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Abstract—Traditionally most Software Engineering 
experiments tend to formulate hypotheses and analyze an 
independent variable or a series of independent variables. 
This approach greatly reduces the type of research 
questions which can be explored. In addition, most Software 
Engineering situations are highly complex with many 
intertwined or ill-defined concepts, processes and “objects”. 
Hence, the question arises: are independent variables really 
sufficient for describing Software Engineering situations? 
This paper argues that the community needs to consider 
fuzzier models for Software Engineering artifacts, especially 
it recommends using composite indices as a mechanism to 
allow the greater exploration of the experimental design 
space. However, this extension is not without its risks; and 
hence in conjunction, it explains how to utilize analysis 
safeguards (sensitivity and uncertainty analysis) to explore 
any effects introduced when utilizing experimental 
formulations with composite metrics.  
 
Index Terms— Composite Metrics, Sensitivity, Uncertainty, 
Case Study 

I.  INTRODUCTION 
1Software engineering experiments have a number of 

issues most of which are based around the lack of 
absolute definitions of many of the variables either 
“controlled” or “analyzed” in its experiments. Unlike 
variables and definitions in the hard sciences, concepts in 
Software Engineering are defined by man and tend to be 
virtual in nature. This lack of formal and universal 
description results in quantities that are dimensionless; 
and hence, we often have no real basis for understanding 
which concepts are truly the same “type” (in a 
measurement sense) and which are only related. 

Consider any experiment or case study which 
investigates the number of defects present in a document. 
These experiments typically count the number of defects 
either found by various techniques or tools. The implicit 
assumptions behind these “counts” are that all of these 
defects are of the same type (to allow additive 
summation) and that they all have the same value 
(commonly a unit value – interval scale) and that the 
count can be meaningfully interpreted when it is zero 
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(rational zero – ratio scale). This allows researchers to 
undertake a large array of differing analysis techniques – 
however, are the assumptions really justified? 

Consider an industrial debugging process; typically, 
upon finding a bug, a practitioner describes it to allow 
explicit decisions upon the “fate” of the bug. As part of 
the description, the practitioner often includes their 
assessment of the severity of the bug.  For example, D0-
248B2 (Software Considerations in Airborne Systems and 
Equipment Certification) characterizes defects as: 

 
1.  Catastrophic: Defects that could (or did) cause 

disastrous consequences for the system.   
2.  Severe: Defects that could (or did) cause very 

serious consequences for the system.   
3.  Major:  Defects that could (or did) cause significant 

consequences for the system.   
4.  Minor:  Defects that could (or did) cause small or 

negligible consequences for the system.   
5.  No Effect: Defects that can cause no negative 

consequences for the system.   
 
Clearly, from these descriptions it is difficult to believe 

that DO-248B considers that these 5 types of defects 
possess the same value. Hence, should researchers 
consider them to be of different types? 

Schemas like Orthogonal Defect Classification (ODC) 
[3] and Defect Origins, Types, and Modes [12] classify 
defects into alternative dimensions or types. In other 
situations, defects are classified by their cause (Root 
cause analysis) or by the phase in the life-cycle where 
they are injected. While, it is unlikely that we will ever 
have a single definition of the numerical properties of a 
defect, a case can be easily made that treating them as a 
single homogenous numerical-definition is not the only 
option. 

Other common ideas in IT are by definition an 
amalgamation of concepts which are clearly distinct. 
Consider, ISO 9126 as a potential definition of software 
quality. The standard states that quality is composed of: 
functionality, reliability, usability, efficiency, 

                                                           
2 DO-248B is the final report for clarification of DO-178B 

1664 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.7.1664-1676



 

 

maintainability, portability. Therefore, if we want to talk 
about total quality we need to be able to construct 
something like: 

 
Total Quality = Quality (functionality) + Quality 

(reliability) + Quality (usability) + Quality (efficiency) + 
Quality (maintainability) + Quality (Portability) 

 
So how can we construct such a variable as Total 

Quality? How can we safely aggregate the sub-quality 
expressions? How can we understand the relative impact 
of the sub-quality variables upon the total quality 
variable? Further, the characteristics themselves are 
further composed of sub-characteristics; e.g. functionality 
is the composition of suitability, accuracy, 
interoperability, compliance, security. Once again, the 
average practitioner may well ask – is security composed 
of anything? [1]  

Software Engineering differs from many other 
scientific disciplines due to its limited number of physical 
components and concepts. Physical components allow us 
to invoke ideas from the “hard sciences” to produce 
precise definitions and relationships. This provides a 
solid basis for many empirical investigations and for 
them to have unique interpretations. In contrast, Software 
Engineering often deals with attributes which are more 
meta-physical than physical, have imprecise definitions 
which vary over time, domain and problem statement; 
and often have no “mechanism” to allow us to either 
observe or measure them directly. 

Consider the “definition” of Trust taken from [2]. This 
definition represents a meta-analysis of the literature on 
the definition of Trust. Points to note are: 

 
• The definition considers the attribute only within a 

limited domain (e-commerce). So what do the results 
imply for the definition in say organisational 
settings? 

• To produce the definition, the researchers considered 
any on-line activity as a proxy for e-commerce 
behaviour. Using proxies in Software Engineering is 
extremely common because of imprecision of 
definitions – however, it is not without substantial 
risk. 

• Trust seems to be defined in terms of a large number 
of attributes. Anything in Figure 1 with a direct link 
to trust has potentially a direct relationship. The 
number on the link indicates the number of studies 
which “found” this relationship. The number in the 

node is the number of studies which actively 
considered this attribute when exploring this 
question. Some researchers even defined attributes as 
themselves! See the weights on the self-references 
from a node to itself. 

• These defining attributes are highly inter-related with 
other attributes which define Trust. Forget linearity. 

 
These defining attributes also have complex, imprecise 

definitions based upon a network of attributes. Each of 
these attributes within this network of attributes has in 
turn a definition based upon a network of attributes, and 
so on. As can be seen in Figure 1, most of the variables 
surrounding trust are ill-defined. Clearly traditional 
statistical experiments and analysis are not going to work 
here; we require a more open-ended framework with a 
much greater emphasis on exploration to start unravelling 
this picture.  

