
A Reliability-oriented Evolution Method of
Software Architecture Based on Contribution

Degree of Component

Jun Wang
Shenyang University of Chemical Technology, Shenyang, 110142, China

Email: wj_software@hotmail.com

WeiRu Chen
Shenyang University of Chemical Technology, Shenyang, 110142, China

Email: wangjundmu2010@gmail.com

Abstract—Owing to the low cost, high profit and disaster-
free, the reliability-oriented evolution method is proposed in
this paper. The method improves the reliability of software
architecture by analysis contribution degree of component.
Because the various components will play different roles in
the reliability-oriented evolution of software architecture,
the contribution degree of component is first put forward. It
will be used for the reliability-oriented evolution in this
paper. At the same time, the reliability-oriented evolution
method of software architecture based on contribution
degree of component is applied to an ATM system. The
evolution process is illustrated by the method, and it shows
that which component is playing an important or crucial
role in the process of reliability-oriented evolution of
software architecture. The reliability of software
architecture will can be improved effectively and fleetly by
the result.

Index Terms—contribution degree, software architecture,
reliability, evolution

I. INTRODUCTION

Software evolution is a set of activities which improve
software after it is delivered to customer, it is a process
which generates a new software version from an earlier
version, and it is one important area of software
engineering. A failure operation of software can lead to
economic loss and even cause loss of human lives.
Therefore, unreliable software is not acceptable and
should be improved [1-3]. For improving overall system
reliability, the component and the architecture of system
will be evolved. When the reliability of some components
can not be increased, or when you require very high
expenses to increase reliability a little, the reliability-
oriented evolution of software architecture maybe another
solution. This is the reliability-oriented evolution of
software architecture.

How to improve the efficiency of reliability-oriented
evolution? Some scholars proposed a lot of methods
based on project management. Others researched that
how to enhance the reliability of each component.

Another one set up some models to calculate reliability of
software architecture, and improve reliability by changing
architecture. We combine the latter two results and
propose a reliability-oriented evolution method in this
paper. The method improves the reliability of software
architecture by analysis contribution degree of
component. The method is more effective and faster than
some methods that consider only one aspect [4-7].

The discussion of this topic takes the following
structure. Section II describes the our reliability model
based on software architecture. In section III, we compare
the model with the classic model. Section IV proposes the
decision rule on contribution degree of component in the
process of reliability-oriented evolution of software
architecture. In section V, the contribution degree of
component is analyzed, and a process of evolution is
completed and showed. Conclusions are provided in
section VI.

II. RELIABILITY MODEL BASED ON SOFTWARE
ARCHITECTURE

Currently, most of the reliability models based on
software architecture use the idea proposed by Cheung et
al [8-10]. These models estimate reliability by the
definition of software reliability. It is based on properties
of Markov chain, and the conversion from software
architecture view to state transition view. According to
state transition view, the state transition matrix is
constructed. Of course, the reliability of each component
and the operational profile will be considered too.

A. Reliability Calculation Steps
The reliability model based on software architecture

usually utilizes Markov chain to compute reliability of

system [11]. On the basis of properties of Markov chain,
the state transition is assumed as a Markov process [12-
13].

(a)The state transition diagram is usually used to
depict system behavior. The node Si represents system
state i, and a directed edge (Si, Sj) represents the state

1744 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1744-1750

transition from Si to Sj. The Fig.1 shows the state
transition diagram.

…
…

S2
Sx

Sm

S3

…
…

…
…

…
…S1 Sn

Figure 1. The state transition diagram

(b)The value of M (i, j) indicates the possibility of
transition from state Si to state Sj. A state transition matrix
M can be defined by the state transition diagram.
Therefore, the reliability R is represented as follow:

jRjiMR ×=),(
 (1)

If the value of M (i, j) is computed and gained, the
reliability of software architecture will be achieved too.
Let array T, T={R1~n, R2~n, R3~n,……, Rn-1~n,1}, be a set of
reliability in software architecture. The Ri~j represents
reliability from state Si to state Sj. According to matrix
theory and reliability definition of software architecture,
the equation, TT TMT ×= , will come into existence.

(c)The R1~n is the first vector in the array T. The value
of R1~n equals to reliability of software architecture.

