
Research on Verification Tool for Software
Requirements

Tao He

Software Engineering Department, Shenzhen Institute of Information Technology, Shenzhen, China
Email: he_tao@foxmail.com

Liping Li

Computer and Information Institute, Shanghai Second Polytechnic University, Shanghai, China
Email: llping2000@yahoo.com.cn

Abstract—To verify the software requirements of network
software, a verification tool OWLSVerifyTool is proposed,
designed and developed to deal with model checking of Web
service composition model in this paper. It can convert
OWL-S documents into Petri nets document and then
analysis and verify it in Petri nets with engine in dynamic
context. While compositing the DL reasoning engine Pellet
and F-logic-based reasoning engine Flora-2, it can play their
respective advantages to reason and verify static model in
static context of software requirement. The automated
validation tool can effectively verify software requirement
meta-model based on Web service described with OWL-S.

Index Terms—Web Service, Software Requirement,
Verification Tool

I. INTRODUCTION

The network software disposed in network
environment is a kind of special ultra-large service-
oriented computation of complex software system.
Requirement engineering of Network software are facing
many problems at present [1-4], because of its dynamic
topology, uncertainty of users, and its continuous
increasing requirements. However, present software
requirement modeling and verification technique lack
enough support to service-oriented computation, and are
unable to gather the Web service resources in the network
effectively, provide high dependable Web service
resources to enhance development of information system
efficiency [5-7].

Requirement verification is an important process in
software requirement engineering. If without it, the
project may lead to be unsuccessful. The design and
development of verification tool is very important, for its
enhancing efficiency of verification, improving software
development process, and guarantee software quality.
Semantic Web service language has carried on the clear
description to Metamodel various levels of software
requirement, and carries on the formalized modeling by
Petri net and F-logic, and verifies the uniformity of Web
service semantic restraint.

Verification of Web service combination has two kinds
of research methods at present: verification based on
work flow BPEL4WS and based on semantic OWL-S.
Now regarding the latter there are few research
achievements. In literature [8] for controls flow and the
data flow on the modeling, it transforms directly the
OWL-S process model into the simpler Promela
modeling, and verifies it with SPIN. However, its data
flow modeling is too simple to verify whether the input
/output type match.

Model checking methods successfully applied to a
large extent with support of the automated tools.
Currently the well-known OWL and OWL-S model
checking tools are: KAON2,FaCT++,Racer and so on.
But existing parsing/validation tools have the flaw that
verified nature are incomplete, the verifying and
inference mechanism is simple, emphasis on OWL-S
static model validation and neglect dynamic model
validation. To this end, it is necessary to develop a new
tool for model checking.

This paper has designed OWL-S model examination
prototype tool OWLSVerifyTool. It takes OWL-S storage
documents (*.owl or *.xml) as the input, simultaneously
carries on dynamic model and static model verification.
The dynamic model, transforms with the document
format switch to the PNML document, then directs or
transforms the PNML document to corresponding form,
then input to Petri net verification DiNAMiCS and Tina
engine to verify it. The static model, combining
description logic DL inference and Flora-2 rule, takes
OWL-S storage documents(*.owl or *.xml) as input,
simultaneously unifies DL inference (Pellet) and the
Flora-2 rule to carry on inference alternately, carries on
the analysis verification of the static model, and output
the results.

II. GENERAL ORGANIZATION OF VERIFICATION OF

VERIFICATION TOOL

OWL-S verification tool OWLSVerifyTool is mainly
composed of dynamic model verification and static model
verification modules. The designing structure of
verification tool is shown in Figure 1.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1609

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.7.1609-1616

Figure 1. General architecture diagram of validation tool

OWL-S is the Web service frame described in OWL
language, but OWL represents ontology by class,
attribute, value, and concept relations and so on. When
describing RGPS software requirement, it often uses
essential factor and relational of standard ontology, a
series of axioms as well as the formal restraint semantic
to build its model. This paper calls it “static model”. A
static model, often not evolving, can only express
invariant and special condition. formalism methods such
as Z language, DL, VDM, F-logic, which are based on set
theory and the first-order predicate calculus, may use for
modeling it. This paper uses DL and F-logic. To
verification of static model, its realization of definition
standard, accuracy, uniformity and completeness of
inference must be considered.