Clearly, Software Engineering is a topic dominated by 
terms which are compositions of concepts which are 
themselves a composition of concepts, which are …. So if 
Software Engineering is dominated in such a fashion – 
why are Software Engineering experiments not 
dominated by composite variables and appropriate 
analysis of such variables? This paper seeks to address 
this topic. By extending the analysis of a previous paper 
by the authors [9], we seek to introduce to the field a 
simple basis for constructing such variables; and an 
analysis approach to allow them to be utilised relatively 
safely. 

The remainder of the paper is structured as follows: 
Section 2 seeks to explain situations where compound 
variables or indices are not required – moving to 
compound or composite variables should only be 
undertaken when appropriate.   Section 3 provides a 
description of the conditions under which it is reasonable 
to use compound or composite variables. Sections 4 and 5 
provide a practical illustration of using such variables. 
Specifically, Section 4 presents an overview of the results 
from [9] which is our starting point for introducing 
compound variables. Section 5 provides a case study in 
using compound indices by expanding the results in 
Section 4 to provide a richer set of analysis and the 
exploration of additional hypotheses. Section 6 concludes 
the paper and seeks to provide guidelines on using 
compound indices. 
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Figure 1. Trust Attributes 
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II.   EXPLORATION ANALYSIS AND COMPOSITE 

VARIABLES 

As was seen in Section 1, many “interesting” empirical 
questions do not fall within the traditional definition or 
the domain of Neyman-Pearson type significance testing 
[15].  Empirical thinking should not simply involve the 
measurement of the error and inserting this figure into a 
test.  Good empirical investigation seeks to explore the 
error from many angles. In an ideal situation, we may 
have been successful in conducting an experiment with 
an extreme low error.  Via careful selection of 
experimental parameters (choice of task, choice of 
subjects, motivation of subjects, providing clear 
guidance, etc), we can seek to minimize this error. 
However, in many situations, we will have limited insight 
into how successful we have been; and hence, it is 
essential to explore the data from a variety of angles 
looking for explanations of what really happened.  
Inductive inference has no single best solution – many 
alternatives exist; empirical analysis involves analyzing 
the problem at hand and selecting the “best” set of tools 
based upon that analysis. 
 Consider the following scenario adapted from 
Gigerenzer et al. [10]. A typical application of Neyman-
Pearson type significance testing is in quality control in a 
manufacturing setting. Imagine we are producing widgets 
with a mean diameter of 5 mm (H1) as optimal and 7 mm 
(H2) as dangerous and hence unacceptable. From 
experience, it is known that the random fluctuations of 
diameters are approximately normally distributed and that 
the standard deviations do not depend on the mean. This 
allows the experimenter to determine the sampling 
distributions of the mean for both hypotheses. They 
consider accepting H1 while H2 is true (Type II error) to 
be the most serious error because it may cause harm to 
the users and to the company’s reputation. So they set β = 
0.1% and α = 10%. They now calculate the required 
sample size n of widgets that must be sampled every day 
to test the quality of the production. When they accept 
H2, they act as if there was a malfunction and stop 
production, but this does not imply that they believe that 
H2 is true. They know that they must expect a false 
alarm, on average, in 1 out of 10 days in which there is no 
malfunction. 
 Does this quality experiment sound like the 
experiments outlined in Section 1. It is argued – no! Here 
the definition of “total quality” is very simple; it needs to 
consider only one variable which can be measured 
directly. The measure has a precise definition given by 
the units of measurement, which are absolute. The 
experiment has an instrument which can measure the 
variable directly and this instrument, via calibration, etc, 
has known characteristics and is guaranteed (when 
operating correctly) to have a very high level of accuracy. 
The experiment is able to set two completing hypotheses; 
one which defines acceptable behavior, and one that 
defines unacceptable behavior. These in conjunction with 
definitions of α and β define a rejection region for each 
hypothesis. Further, the experimenter has the luxury of an 
also infinite sample size, the factory produces large 

volumes of widgets, allowing α, β and n to be set in line 
with the economic situation and in a fashion where the 
risks of encountering an error in inference are balanced 
against this economic situation.  
 It is argued that in such well–defined situations that 
traditional Neyman-Pearson type significance testing 
provides an excellent tool-set to analyze the behavior of 
the situation. However, as we move away from this type 
of situation; and encounter ill-defined variables (variables 
which are potentially dependent, variables which can’t be 
measured directly, etc.), we need to augment this tool set 
with more exploratory analyze where we aggregate 
variables and look at the implications.  

III.   AN OVERVIEW OF COMPOSITE VARIABLES 

Any useful composite variable has to be defined using 
a sound methodology. Typically, there are several stages 
for the construction of composite variables: 

 
• Deciding on the phenomenon to be measured. 

Would it benefit from the use of composite 
variables? For example, it is argued that the above 
manufacturing scenario would not. 

• Selection of sub-variables. A sound casual 
argument or empirical evidence is required as to 
identify which sub-variables are relevant to the meta-
variable of interest. In general, there is no completely 
objective way of selecting these sub-variables. 

• Assessing the quality of the data. There needs to be 
high quality data for all the sub-variables; otherwise, 
the analysis will be meaningless. If all of the sub-
variables are believed to contain large errors and then 
meta-variables will have extremely large errors 
rendering the analysis useless. Careful use of 
uncertainty and sensitivity analysis protects against 
this issue.   

• Assessing the relationships between sub-variables. 
Analyzing the sub-variables for correlations is 
important in many situations. Since, the sub-
variables will be aggregated in some fashion, 
independence is important to avoid “double-
counting”.  

• Normalizing and weighting of the variables. Many 
methods for normalizing and weighting the sub-
variables exist. The selection of the appropriate 
methods depends on the situation, the collection 
process and ultimately the data. 