B. Constructing Transition Matrix
How to compute the value of M (i, j), it is important to

obtain reliability of software architecture. In
consideration of the reliability of components, connectors
and different architectural styles, the transition matrix M
can be obtained as follow [9]:

The lij denotes the reliability of connector from state Si
to state Sj. The lnij denotes the reliability of connector
from state Si to state Sj , and there have n components in
state Si. The l’nij denotes the reliability of connector from
state Si to state Sj , and there have n components in state
Sj. The Pij represents the transition probability from state
Si to state Sj. The n denotes the number of components in
a state.

(a) Sequence style: Components are executed in a
sequential order.

When state Si can arrive at state Sj directly:
ijiji PlRjiM =),(

 (2)
When state Si can not arrive at state Sj directly:

0),(=jiM
 (3)

(b) Parallel style: Components are commonly running
simultaneously to improve performance.

When state Si contains components of running
simultaneously:

ij

N

n
nijn PlRjiM ∏

=

=
1

))((),(
 (4)

When state Sj contains components of running
simultaneously:

)(),(
1

'∏
=

=
N

n
nijiji lPRjiM

 (5)

(c) Redundancy style: It has a set of components.
Some of components will start to work after the primary
component fails. When the primary component fails, the
first backup component will take over the responsibility
and become a new primary component. If the new one
fails too, another one will take over its responsibility. M
(i, j) can be constructed as follows:

When state Si contains a set of backup components:

ij

N

q

q

m
qijimijiiji PlRlRlRjiM))))1((((),(

2 2
1 ∑ ∏

= =

−+=
 (6)

When state Sj contains a set of backup components:

))))1((((),(

2

'

2

''
1 ∑ ∏

= =

−+=
N

q
qij

q

m
mijijiji lllPRjiM

 (7)

III. COMPARISON WITH CLASSIC MODEL

We respectively used our model and classic model to
estimate the reliability of an ATM banking system, which
is provided by W.L. Wang [14-15]. The result of classic
model is compared with our reliability model based on
software architecture in this section.

In this ATM banking system, two architectural types
are defined, including sequence style and redundancy
style. Fig.2 shows the architecture of system. The
component Start is the initial component, and the
component End is an end component. In addition to the
following conditions, the system is basically run by
sequence. Component DBMS1 and component DBMS2
are defined as redundancy style. The component DBMS2
is backup component of DBMS1. It is used to increase
fault tolerance.

The reliability of components in single state:
R1=1.0;
R2=0.982;
R4=1.0;
R5=0.996;
R6=1.0;
 R7=0.8999;
 R8=0.99;
 R9=1.0;
R10=1.0;

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1745

© 2012 ACADEMY PUBLISHER

Start1

GUI2

END11

DBMS1 3

Transactor9

Identifier5

DBMS2 4

Account Manager6

Helper7

Verifier10

Messenger8

S3

Figure 2. The architecture of system

The reliability of components in state S3 of

redundancy style:
r31=0.97;
r32=0.96;
The reliability of all connectors:
l135 =0.97;
 l139=0.97;
l235=0.96;
l239=0.96;
l’

123=0.97;
l’

223=0.96;
Others are “1”.

The transition probability:
P12=1.0;
 P23=0.999;
 P2 10=0.001;
 P39=0.227;
P35=0.669;
P34=0.104;
P92=0.048;
P95=0.951;
P9 10=0.001;
P53=0.4239;
P58=0.1;
P56=0.4149;
 P5 10=0.0612;
P85=1.0; P45=1.0;
Others are zero.
The transition matrix M can be constructed by our

model as follow:

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

0000000000
000008999.00000
09900.00000100.00000
0000010000
000009900.00000

0609.004132.001000.0004217.000
0010.000009510.0000480.00
0001035.006659.02259.0000

0001.00000009798.000
0000000010

M

The transition matrix M’ can be constructed by classic

model as follow [14]:

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

0000000000
000008999.00000
09900.00000100.00000
0000010000
000009900.00000
061.004132.001000.0004222.000
0010.000104.009510.0000480.00
0001039.006682.02267.0000

00982.0000000981018.000
0000000010

'M

We respectively used above two transition matrix M to

estimate the reliability of an ATM banking system. The
result is shown in Table 1.