In the static model verification module it transforms
the OWL-S documents through Jena API. First, inputs it
with rules to the Pellet engine to infer for obtaining the
new fact, then combine the new fact and the original fact,
transforms it to the form that the engine Flora-2 can
accepts. Eventually, inputs it with rules to engine Flora-2
to infer and verify. The output is the verification result of
static model.

Uses the Petri net in the dynamic model aspect to take
the verification model, and carries on the verification
with DiNAMiCS and Tina engine; mainly verify its
accuracy (activeness, boundedness), Reachability, final
state, security, and so on.

As shown in Figure 1, first inputs OWL-S documents
in unified user interface. Transforms the OWL-S
documents into the PNML documents in the dynamic
model verification module with interpreter respectively,
simultaneously carries on the PNML documents
verification. Because the input form of DiNAMiCS
engine is different from PNML slightly, which is the
wam form, first transforms it into wam form by XSLT,
and then inputs it to DiNAMiCS to carry on inference
and model checking. Tina may directly input PNML form
documents to carry on it. After verification by two
engines, merge the results to obtain dynamic model
verification result of the OWL-S documents.

III. GENERAL ORGANIZATION OF VERIFICATION OF

VERIFICATION TOOL

A. Interpreter of the transforming from OWL-S to PNML

This interpreter can carry on analysis of OWL-S
service and transform it into PNML form. For the
transformation from OWL-S service to Petri net can reuse
many methods, algorithms, and reuse tools to inspect the
equivalence of Petri net (for example literature [9-11]).
Narayanant and McIlraith have first defined the Petri net
semantics of DAML-S in [12] (the OWL-S preceding
edition). However, their semantics is not the
combinatorial property for it is unable to process any-
order control structure. DaGen tool [13] transforms Petri
net semantics of DAML-S description in [12] to referring
Petri net. DaGen inserts to a Reference Net Workshop
(Renew), and causes the Petri net simulator execution of
Reference Network as well as the graph draw. However,
DaGen has not had the intermediate Petri net file of
transform. The interpreter described in this paper can
transform OWL-S process model expressing service
behavior to Petri network described by PNML format.

When execute the reasons, how to share the
input/output data in different process? In fact, when input
and output data are shared by many processes, the OWL-
S process model may be defined by the input/output
binding mechanism. The interpreter deals with this
problem by carrying out a suitable analysis sentence of
OWL-S process model.

This paper comes through the XML resolver to
transform OWL-S documents to the PNML form. The
interpreter from OWL-S to the PNML is a Java Servlet.
Input a URL pointing to OWL-S service description (or
file system path) from Web client of the interpreter, and
sends it to the serve, analyzing by the Servlet in the
background conversion, and returning the Petri net
describing in PNML of OWL-S service.

B. PNML verification and XSLT transformation

1) PNML Correctness Verification module: To change
the default, adjust the template as follows.

Through to the OWL-S documents' transformation, the
Web service which the OWL-S documents describe
definitely may use the Petri net simulation and indicate
by the PNML document that like this may verify the Web
service operation flow which using the Petri net's
correlation analysis method and the tool the OWL-S
documents describe whether to have in the flowage
structure design question. Therefore the next stage is
transforms, but results in the PNML document hands over
by PNML Correctness the Verification module processes.
PNML Correctness Verification module construction is
like chart 2.

PNML Correctness the Verification module contains
the PNML resolver, the accurate verification, the
security, the Reachability, the deadbolt lock, finally the
shape, and the durable verification and so on. PNML
Parser is responsible for the PNML document which
analyzes transmits. The accurate verification, the security,
the Reachability, the deadbolt lock, the shape, the

1610 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

Inputting PNML

documents

livenes

Bounded

ness

Correct-

ness

Coverager

diagram,Reachabili

-ty graph analysis

Incidence

matrixs

PNML parser

Security

Reachability

Deadlock

Final State

Persistence

Coverager diagram

analysis

Migration

matrix

Incidence matrixs,state

equation,Reachability graph

analysis

Coverager diagram

analysis

Verified PNML

documents
Figure 2. PNML Correctness Verification module structure

durability through the execution coverage diagram, may
reach analysis methods separately finally and so on chart,
incidence matrixes, condition agenda, migration matrix to
carry on the verification. But the PNML document's
proving program is first starts by the accuracy and the
secure nature, next is the Reachability nature, and finally
is the deadbolt lock, the final state and the durable nature.
So long as this verification step has an item will be
unable through to transmit makes a mistake harms the
information and stops the entire proving program.