• Uncertainty and Sensitivity Analysis. Changes in 
the weighting system and the choice of mechanisms 
to aggregate the sub-variables will affect the results 
obtained from the analysis. It is important to test the 
degree of sensitivity to fluctuations in the sub-
variables; and avoid reporting results which are 
highly sensitive to small changes in the construction 
of the composite variable. The value of the 
composite variable should always be analyzed to 
provide some form of confidence bound (e.g. under 
what ranges of values does this result remain 
constant?) upon the result.   
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Clearly, one could write a textbook on these topics; 

instead, we have chosen to illustrate the use of composite 
variables in Software Engineering via a single case study. 
Specifically, the illustration will utilize a formal subject-
based experiment.  Further, it will demonstrate how to 
extend Neyman-Pearson type significance testing to 
accommodate composite variables and composite 
questions. No claim is made that the original experiment 
is a perfect example of a situation where using composite 
variables has no downside. In fact, the limited sample 
size in the original experiment must be considered an 
issue. However, it will be demonstrated that via the 
construction of composite variables, we are able to 
explore a wider range of questions; while introducing 
sufficient safeguards to (hopefully) stop us from over-
interpreting the results. 

IV.   CASE STUDY 

In [9] the authors undertook a pilot experiment and a 
main experiment to assess the impact of utilising a 
structuring technique upon the quality of Use Case (UC) 
models. The reader is referred to this paper for details. 
The paper views quality in this context as having several 
distinct concepts; see Table 1 for details. 

 
TABLE 1. QUALITY ATTRIBUTES OF A USE CASE MODEL 
Quality 

Attribute 
Definition 

Consistency 

The UC diagram must conform to the concepts 
contained in the UC descriptions and vice versa. 
Consistent facts and information must be present 
across UC descriptions. If a UC model contains 
more than one UC diagram, consistency must 
exist between UC diagrams with respect to 
elements that they depict. 

Completeness 

The underlying requirements must correctly be 
represented by the UC diagram and textual 
descriptions. This means that all information and 
facts that are expected to be in the UC 
descriptions and diagram must be present. 

Fault-Free 

The UC diagram and descriptions must not 
contain any information or facts that are 
incorrect, which misrepresent the underlying 
requirements. 

Analytical 

The model should be analytical, meaning that it 
should only describe what the system should do. 
This includes the exclusion of any design or 
implementation decisions, including interface 
details. Except those explicitly defined by the 
customer. 

Understand-
ability 

The model must be presented in a readable form. 
The information contained in the UC descriptions 
must be precise and unambiguous. The model 
should also not contain repeated information as 
this may lead to confusion. All stakeholders must 
share a common understanding of the presented 
functional requirements. 

 
In line with common practice in subject-based 

Software Engineering experiments, the concepts in [9] 
are treated separately and a unique hypothesis is 
constructed for each distinct type of quality. Hence, 
hypotheses with regard to the overall impact on total 
quality, etc are not explored, as this requires an 

integration of the quality types into a single meta-
concept. The authors believe that this type of omission is 
really a failure to explore the analysis space and that the 
topic must embrace compound indices to allow it to 
explore a richer set of questions. However, this 
exploration is not without issues; and Section 5 outlines 
an approach for handling compound indices in subject-
based experimental situations when using inferential 
statistics. 

A.  Overview of Current Analysis 

The only independent variable of the experiment was 
the use of the structuring language named SSUCD 
(Simple Structured Use Case Descriptions) [8]. The use 
of SSUCD was hence compared to the use of 
Unstructured Natural Language (UNL). The experiment 
involved a total of 34 graduate 
Software/Computer/Electrical Engineering students, who 
were divided into two groups of 17 subjects each. The 
subjects were required to construct the use case model of 
an Airline Ticketing system [17] and a Banking system 
[11] using SSUCD and UNL. The experiment deployed a 
2 x 2 partial factorial design with repeated measures to 
mitigate the effect of individual and group abilities. The 
schedule of the experimental tasks is outlined in Table 2. 

 
TABLE 2. SCHEDULE OF EXPERIMENTAL TASKS 

 Group A Group B 

Week 1 
Introduction to UC modeling - 2 lectures (approx. 2 hours 

total) 

Week 2 
UC modeling practice using UNL and SSUCD – 3 lectures 

(approx. 3 hours) 

Week 3 

U
N

L 

Develop Airline 
Ticketing system 

S
S

U
C

D
 

Develop Airline Ticketing 
system 

Week 4 

S
S

U
C

D
 

Develop Banking 
system 

U
N

L 

Develop Banking system 

 
The subjects’ use case models were evaluated with 
respected to each of the quality attributes shown in Table 
1. The raw scores per quality attribute are shown in 
Tables 31�35 (see Appendix A). The Mann-Whitney U 
statistic (of the 1st sample) was used to test for the 
differences between the [21]. The Hodges-Lehman 
method was used to compute the confidence intervals 
around the medians at the standard 95% level. For major 
results from statistical significance testing, an estimate of 
the difference between the two groups was provided by 
estimating the associated effect size using Cliff’s delta [4-
6]. For two samples, if the confidence interval of Cliff`s 
Delta includes zero, then the populations are considered 
equal – that is, insufficient difference exists to distinguish 
between the samples. If the confidence interval excludes 
zero then sufficient information exists to distinguish the 
samples.  In this experiment, if the confidence interval 
included only positive numbers then SSUCD > UNL 
(favoring SSUCD). If it only contained negative numbers 
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then UNL > SSUCD (favoring UNL). The analysis 
performed investigates the effects of the treatment 
variables, experimental artifacts and groups’ abilities in 
isolation, with respect to each quality attribute. Table 3 
presents the results from investigating the effect of using 
SSUCD vs. UNL on each system with respect to the 
quality attributes (statistically insignificant results were 
omitted from the Table 3.) Table 4 presents the results 
obtained for the Airline Ticketing system vs. Banking 
system with respect to each quality attributes 

individually. Again, only statistically significant results 
are shown. Note that there were no statistically significant 
results obtained from investigating the performance of 
Group A vs. Group B with respect to all quality 
attributes. The statistically significant results presented in 
Tables 3 and 4 are further confirmed in favor of SSUCD 
as the confidence interval around Cliff’s Delta  includes 
only positive values as shown in Tables 5 and 6, 
respectively.