TABLE I

THE RESULT
 Classic model Improved model Actual value

Reliability 0.5590 0.5451 0.526

VI. THE DECISION RULE ON CONTRIBUTION DEGREE OF
COMPONENT

1746 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

In the process of reliability-oriented evolution of
software architecture, the decision rules on contribution
degree of component are as follow:

(a) If the out-degree of component is larger than others,
then the component is more important in the process of
reliability-oriented evolution of software architecture, and
its contribution degree is higher than others.

(b) The contribution degree of component may be
different in different location of software architecture.

(c) The transition probability of component is one of
crucial factors of their contribution degree in software
architecture.

The above is qualitative analysis on contribution
degree of component, but it is necessary. Because the
contribution degree of all components will be analyzed,
this will be a complex and huge projects.

If you want to know the contribution degree of every
component, the relationship function between
components and system must be calculated. Using the
Matlab, we may simulate the variation curve of
component reliability. Of course, we can also obtain the
variation curve of system reliability when the reliability
of other components is unchanged. Finally, contribution
degree of every component will be obtained. In the
process of reliability-oriented evolution of software
architecture, we will find that which component is the
biggest evolutionary relationship with software
architecture by their contribution degree.

V. ANALYSIS OF CONTRIBUTION DEGREE

The transition matrix M is constructed by the above
method. The relationship function between components
and system may be calculated by the definition of
reliability. The variation curve of component reliability is
obtained by Matlab when the reliability of others remains
stabilizing. At the same time, contribution degree of
component is analyzed by the curve in this section.

A. The Process of Reliability-oriented Evolution of
Software Architecture in an ATM Banking System

Given T= {R1~10, R2~10, R3~10, R4~10, R5~10, R6~10, R7~10,
R8~10, R9~10, 1}, the reliability R of software architecture
can be obtained by equation, TT TMT ×= . We analyze
contribution degree of every component in the process of
reliability-oriented evolution of software architecture. It
is helpful to improve efficiency in reliability-oriented
evolution of software architecture.

(a) Analysis of contribution degree by means of the
out-degree and transition probability

We find that out-degree and transition probability of
component 6 (Account Manager) are the largest by
statistics. The variation curve of component (Account
Manager) reliability is established, and the image is
shown in Fig. 3. The larger curvature shows the
contribution degree is higher in the process of reliability-
oriented evolution of software architecture.

Figure 3. The evolution relationship between component 6 and the overall system

The system has a redundancy style. Through the
reliability model, the variation curves of components (6
and 7) reliability are derived in Fig. 4, the smaller

curvature shows the contribution degree of component 7
is lower than component 6 in the process of reliability-
oriented evolution of software architecture.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1747

© 2012 ACADEMY PUBLISHER

Figure 4. The evolution relationship between components 6, 7 and the overall system

 (b) Analysis of contribution degree of every component
On the basis of the reliability model, the variation

curves of all component reliability are derived in Fig. 5. It
shows that component 6 and component 10 have larger
curvature than others. So the contribution degree of
component (6 and 10) is higher in the process of
reliability-oriented evolution of software architecture. In

addition, Fig. 5 shows that the reliability of system will
be improved promptly when the reliability of component
10 is increased. Therefore, we analyze that the
contribution degree of component 10 is the highest than
others in the process of reliability-oriented evolution of
software architecture.

Figure 5. The evolution relationship between every components and the overall system

1748 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

B. The Reliability-oriented Evolution of Software
Architecture based on Contribution Degree of
Component

The contribution degree of component 10 is the highest,
and it will be a bottleneck. It will affect on reliability-

oriented evolution of software architecture. Architecture
(style) evolution is used in the paper. We change a single
component 10 into a new component 10. It becomes a
redundancy style. It is shown in Fig. 6.

Figure 6. The new component 10

By the reliability model based on software architecture,
we calculate the reliability of evolved software
architecture, and it is 0.8512. The 0.5451 is the reliability
of original software architecture. The reliability of system
increase by 56% after the architecture is evolved.

VI CONCLUSION

We have studied architecture-based software reliability
for last 6 years, and published a number of papers. We
use these results for reliability-oriented evolution of
software architecture today. It is a good ideal that we
decide to how to evolve reliability of software
architecture according to contribution degree of
component. It is an old technology and is used in a new
area. The method can find some bottlenecks in the
process of reliability-oriented evolution of software
architecture. It is an effective method of reliability-
oriented evolution for software architecture.