PNML Correctness Verification module contains:
*PNML decoder

PNML Parser is responsible to receive the PNML
document after OWL-S file conversion. First analyzes the
Web service operation flow which describes in the
PNML document, again storehouse which describes the
PNML document, migration and arc by array way
storage. PNML Parser through analyzes the PNML
document and separately the storehouse, the migration
and the arc by the array form storage, will then transmit
these three objects by the parameter way for the nature
proving program. The nature proving program after
receiving the Petri net model the image parameter the
basis itself uses again the analysis method, constructs by
the parameter in information may reach the tree, the
incidence matrix and so on mathematics type.

 * The secure verification
For Web service composition, the tool will use cover

tree analysis to verify the Petri-Net model of the security
property. Therefore realizes the cover tree and the
coverage diagram method application procedure analysis
in the PNML accuracy verification proxy service
combine the Petri-Net model after PNML the resolver
analysis Web.

* Reachability verification
The Petri-Net model regarding the Web services the

Reachability nature to use the incidence matrix, the
equation of state or may reach the chart the analysis
method verification. Therefore is by realizes the
incidence matrix and the equation of state method
application procedure analysis in the PNML accuracy
verification proxy service combines the Petri-Net model
after PNML the resolver analysis Web.

C. Calculation method verification tool DaNAMiCS and
Tina

DaNAMiCS is a modeling verification tool, can use for
to analyze the Petri net and to color the Petri net, and can
reduce the modeling grid complexity. DaNAMiCS
includes suppressing the arc the support to help a system
model the foundation. The DaNAMiCS important merit
is that it supports some analysis tool and the method, for
instance matrix invariant and migration matrix, structure
analysis, as well as some simple and advanced
performance analysis. Because DaNAMiCS has
compared to other OWL-S verification tool more analysis
tools, we use XSLT to transform the PNML documents
are the wam forms, like this can induct them to
DaNAMiCS.

Tina (time Petri net analyzer) is a tool that analyzes the
Petri net and a time Petri net. It may construct and reach
the chart and can carry on the analysis to the Petri net's
structure:

The accurate analysis confirmed that a system's
integrity is maintained, it including analyzes net's
activeness and the boundedness. We will use the accuracy
to represent the net to be live and have, and with the
accuracy explained that this model net expressed the
correct system.

Besides these essential attributes, we must confirm
some other attributes, including net whether to contain
the final state, net whether safe (security), whether it is
lasting (durability) and so on.

1) Analysis tools and methods:
� Coverage diagram

We must inspect the construction algorithm of the
coverage diagram. It will need to renew, so that processes
increases newly suppresses the arc and has the capacity
storehouse institute order of complexity. Carry out the
algorithm that must be correct and the most superior
movement.

* Analyze the correctness with invariant
DaNAMiCS will be able to calculate the incidence

matrix. It will be able to determine P- and the T- invariant
from the incidence matrix. This may use for surveying
the boundedness and the deadbolt lock that does not exist.

* Analyze the correctness with coverage analysis
The user will be able to choose the option in

DaNAMiCS, which domain through assigns the
functional analysis to need to investigate. The coverage
diagram will be produced for the accuracy and tests.
� Coverage analysis

In many situations, the invariant analysis cannot
produce about the Petri net model accurate conclusion. It
needs to carry on the spreadability analysis. It is a two

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1611

© 2012 ACADEMY PUBLISHER

stepped process. The first stage is the coverage diagram
construction. The coverage diagram is all may reach
marking the set. The second section is this stage analysis.
The first stage is called the coverage diagram production,
has the greatest time consumption and the complexity;
the second section analyzes the section, it will process
afterward.

The spreadability analysis goal produces a coverage
diagram. The ordinary Petri net's cover analysis is obtains
through the following direct forward algorithm. However,
because of DaNAMiCS a Petri net's expansion class,
namely contains suppresses the arc the net, the time and
the immediate migration, and the storehouse capacity, the
coverage diagram structure including. We have to
construct our own algorithms, revise and greatly expand
the initial algorithm to find the overlay network.

2) The nature analysis of Coverage diagram:
After discussion chart product, now it will analyze the

coverage diagram to appraise the following nature, such
as activeness, boundedness, final state, security and
durable process and so on.

a) Activity
A Petri net most important nature is an activeness, this

relates judges some system whether to collapse or
whether systematic some part infinite loop. A Petri net's
live performance through the following two rules, but
determined from the coverage diagram:

* If a net is live and has, then it has the strong
connection coverage diagram.