 
TABLE 3. MANN-WHITNEY TESTS FOR THE SSUCD VS. UNL RESULTS 

 
TABLE 4. MANN-WHITNEY TESTS FOR THE AIRLINE TICKETING SYSTEM VS. BANKING SYSTEM RESULTS 

System Rank 
sum 

Mean rank U Difference between 
medians 

95.2% CI Mann-Whitney U 
statistic 

2-tailed p 

Fault Free 

Airline Ticketing 1368.0 40.24 349.0 
0.125 0.0 to 0.250 349 0.007 

Banking 910.0 27.58 773.0 

Understandability 

Airline Ticketing 1375.0 40.44 342.0 
0.250 0.083 to 0.333 342 0.006 

Banking 903.0 27.36 780.0 

 
TABLE 5.  

CLIFF’S DELTA FOR THE SSUCD VS. UNL RESULTS 

System 
Cliff’s delta 

( δ̂ ) 
Variance 

Confidence Interval around 

delta (δ̂ ) 
Max. Min. 

Inconsistencies 
Airline 

Ticketing 
0.450 0.030 0.673 0.112 

Banking 0.764 0.028 0.783 0.435 
Completeness 

Airline 
Ticketing 

0.460 0.030 0.680 0.122 

Understandability 
Airline 

Ticketing 
0.609 0.024 0.737 0.324 

 
TABLE 6.  

CLIFF’S DELTA FOR THE SSUCD VS. UNL RESULTS 

Quality Attribute 
Cliff’s delta 

( δ̂ ) 
Variance 

Confidence Interval 

around delta (δ̂ ) 
Max. Min. 

Fault-Free -0.378 0.019 -0.090 -0.608 

Understandability -0.390 0.021 -0.086 -0.627 

 

II.   EXTENDING THE RESULTS USING COMPOSITE INDICES 

In this section, we will explore the results further to 
provide some illustrative experiment-wide numerical 
statements about the study. Our exploration is based upon 
the construction of a number of composite indices,  by 
combining our sub-indicators (the individual quality 
characteristic performances) into a single index on the 
basis of representing an implicit underlying model in this 
paper (that of the total performance of any individual 
subject in either of the tasks). Clearly, this approach 
requires the reader to carefully consider its results as it 
effectively summarizes complex, multi-dimensional 
issues into simple numerical statements and hence it is 
easy to over-interpret the output resulting from 
subsequent analysis of these numerical statements. 

In common with current practice, we will construct 
composite indices by a weighted combination of 
normalized sub-indicator values [14, 18]; specifically, we 
will construct composite indices of the form: 
 

Let SI represent any arbitrary sub-indicator: 
......)(*)(*)(* ,33,22,11 ∇∇∇= iiii SIFwSIFwSIFwScore  

System Technique Rank 
sum 

Mean 
rank 

U Difference between 
medians 

95.2% CI Mann-Whitney U 
statistic 

1-tailed p 

Inconsistencies 
Airline 

Ticketing 
SSUCD  362.5 21.32 79.5 

1.0 0.0 to  +∞ 79.5 0.010 
UNL  232.5 13.68 209.5 

Banking 
SSUCD  337.5 21.09 70.5 

1.0 0.0 to  +∞ 70.5 0.010 
UNL  223.5 13.15 201.5 

Completeness 
Airline 

Ticketing 
SSUCD 364.0 21.41 78.0 

1.0 0.0 to  2.0 78 0.018 
UNL 231.0 13.59 211.0 

Understandability 
Airline 

Ticketing SSUCD 385.5 22.68 56.5 2.0 1.0 to  3.0 56.5 <0.01 
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Where wi is a weighting factor; F() is a normalization 

function;∇ is an aggregation operator; and w1 has a 
higher precedence than w2. Unfortunately, there is no 
universal formulation for these three terms; and hence the 
following discussion is our rational for our selected 
instantiations. 

Normalization Function: A normalization function is 
required to stop us combining “apples” and “oranges”; 
and provides effective protection against data misuse, 
such as Simpson’s paradox [23].  It is important to select 
the appropriate normalization procedure with reference to 
both the data properties and the theoretical framework.  
This action requires scrutiny of the data set for sub-
indicators. Even after scrutiny, the selection of a 
procedure is not obvious; there are still risks to be worked 
through. Recognizing and working through these risks is 
a fundamental exercise in this article. In due time a 
normalization procedure must be selected. We selected 
re-scaling. There are five other normailization procedures 
that could have been used; each has its own variations in 
application and of course, its own risks. We selected re-
scaling as a normalization procedure and were cognizant 
of its risks; it was the same procedure used in the case 
study. The re-scaling normalization procedure is often 
encountered in the literature and we have followed the 
same procedure. Note that outlining the complete set of 
risks for each normalization procedure is lengthy and 
beyond the scope of this paper. 

As previously mentioned, for the type of data and 
analysis within this study, two options basically exist: 
standardization or re-scaling. Standardization approaches 
require the estimation of several parametric descriptors 
for the sub-indicators. However, as indicated earlier, our 
sub-indicators have neither theoretical arguments nor 
numerical support for the statement that they are sampled 
from a parametric distribution; and hence, re-scaling 
becomes the only viable option. In fact, during much of 
our exploratory analysis, many common approaches and 
techniques are not available due to various distribution 
requirements that they possess. For the sake of brevity, 
we will in general not discuss when individual 
approaches are not suitable for this reason. 

Re-scaling can be considered as the non-parametric 
analog to standardization. Re-scaling simply transforms 
all sub-indicators into an identical range (0,1). 
Specifically, using the normalization function: 

)(

)min(
),( ,

j

jij

SIrange

SISI
ijF

−
=   

A disadvantage of this approach is that the minima 
and maxima might be unreliable outliers, and have a 
distortion effect on the normalized indicator. On the other 
hand, for sub-indicator values lying within a small 
interval, this method increases the effect of the indicator 
on the composite index. No obvious evidence exists in 
our data that these effects are extreme, but given their 
nature it is impossible to say that no impact exists; and 
they should be considered as a threat to the numerical 
validity of the results from this section. Finally, before 
the normalization function, we transform our data to have 

a common orientation. The transformed sub-indicators 
use a positive only scale, where a ‘low’ value implies a 
‘poor’ performance and a ‘high’ value implies a ‘good’ 
performance.  