ACKNOWLEDGMENT

This work was supported by Natural Science
Foundation of Liaoning Provincial (No.20102178) and
Liaoning Provincial Office of Education Fund of China
(No. L2010439 and No. 2009B149).

REFERENCES

[1] M. Tom, “Guest editors' introduction: Software evolution”,
IEEE Software, vol.27, No.4, 2011, pp.22-25.

[2] O. Hryniewicz, “An evaluation of the reliability of
complex systems using shadowed sets and fuzzy lifetime
data”, International Journal of Automation and Computing,
vol.3, No.3, 2006, pp.145-150.

[3] B. Kwiatuszewska-Sarnecka. “Reliability improvement of
large multi-state series-parallel systems”, International
Journal of Automation and Computing, vol.3, No.2, 2006,
pp.157-164.

[4] S. Gokhale, B. Mendiratta, “Architecture-Based
Assessment of Software Reliability”, IEEE proceedings on
QSIC, 2008, pp.444 -448.

[5] P. Nicolas, “A component-based and aspect-oriented
model for software evolution”, International Journal of

Computer Applications in Technology, vol.32, No.1, 2008,
pp.94-105.

[6] S. Vibha, “Modeling software evolution with game theory”,
Lecture Notes in Computer Science, vol. 5543, 2009,
pp.354-365.

[7] P. K. Kapur, A. Gupta, P. C. Jha, “Reliability Growth
Modeling and Optimal Release Policy under Fuzzy
Environment of an N-version Programming System
Incorporating the Effect of Fault Removal Efficiency”,
nternational Journal of Automation and Computing, vol.4,
No.4,2007, pp.369-379.

[8] R. C. Cheung, “A User-Oriented Software Reliability
Model”, IEEE transactions on Software Engineering, 1980,
pp.59-65.

[9] J. Wang, J. Liu,W.R. Chen, “Research of software
reliability based on synthetic architecture”, International
Conference on Computational Intelligence and Security,
2007, pp.785-788.

[10] W.L.Wang, M.H. Chen,“Heterogeneous Software
Reliability Modeling” Software Reliability Engineering,
Nov. 2002, pp.41-52.

[11] B. Tekinerdogan, H. Sozer, “Software Architecture
Reliability Analysis Using Failure Scenarios”, IEEE
proceedings on WICSA, 2005, pp.203-204.

[12] Z. Yefei, Y. Zongyuan, X. Jinkui, “Performance Analysis
of System Model Based on UML State Diagrams and
Continuous-time Markov Chains”, Journal of Software,
vol.5, No.9, 2010, pp. 974-981.

[13] H. Pham, “Improving Energy and Power Efficiency Using
NComputing and Approaches for Predicting Reliability of
Complex Computing Systems”, International Journal of
Automation and Computing, vol.7, No.2, 2010, pp.153-159.

[14] W.L.Wang, Y. Wu ,M. H. Chen, “Architecture-Based
Software Reliability Analysis”, Proceedings of Pacific Rim
International Symposium on Dependable Computing, 1999,
pp.16-17.

[15] J. Wang, W.R. Chen, J. Liu, “A Modeling of Software
Architecture Reliability”, IFIP International Conference on
Network and Parallel Computing, 2007, pp.983-986.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1749

© 2012 ACADEMY PUBLISHER

Jun Wang received the B.Sc. and M.Sc.
degrees in computer science from the
Shenyang Institute of Chemical
Technology, PRC in 2001 and 2005,
respectively, and the Ph.D. degree from
Shenyang Institute of Automation of CAS,
PRC in 2009. Currently, he is an
associate professor at Shenyang
University of Chemical Technology, PRC
and leads the Network Engineering

Teaching and Research Group in the Department of Computer
Science and Technology. Since January 2010, he has been
invited as an Academic Visitor (including post-doctoral project
as a post-doctor) at De Montfort University, UK.

His research interests include wireless network, software
reliability in distributed computing systems and the Internet of
things.

Wei-Ru Chen received the B.Sc. and
M.Sc. degrees from Northeast University,
PRC in 1985 and 1988, respectively. He
is currently the head of the Department of
Computer Science and Technology
Shenyang University of Chemical
Technology, PRC.

His research interests include software
architecture, software reliability, and data
mining.

1750 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