* A net has, the net is lives, and when only all
migration in the coverage diagram connects in the
module the demonstration is a label finally at least. A
strong connection chart is the random point may arrive in
the chart from the chart through a series of ways other all
point charts. A chart's final module is a series of points. A
strong connection chart has a correct final module. Loads
the above two principles to carry on the spreadability
analysis to a useful form, we may say, if each migration
can cause a coverage diagram all final module's marking
to enable, then the net is active. Thus, the definite active
question became finds connects a module's question
finally, this was the algorithm question which easy to
understand. Abbreviate this algorithm specific code here.

b) Boundary analysis
The net has boundary. If in a Petri nets (N, M0),

institute's token quantity of each storehouse to may reach
marking willfully from M0 not to surpass limited number
k, then we should say that the Petri nets is K has or has
simply.

c) Terminal analysis
The final state is that in Petri net chart a marking may

arrive from each other. This is very important to the
software, namely, regardless of the current condition is
anything, can always arrive at the ultimate objective. The
final state existence is easy to calculate. If final, strong
connects module's quantity to be equal to 1, then this
Petri net contains the final state.

d) Security analysis
If a Petri net does not have the storehouse to be able in

the net the packet of energy including an above request to

be willing, then calls it safely. This is the Petri net very
important attribute; net's storehouse in the system is the
condition mark. If the storehouse contains a request to be
willing, then the condition is effective, otherwise the
condition is untenable. A storehouse contains is more
than a request to be willing not to have the logical
significance in these net's type, usually the expression
somewhere has a mistake in the design. As mentioned
above, if in a Petri net's storehouse institute the request is
willing quantity are most, then it is safe. The security
may be determined by all mark of linear search chart
simply. If has not met has the storehouse contains an
above request to be willing a marking, then this net is
safe.

e) Durability
If a Petri net enables the migration to random two, an

initiation's migration ever does not forbid other migration
to enable, then calls it lastingly. If a lasting net's
migration enables, it will maintain enables to initiate until
it.

IV. DL AND F-LOGIC VERIFICATION MODULE

The OWL language is based on description logic (DL),
uses in the knowledge which the concept code and the
concept inherit. Description logic is the first-order logical
subset. This paper is FOL subset design inference Flora-2
designs the OWL-S inference engine with one, can carry
on the inference effectively in the FOL expression subset,
moreover understand easily and use.

A. Specific organization illustration

Like Figure 3, the static model inference verification
module combined based on DL inference engine Pellet
and based on F-logic inference engine Flora-2, displays
its respective superiority to carry on the inference and the
verification.

In This paper develops the method uses DL inference
(Pellet) and F-logic system (Flora-2) pair of OWL the DL
ontology carries on a rotation inference process, this
ontology frame supports by Jena the semantic Web. In
order to unify both's merit, this paper and a series of F-
logic rule apply alternately the DL inference in the
ontology. During this process, the ontology exchanges in
two systems between. Therefore an OWL DL subset may
transform is F-logic, may also carry on the reverse
transformation.

Pellet+Flora-2 combination mainly based on ontology
language OWL DL. This “the DL territory” is constitutes
“the F-logic territory” by the F-logic rule the expansion.
The special place of combination is two domain hosts -
from the relations: the OWL ontology takes a host
(ontology); it uses F-logic to take from (ontology)
supports the tool. Generally the process may be described
as follows: First, the DL inference with the existing
knowledge reasoning new things information, outputs the
ontology together with the F-logic rule in an output
subset. If this inference obtains the recent information,
then this recent information is added to the original
ontology, becomes the new expansion the ontology, at the

1612 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

Figure 3. Architecture and evolution strategy.

same time will contain has the new expansion ontology
process to restart.

The ontology through and the F-logic rule inferential

reasoning increases the recent information in the entire
process from the DL inference, and evolves gradually.
The F-logic system uses a unidirectional knowledge
library, for example the system uses the rule receive
output fact which in each circulation defines. Therefore
needs to define as far as possible much knowledge in the
ontology scope and a clearing house needs the fact. The
F-logic rule only uses for to infer these not to be able by
OWL the DL direct processing inference duty.

a) Input components:
According to states the frame, the Pellet+Flora-2 input

by following constitutes:
Ontology: OWL the DL ontology, it uses the form

which Jena supports to carry on the code. It should
contain possesses infers kind and the attribute definition
by the F-logic rule.