Weighting factor:  The weighting factor basically 
describes the relative importance of each of the sub-
indicator terms. Normally this is unknown and these 
values are estimated by domain experts; e.g. Saisana et 
al. [19] outline an estimation approach, where expert 
opinion is collected and analyzed using budget allocation 
and analytical hierarchy process approaches. However, 
we believe that these types of approaches are unlikely to 
be fruitful within our domain, and hence, we take a 
simpler approach. Initially, all of the weighting terms 
have been set to have a unit value; subsequently all of the 
weights are varied to form bounds upon the results; this 
process forms the core of our approach to uncertainty 
analysis which is discussed in the next section. 

Aggregation Operation:  Here we select a suitable 
basis for combining the weighted normalized sub-
indicators. Again, we believe that the problem leads to a 
unique choice of operator, addition. (This decision is 
revisited in Section 5.2) Hence we form a simple linear 
additive statement. Other alternatives include geometric 
aggregation or non-compensatory multi-criteria analysis 
[13], however neither of these alternatives provide a 
suitable formulation for subsequent analysis in terms of 
statistical significance testing and effect size estimation. 

This formulation implies that ideally the sub-
indicators should be independent. Clearly, this technical 
requirement is impossible to meet in this “style” of 
problem, as the sub-indicators are just different aspects of 
the performance of an individual subject within the study. 
Hence, dependence between the sub-indicators is an 
inevitable feature in any formulation of this concept. 
However, given this limitation no clear course of action 
exists. One may view the dependence among the sub-
indicators as something to correct for; For example, by 
making the weight for a given sub-indicator inversely 
proportional to the arithmetic mean of the coefficients of 
determination for each correlation that includes the given 
sub-indicator. On the other hand, practitioners of multi-
criteria decision analysis would tend to consider the 
existence of the dependences as a feature of the problem, 
not to be corrected for, as correlated indicators may 
indeed reflect non-compensable different aspects of the 
problem. We explore this issue principally, but implicitly, 
by our uncertainty analysis approach, which explores the 
impact of the weighting factors. However, in general, we 
resist the temptation to attempt to correct the 
dependences as we view them as non-compensable 
features of the domain. Keep in mind though, that this 
aspect undoubtedly should be viewed as a threat to the 
validity of the numerical results within this section. 

A.  Uncertainty and Sensitivity Analysis 

When constructing our composite indexes we make 
three decisions; in the above section, we argue that two of 
the decisions (normalization and aggregation) have 
unique definitions within this context. Hence, we will 
only explore the impact of the remaining definition 
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(weighting). In addition, we examine the impact of the 
input sample, as it is drawn without reference to a 
sampling frame, by neither a randomized and 
representative sampling procedure, and without specific 
targets at controlling Type II errors, and hence, it must be 
considered as less than ideal. We regard these 
explorations as approaches to uncertainty [7] and 
sensitivity analysis [20] respectively. We explore these 
two cross-validation approaches only within the concept 
of our data analysis goals. Within this experiment, we are 
principally interested in a binary decision (significant or 
non-significant); and hence we utilize this fact to shorten 
the analysis approach to only yield additional insight into 
these decisions. That is, we only really consider two 
questions: 

 
� Can changes to the weighting factors change the 

result of the statistical significance tests, where 
change is defined as crossing the binary decision 
threshold when compared with the results from our 
control result (with every weight factor considered 
equal)? 

 
� Do particular input data items overly influence the 

result of the statistical significance test? That is, if 
they are withdrawn from the data set, does the binary 
decision change? 

 
More specifically our two approaches to cross-

validation are as follows: 
 
Sensitivity Analysis: Again, we can avoid more 

generic re-sampling statistical approaches [22]; and 
replace it with an exhaustive search. Here, we withdraw 
every permutation of input pairs and see if the binary 
decision changes. (In reality, only the most extreme pair 
needs to be investigated.) If the decision does not change, 
we withdraw every permutation of two input pairs, etc. 
We stop when either the binary decision changes or the 
data set is exhausted. 

Sensitivity analysis will be presented in tables that 
contain four main columns. The first column will contain 
the original P value obtained from the Mann-Whitney 
statistical test performed on the original values. The 
second column shows the change in statistical 
significance after n pairs are withdrawn. The third 
column indicates the number of pairs that were 
withdrawn in order to cause a change in the statistical 
significance (from significant to insignificant or vice 
versa). The fourth column indicates the category in which 
pairs were withdrawn in favor of. 

 
Uncertainty Analysis: Given our limited 

requirements, we can avoid using Monte Carlo sampling 
of the factor (and Monte Carlo Permutation tests [16]) 
and simply replace them with an exhaustive search.  For 
each weighting factor, we independently vary it by an 
order of magnitude in each direction (i.e. [0.1, 10]) and 
record when, and if, the binary decision changes. 

Uncertainty analysis will be presented in tables that 
contain two main columns. The first column shows the 
range that a weighting, for a certain quality attribute, can 
change while maintaining the statistical significance (or 
insignificance) indicated in the second column observed 
in the original analysis. 

 
SSUCD vs.UNL – All attributes combined 
 
Table 7 shows the overall quality achieved by the 
subjects when using SSUCD and UNL with respect to 
both systems. As shown in Table 8, statistical 
significance was observed with respect to the overall 
quality achieved by the subjects with the Airline 
Ticketing system only. Sensitivity analysis of the results 
(Table 9) and Cliff’s Delta (Table 10) both indicate that 
subjects performed better with SSUCD over their UNL 
counterparts with respect to the Airline Ticketing System. 
The uncertainty analysis (Table 11) performed indicates 
that there was no single quality attribute contributing 
significantly the most towards the statistical significance 
observed with respect to the Airline Ticketing system. 
 

