‘h_key’ value and
‘h_addr’ value,we can judge whether they have the
ancestry - posterity relationship,that is to judge the
element that corresponding to the element after the
symbol ‘//’ whether is valid.If this element is invalid,then
skip it by stream index,so in the generative process of
lazy DFA,it can reduce the useless states obviously.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1763

© 2012 ACADEMY PUBLISHER

B. Examples
For example, given the XML document :<a> <g> <d>

text </d> </g><b name=’java’> <c name = ‘C++’> <f>
<h>content</h><i><j> text </j></i><e> </e> </f> </c>
 .Parse the given document with SAX, and call
the algorithm that given in 3.2, we can get the following
results: SIX(a) =(1,10),SIX(g) = (2,3),SIX (d) =
(3,3),SIX(b)=(4,10),
SIX(c)=(5,10),SIX(f)=(6,10),SIX(h)=(7,7),SIX(i)=(8,9),S
IX(j)=(9,9),SIX(e)=(10,10),and the hash table that
corresponding to the document is shown in table 5.

Given the Xpath expression:Q1==/a/b/*/f//e,the
corresponding NFA is shown in figure 5:

Figure 5 The NFA that corresponding to expression Q1

Table V
THE HASH TABLE THAT CORRESPONDING TO THE XML DOCUMENT

The process of using the rules above to construct the

corresponding lazy DFA is as follows:
1) The DFA's initial state is state 0, get the first

input element of the XML document,the filtering
conditions of the filtering expression is ‘/a’, match
successfully, then drive the DFA to create a new
state,marked by number 1, set the state 1 to be the current
active state of DFA;

2) Get the next input element g, the filtering
conditions of filtering expression is ‘/b’, match fails,
namely that g is an invalid element, according to the rules
above, then jump to the element whose stream index’s
start value equal g.finish+1,so get the next input element
‘b’;

3) Now the filtering conditions of filtering
expression is ‘/b’, match successfully, so from state 1 of
DFA to create a new state,marked it as state 2,then set
state 2 as DFA’s current active state;

4) Now get the next input element ‘c’,the filtering
conditions of filtering expression is ‘/*’,this is a
wildcard,it can match any element,so from the state 2 of
DFA to create a new state,marked it as state 3,set the state
3 as the DFA’s current active state;

5) Now get the next input element ‘f’,the filtering
conditions of filtering expression is ‘/f’,match
successfully,then drive DFA to create a new state from
state 3,marked as state 4,then set state 4 as DFA’s current
active state;

6) Now the filtering conditions of the expression is
‘//e’,this is a filtering condition that matches the ancestry

- posterity relations.According to the rules that referred
before,we turn to look up the hash table,to look for the
two elements in the input XML document, we get
f.h_key=6,f.h_addr=10,e.h_key=10,e.h_addr=10,meet the
following relationship expression e.h_key>f.h_key and
e.h_addr≤f.h_addr,namely that ‘e’ is the offspring of
‘f’,so match the filtering condition successfully.Then
from state 4 of the DFA to create a new state,marked it as
state 5,the element ‘e’ is its drive condition.We have
reached the end of the document,the parsing finish.

Form the example above we can see,in the processing
procedure of filtering condition ‘//e’,which means the
ancestry - posterity relationships,through looking up the
hash table,we get the results in a linear time
O(n),therefore, we avoid to put all of element ‘f’s
offsprings of the document into the stack,which is to
compare with ‘//e’ and skip the invalid elements
directly,so we reduce the time cost and improve the
filtring efficiency.

VI. THE EXPERIMENT

The processing of predicates in the XPath expresion
influences the XML filtering greatly.The predicates may
have many test conditions,these conditions could be
connected according to the needs.At present,many query
processing systems do not support the predicates enough
or have low efficiency.So,in our experiments,we have
both tested the expressions that with predicates and the
expressions without predicates,in order to make our
experimental results more comprehensive.