Rule: In order to derive the new fact, but assigns a
series of F-logic rule. These rules code with the XML
mark. They are transformed through the Pellet+Flora-2
system F-logic. These input module uses in inferring the
process alternately.

b) Calculation strategy:
(1) The input is composed of two parts: A series of

F-logic rule and an OWL-S ontology. Two modules both
load to the Pellet+Flora-2 inducing equipment.

(2) The Jena frame use assigns the ontology to
construct the model; this model binds to OWL DL on
inference (Pellet). At the same time, the rule transforms
from the XML form to the regular F-logic grammar.

(3) DL inference (Pellet) uses for from the model
which establishes to infer the recent information. The
new fact becomes the ontology a part and is verified with
heavy responsibility for the primitive fact. If the inference
cannot further infer the new things information, the
process continues the next step.

(4) Output (initial and inference) an application fact
subset, and transforms is F-logic. Transforms the fact and
the F-logic rule submits together to the F-logic system.

(5) In order to infer the recent information, the F-
logic system applies the F-logic rule which in the
knowledge library defines.

(6) The F-logic knowledge library submits to the
Pellet+Flora-2 inducing equipment and transforms an
OWL compatible grammar. The transformation
knowledge library uses for to construct a new temporary
ontology.

(7) Jena the frame inspects whether all new
ontology's information has defined in the old ontology or
certain information whether is new. If is the latter, then
two main bodies both must merge, for example, increases
the recent information to expand the ontology to the old
ontology at the same time process 3 to restart in the step.
If possesses by the Flora-2 inferential reasoning
information already is this ontology part, and does not
have to discover the information again, then the process
terminates.

Describes the process produces an evolved the
ontology. Each circulation increases some recent
information, enables the next circulation to push causes
more information. Finally, DL inference (Pellet) and the
F-logic system can discover the recent information. Both
construct the model, the ontology as well as the output
subset, they are complete and stable. But if has the new
rule definition or new fact increase, has the possibility to
need to increase the circulation, until achieves a new
steady state.

The OWL test defines an OWL parallel shot with the
example documents to be as follows: A OWL uniform
checker takes documents the input, the returns are
consistent, inconsistent or the unknown result.
� Uniformity check

This inspection causes ontology to remove willfully
the contradictory fact. The OWL abstract syntax and the
semantic documents provide an ontology uniform
formalization definition, but Pellet uses this formalized
definition to carry on the inspection. In the DL
terminology, this is inspects one (this is equal about Tbox
to an OWL uniform checker) the Abox uniform operation.
� Concept satisfaction

This inspects one kind whether to have the possibility
to have the random example. If the class does not satisfy,
it will then define a kind of example to cause the entire
ontology not to be inconsistent.
� Classification

Calculate each naming class between the subclass
relations to found the class to inherit completely. The
class inherits may use for to reply inquires, thus obtains
kind of all direct subclasses or the only direct subclass.
� Realization

Found one individual respective most special kind; or
in other words, for each individual account direct type.
Because the direct type is the definition which inherits
about one kind, therefore realizes can only after the
classification carries out. The use classification inherits,
may also obtain all types for this individual.

c) Combination of Jena and Pellet inference engine:
Jena is uses for to construct the semantic net specially

the application software, it was RDF, RDFS and OWL

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1613

© 2012 ACADEMY PUBLISHER

has provided the environment which realized
programmable. The inference function is in a Jena sub-
system. Jena provides the inducing equipment with Racer,
FaCT, Pellet and so on is also same, is aims at the
ontology the inducing equipment, but Jena is in itself not
“the inducing equipment designs the expert”, its oneself
contains the inducing equipment basically is one kind of
CLISP coordination ontology domain production pattern
rule forward reasoning system. Therefore, its operating
efficiency is not very high. Front end but it allows
hanging through the DIG connection receives on the
backstage different inference engine. Thus, Racer, FaCT,
Pellet like this may also be used in Jean “specialized” a
inducing equipment.