TABLE 7. DESCRIPTIVE STATISTICS OF THE RESULTS FOR 
BOTH SYSTEMS 

System Technique n Median IQR 95% CI of Median 

Airline 
Ticketing  

SSUCD 17 4.342 0.474 4.076 to 4.550 

UNL 17 3.922 1.180 2.963 to 4.143 

Banking  
SSUCD 16 3.697 0.788 3.250 to 4.196 

UNL 17 3.446 0.524 3.113 to 3.637 
 

TABLE 9. SENSITIVITY ANALYSIS OF THE RESULTS FOR 
BOTH SYSTEMS 

Overall 
Quality 

Original P value 
before pairs 

removal 

Change in P 
value after pairs 

removal 

# of pairs 
removed 

In favor 
of 

Airline 
Ticketing  

0.005 Insignificant 3 UNL 

Banking  
0.130 

Significant 8 UNL 
Significant 1 SSUCD 

 

 
TABLE 8. MANN-WHITNEY TEST FOR BOTH SYSTEMS 

System Technique Rank 
sum 

Mean 
rank 

U 
Difference 
between 
medians 

95.2% CI Mann-Whitney U 
statistic 

2-tailed p 

Airline 
Ticketing  

SSUCD 380.0 22.35 62.0 
0.589 0.171 

to 
1.178 

62 0.005 
UNL 215.0 12.65 227.0 

Banking  
SSUCD 314.0 19.63 94.0 

0.320 -0.089 
to 

0.726 
94 0.130 

UNL 247.0 14.53 178.0 
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TABLE 10. CLIFF’S DELTA FOR BOTH SYSTEMS 

System 
Cliff’s 

delta (δ̂ ) 
Variance 

Confidence Interval 

around delta (δ̂ ) 

Max. Min. 
Airline 

Ticketing  
0.571 0.026 0.802 0.191 

Banking  0.313 0.039 0.628 -0.092 
 
TABLE 11. UNCERTAINTY ANALYSIS OF THE RESULTS FOR 

BOTH SYSTEMS 

System Quality Attribute Assigned 
Weight 

P value 

Airline 
Ticketing 

Inconsistencies 
0.1 ↔ 9 Significant 

 10  Insignificant 
Completeness 0.1 ↔ 10 Significant 

Fault-Free 
0.1 ↔ 4 Significant 
5 ↔ 10 Insignificant 

Analytical 
0.1 ↔ 8 Significant 
9 ↔ 10 Insignificant 

Understandability 0.1 ↔ 10 Significant 

Banking 

Inconsistencies 
0.1 ↔ 2 Insignificant 
3 ↔ 10 Significant 

Correctness 0.1 ↔ 10 Insignificant 

Incorrectness 
0.1 ↔ 0.5 Significant 
1 ↔ 10 Insignificant 

Analytical 0.1 ↔ 10 Insignificant 
Understandability 0.1 ↔ 10 Insignificant 

 
Airline Ticketing System vs. Banking System 
 
Table 12 shows the overall quality achieved by the 
subjects with each system. As shown in Tables 13 and 14, 
no statistical significance was observed between the 
overall quality achieved with the Airline Ticketing 
system and the Banking system. Sensitivity analysis of 
the results show that statistical significance will be 
observed if only one pair was removed in favor the 
Airline Ticketing system in comparison to twelve pairs 
removed in favor of the Banking system (Table 15). 
Uncertainty analysis (Table 16) shows that there is no 
single quality attribute that can lead to statistical 
insignificance being observed between the two systems, 
which indicates that the subjects performed relatively 
close with respect to each quality attribute 
 

TABLE 12. DESCRIPTIVE STATISTICS OF THE RESULTS 

System n Median IQR 95% CI of Median 

Airline Ticketing 34 3.951 0.813 3.727 to 4.284 

Banking 33 3.601 0.667 3.321 to 3.839 
 

TABLE 13. 
CLIFF’S DELTA – AIRLINE TICKETING VS. BANKING 

Cliff’s delta 

( δ̂ ) 
Variance Confidence Interval around delta (δ̂ ) 

Max. Min. 
-0.270 0.023 0.039 -0.532 

 
 
 
 
 
 
 
 

TABLE 15. SENSITIVITY ANALYSIS OF THE RESULTS 
 Original P 

value before 
pairs removal 

Change in P 
value after 

pairs removal 

# of 
pairs 

removed 
In favor of 

Overall 
Quality 

0.057 
Significant 1 

Airline 
Ticketing 
System 

Significant 12 
Banking 
System 

 
TABLE 16. UNCERTAINTY ANALYSIS OF THE RESULTS 
Quality Attribute Assigned Weight P value 

Inconsistencies 0.1 ↔ 10 Insignificant 

Completeness 0.1 ↔ 10 Insignificant 

Fault-Free 0.1 ↔ 10 Insignificant 

Analytical 0.1 ↔ 10 Insignificant 

Understandability 0.1 ↔ 10 Insignificant 

 
Group A vs. Group B 
 
Table 17 shows the overall quality achieved by each 
group. As shown in Tables 18 and 19, there is no 
statistical significance observed between the groups. 
Sensitivity analysis (Table 20) of the results indicate that 
statistical significance will be observed after the scores of 
5 subject pairs have been removed in favor of Group A or 
Group B. Uncertainty analysis performed (Table 21) 
indicate that each group performed at a close level with 
respect to each quality attribute. This further confirms the 
analysis performed previously in Section 4.1.3, which 
indicates that both groups have proximate capabilities. 

 
TABLE 17. DESCRIPTIVE STATISTICS OF THE RESULTS 

Group n Median IQR 95% CI of Median 

SSUCD 34 3.570 0.854 3.327 to 3.918 

UNL 33 3.644 1.254 3.250 to 4.000 
 

TABLE 19. CLIFF’S DELTA 
Cliff’s delta 

( δ̂ ) 
Variance Confidence Interval around delta (δ̂ ) 

Max. Min. 
-0.031 0.024 0.263 -0.320 

 
TABLE 20. SENSITIVITY ANALYSIS 

Overall 
Quality 

Original P value 
before pairs 

removal 

Change in P value 
after pairs removal 

# of pairs 
removed 

In favor 
of 

0.003 
Significant 5 Group A 
Significant 5 Group B 
 

TABLE 21. UNCERTAINTY ANALYSIS OF THE RESULTS  
Quality Attribute Assigned Weight P value 

Inconsistencies 0.1 ↔ 10 Insignificant 

Correctness 0.1 ↔ 10 Insignificant 

Incorrectness 0.1 ↔ 10 Insignificant 

Analytical 0.1 ↔ 10 Insignificant 

Understandability 0.1 ↔ 10 Insignificant 
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TABLE 14. MANN-WHITNEY TEST 