In order to test the performance of lazy DFA that
based on hash table and stream index,we have done a lot
of experiments.In this part,we give out the experimental
results and our analysis.

A. The Experimental Environments
The hardware environments of the experiment:the

operation system is Windows XP,the CPU is Intel® Core
™ Duo E6550,2.33GHZ,the memory is DDRII
667HZ,2GB

The software environment of the experiment: the IDE
is MyEclipse 8.0,the programming language is JAVA.

We realized to establish the hash table and stream for
the elements of input XML document, tested the running
time of the traditional lazy DFA and the lazy DFA based
on hash table and stream index,tested the expressions that
with predicates and the expressions without
predicates,recorded their running time and the
experimental results.

B. The Data Generation
Our experiment used XMark to generate the

experimental data. We generated the experimental data
by adjusting the parameters for the document of size
0M、40M、60M、80M and 100M, and the depth of
each document was no more than 10. We chose the same
XPath statements Q=/site//asia/item id=”item50”/*/ date
to test these documents.

1
2
3
4
5
6
7
8
9
10

a 10
g 3
d 3
b 10
c 10
f 10
h 7
i 9
j 9
e 10

1764 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

C. The Experimental Results
In our experiments, we compared the running time of

the lazy DFA that based on hash table and stream index
and the running time of the original lazy DFA.

The experimental results show that the time costs of
original lazy DFA's query processing grow with the
increase of the XML documents,while the time costs of
the lazy DFA that based on hash table and stream index
grow much slower.For XML documents that has large
depth,the time costs of lazy DFA based on hash table and
stream index has obvious advantage to original lazy
DFA.The query time costs also have the relationship with
the length of XPath,if the length of XPath is longer,the
query time is longer.The query time of XPath that with
predicates is relatively longer,but it also has the
relationship with the result set that selected by the query
expressions.

The experimental results are as shown in figure 6 and
figure 7. As we can see from the figures, with the growth
of input XML document's size, both of the running time
of two methods are increasing, but the method that we
proposed has a much slower growth.Especially in the
filtering of XPath expression without predicates, our
method is more effective, the running time is far less than
traditional lazy DFA's running time.

0

500

1000

1500

2000

2500

3000

3500

20 60 100

The lazy DFA
based on
hash table
and SIX

Trational
Lazy DFA

Figure 6 The experimental results of the document without predicates

0

500

1000

1500

2000

2500

3000

3500

20 60 100

The Lazy DFA
based on hash
table and SIX

Traditional
Lazy DFA

Figure 7 The experimental results of the document with predicates

D. Discussion
Our experiments clearly demonstrate that the DFA is

effective in XML filtration,as SAX parses the document
sequentially and hierarchically,not reads the whole
document into the memory in one time,it can maintains a
continuous throughput.

The experiments also show that in most cases the lazy
DFA can avoid the states increase exponentially.There

are many issues affect the efficiency of lazy DFA to
process the XML data flow,including the stream index
cost,the handing of predicates cost,the construction of
lazy DFA cost and so on.

Our experiments indicate our methods on XML
document processing with the optimized lazy DFA
approach performs significantly better (in terms of both
the time/space efficiency and scalability)than the
traditional lazy DFA approach.

VII. CONCLUSION

How to filter the XML data flow in high efficiency,is
one of the hot issues in recent years.Use the automaton on
XPath modeling,improve the query efficiency and
optimize the filtering model are important research
directions.

This paper describes the background, the challenges,
existing solutions,main idea and key findings of the paper
at the beginning,illustrates the relevant theoretical
knowledge on XML,XPath,SAX parser and lazy
DFA,points out that in the XML document filtering,how
to judge and skip the invalid element is the emphasis of
this pater.In addition,this paper introduces the stream
index and hash table,illustrates their use
mechanisms.Then,this paper gives out an example on
how to use the stream index and hash table on lazy
DFA.At last,this paper gives out the experimental results
on XML filtering using traditional lazy DFA and lazy
DFA that based on stream index and hash table,discusses
the XML document with predicates and the XML
document without predicates.So we can see that the lazy
DFA that based on stream index and hash table can be
well used in XPath expression with a lot of predicates,it
can greatly reduce the states numbers during the
construction process,therefore improve the efficiency.