In order to unify self-definition rule and complete
OWL DL function of Pellet, presently the inducing
equipment lamination method, similar to the self-
definition rule, unifying OWL/RDFS, are used to carry
on the code test to the front ontology example. First uses
Pellet for the source data establishment inducing
equipment model, establishes one again from the
definition rule inducing equipment, this inducing
equipment takes the Pellet model the first floor data use.
In this kind of situation the first floor Pellet inducing
equipment may understand from the define name attribute
hasSibling transitivity. The first floor inference function
can carry on independent inference computation and the
results are submitted to the upper formation inducing
equipment, however the upper formation inducing
equipment may take the inference result of Pellet as
source data to carry on self-defining relation calculation
once more.

The inducing equipment stack-up used exterior
inducing equipment Pellet to have the inference
completeness at the same time and the decidability OWL
DL support, on the other hand fully has also displayed
from definition rule nimble widespread superiority. This
kind of stack-up is uses one kind of function which start
the source software can realize to be strong at present,
result complete semantics inducing equipment solution..

d) Frorid-2 and F-OWL tools:
F-OWL is one infers the engine based on Flora-2 to the

OWL ontology. It uses object-oriented knowledge library
language Flora-2 to transform F-logic, HiLog and the
migration logic unified language is XSB, and infers
engine's application procedure using XSB to carry out in
the development platform. The F-OWL essential
characteristic including carries on the inference with the
OWL ontology model ability, defines the axiom rule
support knowledge parallel shot ability with Flora-2, as
well as is the Java application integrates opening
application program interface (API).

F-OWL is described and expanded with Flora-2 in
XSB. F-OWL provides command line connection; a
simple graphical user interface and Java API meet the
different need. Comes with F-OWL on the ontology to
infer is usually composed of the following four steps:

(1) Load attachment application procedure related
rule to engine in;

(2) Increases new FDF and the OWL statement (for
example ontology or assertion) to the engine. In the OWL
sentence's triples (ontology, predicate, and object) by the
transformation are 2 frame styles: Ontology (predicate,
object) @ model.

(3) Inquires the engine. RDF and the OWL rule is
the recursion uses for to have all legitimate triples. If an
inquiry does not have the variable, when a question's
explanation was discovered that returns to true the reply.
If the question includes the variable, then the variable
with substitutes from the explanation and the returns
value;

(4) If needs, the ontology and triples may delete.
Otherwise, XSB retrieves triples which the table the form
preservation calculates causes afterward inquiry to be
more rapid.

F-OWL uses one to infer the OWL ontology based on
the frame system. F-OWL supports knowledge library's
parallel shot, extracts the hideaway knowledge through
the resolution, and supports through the introduction rule
carries on further complex infers. F-OWL is a full
function inference engine, it easy to use and can with
many kinds of query languages and the regular language
integration.

Under the open Web environment, usually the tentative
data is incomplete, and all facts are by no means known.
How will this paper study this fact to affect one to infer
engine's movement? In semantic Web, an inference
engine possibly does not need to produce the evidence,
but should be able to inspect the evidence. We will use F-
OWL to analyze in semantic Web the information and the
evidence.

In an independent system the nonuniformity is the
danger, but should control it in some kind of degree. But
must control in semantic Web the nonuniformity is
difficult. Therefore it needs to have in semantic Web
processes nonuniform and the contradictory information
specific mechanism. This mechanism has two steps:
Surveys inconsistent and analyzes not consistently.

The inconsistent survey is based on the inference
engine's nonuniform statement. The possible value and
the ontology element verifies with forcefully can with the
relational restraint conflict, causes the nonuniformity. For
example, owl:equivalentClass, imposing a restraint on
resources whose ontology is equivalence class, is just
similar to owl:disjointWith imposing a restraint to the
ontology on resources whose ontology is not a
equivalence class. Triples (a owl: equivalentClass b) and
(a owl:disjointWith b) has not caused direct inconsistency,
until using survey rule that (A owl:equivalentClass B) &
(A owl:disjointWith B) is inconsistent.

When surveys the nonuniformity, Namespaces can be
helpful to the track nonuniform origin, marks each Web
page and does not have two righteousness in semantic
Web to process it. Then infer the engine to connect the
trust system to appraise the name space the credibility.
[14] and [15] in maintain the semantic Web credible
system aspect have obtained many remarkable
achievements and the thought. Once has the credible
appraisal result, the agent may take three different

1614 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

measures: (a) through infers that which the engine
accepts recommends; when (b) both has been incredible
rejects; (c) lets the user choose.