System Rank 
sum 

Mean 
rank U Difference between 

medians 95.2% CI Mann-Whitney U 
statistic 2-tailed p 

Airline 
Ticketing 

1307.5 38.46 409.5 
0.333 -0.006 to 0.607 409.5 0.057 

Banking 970.5 29.41 712.5 

  
TABLE 18. MANN-WHITNEY TEST FOR SSUCD VS. UNL 

Group Rank 
sum 

Mean 
rank 

U Difference between 
medians 

95.2% CI Mann-Whitney U 
statistic 

2-tailed p 

SSUCD 1176.0 34.59 541.0 
0.050 

 
-0.307 to 0.439 541 

 
0.802 

 UNL 1102.0 33.39 581.0 

B.  Meta-level Analysis 

Our experiment can be viewed as a pair of experiments. 
In this section, we explore the aggregation of the results 
from the ‘two’ experiments. Clearly, this has parallels 
with meta-analytic procedures (fixed-effects models) 
[22]; however, here we have the raw data available not 
just the summary statistics. As within the previous 
section, we believe that this is an imprecise process and 
hence the issue is best framed in an exploratory nature. 
We view this process, and the results, as containing a 
significant level of risk as clearly the experiments are far 
from independent and hence have a significant number of 
sources of potential common bias. Hence, we must urge 
caution when interpreting the results from within this 
section.  

 
Aggregation for Each Quality Characteristic 
 
Here we merge (as aggregation) the results from the 
individual tasks into a single meta- statement. The results 
are shown in Table 22. To allow for significance testing, 
the merged scores need to be ranked; and hence to avoid 
comparing incompatible types, we again normalize, or 
more precisely rescale, every score before comparison. 
Within this framework, weightings have no real meaning, 
and hence uncertainty analysis is not applied; however, 
sensitivity analysis exists as before. Again, the 
aggregation operator (merging in this case) is believed to 
be uniquely defined by the context. 

As shown in Table 23, there exist statistically 
significant differences in three quality attributes: 
‘Inconsistencies’, ‘Completeness’ and ‘Lessens 
Understandability’. The Cliff’s Delta value shown in 
Table 24 indicates that the statistical significances 
observed in these three mentioned categories are in favor 
of the SSUCD subjects. The sensitivity analysis 
performed did not reveal any further significant 
information (Table 25). 

 
Aggregation of Total Performance 
 
Here we merge all quality attributes into a single meta-
statement. The results are shown in Table 26. As shown 
in Table 27, there exists a statistically significant 
difference between the performances of SSUCD subjects 

in comparison to their UNL counterpart with respect to 
the overall quality achieved. As stated by the effect size 
test (Table 28), SSUCD subjects performed better overall 
that UNL subjects. The sensitivity analysis (Table 29) 
and uncertainty analysis performed (Table 30) did not 
reveal any further significant information. 

 
TABLE 22. DESCRIPTIVE STATISTICS OF THE RESULTS 

Quality Attribute Technique  n Median IQR 
95% CI of 

Median 

Inconsistencies 
SSUCD  33 1.000 0.400 0.800 to 1.000 

UNL 34 0.714 0.286 0.571 to 0.857 

Completeness 
SSUCD  33 0.909 0.143 0.905 to 1.000 

UNL 34 0.818 0.192 0.727 to 0.909 

Fault-Free 
SSUCD  33 0.875 0.375 0.625 to 0.875 

UNL 34 0.750 0.250 0.625 to 0.875 

Analytical 
SSUCD  33 1.000 0.333 1.000 to 1.000 

UNL 34 1.000 0.250 0.750 to 1.000 

Understandability 
SSUCD  33 0.750 0.375 0.625 to 0.875 

UNL 34 0.429 0.429 0.286 to 0.571 

 
TABLE 24.  

CLIFF’S DELTA FOR ALL QUALITY ATTRIBUTES 

Quality Attribute  
Cliff’s delta 

( δ̂ ) 
Variance CI around delta (δ̂ ) 

max min 
Inconsistencies 0.370 0.019 0.602 0.080 

Completeness 0.352 0.019 0.588 0.060 

Fault-Free 0.084 0.017 0.324 -0.167 

Analytical 0.322 0.017 0.547 0.053 

Understandability 0.467 0.018 0.685 0.173 

 
TABLE 25. SENSITIVITY ANALYSIS OF THE RESULTS FOR 

ALL ATTRIBUTES 
Quality Attribute  Original P value 

with all pairs 
considered  

Change in P 
value after 

pairs removal 

# of 
pairs 

removed

In favor 
of 

Inconsistencies 0.008 Insignificant 3 UNL 
Completeness 0.013 Insignificant 2 UNL 

Fault-Free 0.557 
Significant 6 UNL 

Significant 4 SSUCD 

Analytical 0.480 
Significant 10 UNL 
Significant 4 SSUCD 

Understandability 0.001 Insignificant 5 UNL 
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TABLE 23. MANN-WHITNEY TEST FOR ALL QUALITY ATTRIBUTES 

Quality  
Attribute Technique Rank sum 

Mean 
rank U 

Difference 
between 
medians 95.2% CI 

Mann-Whitney 
U statistic 2-tailed p 

Inconsistencies 

SSUCD  1329.5 40.29 353.5 
0.143 

 
0.000 to 0.286 

 
353.5 

 
0.008 

 UNL 948.5 27.90 768.5 

Completeness 

SSUCD  1319.5 39.98 363.5 
0.091 

 
0.000 to 0.177 

 
363.5 

 
0.013 

 UNL 958.5 28.19 758.5 

Fault-Free 
SSUCD  1168.0 35.39 515.0 0.000 

 
-0.125 to 0.125 

 
515 

 
0.557 

 UNL 1110.0 32.65 607.0 

Analytical 

SSUCD  1169.5 35.44 513.5 
0.000 

 
0.000 to 0 

 
513.5 

 
0.480 

 UNL 1108.5 32.60 608.5 

Understandability 

Airline  1384.0 41.94 299.0 0.241 
 

0.107 to 0.429 
 

299 
 

0.001 
 Banking  894.0 26.29 823.0 

 
TABLE 27. MANN-WHITNEY TEST FOR ALL QUALITY ATTRIBUTES 

Group 
Rank 
sum 

Mean 
rank U 

Difference 
between 
medians 

95.2% CI 
Mann-Whitney 

U statistic 2-tailed p 

SSUCD 1360.0 41.210 323.0 
0.562 

 
0.185 

 
to 0.917 

 
323 

 
0.0028 

 UNL 918.0 27.0 799.0 

 
TABLE 26. DESCRIPTIVE STATISTICS OF THE RESULTS 

Group n Median IQR 95% CI of Median 

SSUCD 34 4.111 0.717 3.752 to 4.357 
UNL 33 3.399 1.064 3.089 to 3.997 

 
TABLE 28. CLIFF’S DELTA 

Cliff’s delta 

( δ̂ ) 
Variance Confidence Interval around delta (δ̂ ) 