This paper uses SAX parser to scan the input XML
document,establishes the hash table and stream index for
the elements of the input document.The hash table can
judge whether the elements meet the filtering condition
quickly,especially for the ancestry - posterity
relationship.If the elements are invalid,then skip them
through the stream index, which greatly improve the
filtering efficiency.

ACKNOWLEDGMENT

This research is supported in part by the National
Natural Science Foundation of China (NSFC) under grant
60970003.

REFERENCES

[1] Zhang Lili, Zhao Heji, Xia Weijian. Lazy DFA Filter
Based on Stream Index for XML Data Streams[C]. In
Proc ICEIT, Chongqing, China, Sep 2010: 163-167

[2] Weiwei Sun, Yongrui Qin, Ping Yu, Zhuoyao Zhang,
Zhenying He. HFilter: Hybrid Finite Automaton Based
Stream Filtering for Deep and Recursive XML Data[C].
In Proc. of 19th International Conference on DEXA, Turin,
Italy, Sep 2008: 566–580.

[3] Shaolei Feng and Giridhar Kumaran. XML Data Stream

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1765

© 2012 ACADEMY PUBLISHER

Processing: Extensions to Yfilter. 2007: (11), 380-402.
[4] T. Green, A. Gupta, G. Miklau, et al. Processing XML

streams with deterministic automata and stream index [J].
ACM Trans. on Database Systems (TODS), 2004:29(4)
752-788.

[5] D. Chen, R.Wong. Optimizing the lazy DFA approach for
XML stream processing [C]. The Fifteenth Australasian
Database Conference (ADC), Dunedin, New Zealand,
2004:131-140

[6] T. Green, G. Miklau, M. Onizuka, et al. “Processing XML
Streams with Deterministic Automata, ” Siena, Italy:
Submitted to The 9th International Conference on
Database Theory, 2003:173-189

[7] T. Green, A. Gupta, G. Miklau, et al. “Processing XML
streams with deterministic automata and stream index,”
ACM Trans. on Database Systems (TODS), 2004, 29(4)
752-788

[8] Rajeev Motwani, Jennifer Widom, Arvind Arasu, et
a1.Query Processing, Resource Management, and
Approximation in a Data Stream Management System,
CIDR Conf．Asilomar, 2003：245—256

[9] Y.Diao, P.Fischer, M.J.Franklin et al.YFilter:Efficient and
scalable filtering of XML documents．In Proc. of ICDE
2002:341-342

[10] XML Path Language(XPath)2.0.W3C Working Draft
2003. www.w3c.org/TR/xpath20/49

[11] Peter Fankhansar．XQuery Formal Semantics State and
Challenges．ACM SIGMOD Record, Volume 30, Issue 3,
2001

[12] Mehmet Altine, Michael J.Franklin.Efficient Filtering of
XML Documents for Selective Dissemination of
Information.In Proceedings ofthe 26th VLDB Conference,
2000

[13] Chan, C.Y, Felber, P, Garofalakis, M.N., Rastogi,
R.Efficient filtering of XML documents with XPath
expressions.In Proceedings of International Conference
On Data Engineering (ICDE), 2002

[14] V.Josifovski, M.Fontoura, A.Barta.Enabling relational
engines to query XML streams.IBM Intemal
publication．

[15] Charles Barton, Philippe Charles, Marcus Fontoura, vanja
Josifovski. An Algorithm for Streaming XPath Processing
with Forward and Backward Axes． In Proceedings of
International Conference on Data
Enginerring(ICDE),2003．

1766 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