Max. Min. 
0.516 0.016 0.719 0.233 

 
TABLE 29. SENSITIVITY ANALYSIS OF THE RESULTS 

Overall 
Quality 

Original P value 
before pairs 

removal 

Change in P value 
after pairs 
removal 

# of pairs 
removed In favor of  

0.0028 Insignificant 2 UNL 
 

TABLE 30. UNCERTAINTY ANALYSIS OF THE RESULTS 
Quality Attribute Assigned Weight P value 

Inconsistencies 0.1 ↔ 10 Significant 

Correctness 0.1 ↔ 10 Significant 

Incorrectness 
0.1 ↔ 2 Significant 

3 ↔ 10 Insignificant 

-Analytical 
0.1 ↔ 7 Significant 

8 ↔ 10 Insignificant 

Understandability 0.1 ↔ 10 Significant 

VI.   CONCLUSION 

This paper argues that current analysis approaches in 
many empirical software engineering papers fail to fully 
explore their data sets. To achieve this additional 
exploration and insight, the field needs to be willing to 
embrace the use of composite metrics even within 
traditional hypothesis testing. While composite metrics 
have the ability to provide additional insight, they are not 
without risk. Hence, the paper argues that when 

composite metrics are utilized, the researcher needs to 
follow a careful process including components, which 
seek to illustrate the level of bias or uncertainty 
introduced by these composite measures. The paper 
undertakes a case study to demonstrate these ideas in 
practice. The paper specifically recommends that 
experimenters need to use both sensitivity and uncertainty 
analysis when utilizing composite measures. It is believed 
that the use of sensitivity and uncertainty analysis in 
combination is a novel contribution to the empirical 
software engineering literature and that treatise on the 
“correct” use of composite metrics provides an additional 
augmentation to existing practice. 

APPENDIX A  RAW DATA  

TABLE 31. RAW DATA  FOR AIRLINE  TICKETING SYSTEM 

VS. BANKING  SYSTEM RESULTS (INCONSISTENCIES) 
Airline System Banking System 

Inconsistencies Inconsistencies 
SSUCD UNL SSUCD UNL 

-2 -3 0 -7 
0 -5 0 -2 
-1 -1 0 -6 
0 -2 0 -2 
0 -5 0 0 
-5 -2 0 0 
0 -6 -4 -1 
0 -1 0 -3 
-2 0 -3 -3 
0 0 -2 -1 
-2 -1 0 -1 
-3 -6 -1 -3 
-1 -3 -1 -3 
-1 -5 0 -3 
-1 -1 0 -1 
-2 -6 0 0 
0 -1  0 
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TABLE 32. RAW DATA  FOR AIRLINE  TICKETING SYSTEM 

VS. BANKING  SYSTEM RESULTS (COMPLETENESS) 
Airline System Banking System 

Completeness 
(max. 11) 

Completeness 
(max. 21) 

SSUCD UNL SSUCD UNL 
8 7 14 12 
7 7 21 20 
10 7 20 19 
11 10 14 11 
11 10 18 17 
11 9 19 9 
10 8 18 12 
10 11 19 19 
11 10 20 18 
10 10 17 17 
10 8 21 20 
9 11 21 9 
8 11 16 20 
11 9 12 21 
11 9 19 16 
11 8 19 20 
10 8  15 

 
TABLE 33. RAW DATA  FOR AIRLINE  TICKETING SYSTEM 

VS. BANKING  SYSTEM RESULTS (ANALYTICAL)  
Airline System Banking System 

Analytical Analytical 
SSUCD UNL SSUCD UNL 

0 0 0 -1 
0 -1 0 0 
0 0 -1 -1 
0 0 -1 0 
-1 0 0 -1 
0 0 -1 0 
-1 -2 0 -1 
-1 -1 -3 0 
0 0 0 0 
-1 -1 0 -1 
0 0 0 0 
0 -2 0 0 
-1 0 0 0 
0 -1 0 0 
0 -2 0 0 
0 0 0 -4 
0 -1  0 

 
TABLE 34. RAW DATA  FOR AIRLINE  TICKETING SYSTEM 

VS. BANKING  SYSTEM RESULTS (FAULT-FREE) 
Airline System Banking System 

Fault-Free Fault-Free 
SSUCD UNL SSUCD UNL 

-1 0 -3 -5 
-1 0 -3 -2 
-1 -2 -1 -1 
-1 0 0 -1 
-4 -3 0 -3 
-2 -2 -8 -1 
0 -4 -7 -2 
0 0 -3 -1 
-1 0 -2 -5 
-4 -3 -7 -8 
-1 0 -6 0 
0 -8 -1 -3 
0 0 -3 -5 
-1 -5 -1 -3 
0 -2 -4 -1 
0 -8 -5 -1 
0 -2  -1 

 
 

TABLE 35.RAW DATA  FOR AIRLINE  TICKETING SYSTEM 

VS. BANKING  SYSTEM RESULTS (UNDERSTANDABILITY)  
Airline System Banking System 

Understandability Understandability 
SSUCD UNL SSUCD UNL 

0 -2 -5 -6 
0 -3 -4 -4 
-2 -5 -1 -4 
-2 -3 -2 -7 
-1 -6 -4 -5 
-2 -2 -6 -6 
-4 -3 -3 -5 
-1 -2 0 -4 
-1 -2 -3 -6 
-1 -1 -6 -5 
-1 0 -8 -3 
-3 -6 -2 -1 
-1 -3 -6 -4 
-1 -5 -2 -6 
-1 -3 -5 -6 
-1 -4 -6 0 
0 -1  -7 
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