B. From OWL DL to F-logic

The description relation between description logic and
F-logic may be appled to the precise structure of OWL
DL. As mentioned above, RDF and OWL are based on
composition of a triples: ontology, a predicate and an
object sentence. Therefore, an OWL ontology is
constructed by a list sentences. The assigned
transformation has used F-logic basic atom and molecule.
With the F-logic rules, OWL the DL structure can carry
on more transformations.

From XML to the F-logic rule transformation is and
the fact transformation close related. Especially a
restraint proposition's transformation to OWL the DL
proposition to the F-logic transformation is comparable.
Moreover, the switching process relies on the ontology,
applies on this ontology the restraint and the rule. First, a
restraint (rule) the proposition ontology, the attribute, the
object may through use URIs to quote in the ontology the
resources, either expression variable, either founds the
new resources. Next, has some attributes to define as the
function attribute, and this definition is a ontology part.
This need to use a function attribute to transform a
regular proposition is F-logic. Through constructs the
predicate to use the F-logic equality internally, or assigns
the predicate, the predicate to transform by the direct way
F-logic.

C. Combination inference of Pellet and Flora-2

The architecture shows as Figure 3. The point core is
the Jena frame. It contains one to the ontology, the fact
and the rule knowledge library (for example concept and
attribute). To the OWL-S inference, a Pellet inference's
example connects the point.

Carries on the inference main idea with DL+Flora-2 is
divides the service is (i) OWL the concept (TBox)
inference, the (ii) rule application, as well as (iii) inherits.
The inference fact may in the OWL part (ABox, for
example transitivity, reflexivity, symmetry), or permits
through the rule to the more complex knowledge
inferential reasoning. Knowledge library KB=(L, P, D),
thus by the expression is

� OWL ontology L,
� Regular finite set P (by F-logic or RuleML style

XML mark), as well as
� inherits the atom (default) finite set D.
The computational process is as follows, it starts on the

Jena point by the OWL-S ontology:
The first step: Calculates one to assign the fact

storehouse the OWL-S model. Because it’s open world
characteristic, the OWL/DL inference only contains the
limit denial. Random will derive by the consideration will
be afterward “possible”. The OWL-S inference first
needs to guarantee completely safely.

The second step: Derivation rule application. All
related fact and the rule output Flora-2 together, bottom-
up appraises by its application; the fact which produces as

the result returns to related to based on the Jena core. In
the rule's situation, it in later the step the fact which
obtains through the OWL-S inference inferential
reasoning is also completely safe.

Circulation: The above step is the iteration, could not
infer again until the new fact.

Inherits the step: When the OWL-S inference and the
rule application cannot further infer the fact, then the
default inherits occurs only.

Iteration: So long as the new fact is tacitly approved
inherits infers, the above internal iteration will restart.
This corresponding default inherits the F-logic semantics
- using the default inherits only when the rule applies is
unable to infer again takes the post of the He Xin fact the
fixed point, restarts iterative - this explanation is “may
infer”, and the default logic semantics is compatible.

In summary, this paper verification tool supports the
inference type includes:
� Assigns a kind of type the subclass or the ultra class;
� Assigns the attribute type the sub-attribute or the

ultra attribute;
� Assigns the example is the class (all or direct ultra

kinds) He Zhong type;
� Two assign the example or two types whether same

or different;
� Example's assigns the attribute value is anything;
� Examples of a kind of type;

Assign the example (current only to be able to gain
direct attribute) all attributes, as well as to obtain the
more inquiry abilities to combine in together inquiry.

D. Example

The following takes requirements meta model of an
airline seat reservation system as an example, to validate
the model instance.

Fig 4. The converted OWL-S document using the

above mapping rules from UML to OWL-S
After transforming UML of software requirements to

OWL-S documents, we use OWLSVerifyTool to convert
OWL-S document further to PNML document describing
with Petri nets.

Fig 7. The airline booking service in Petri nets

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1615

© 2012 ACADEMY PUBLISHER

Finally we use OWLSVerifyTool to carry on dynamic
model verification and static model verification, and
obtain the corresponding results.

V. CONCLUSION

This paper has realized the integration static model and
the dynamic model inspection is a body's automated
verification tool prototype; In the static model aspect,
gives the method which DL description logic reasoning
(Pellet) and the F-logic rule (Flora-2) unifies, has used
two kind of system forward reasoning fully and latter to
the inference merit, combined based on DL inference
engine Pellet and based on F-logic inference engine
Flora-2, displays its respective superiority to carry on the
inference and the verification. An OWL DL subset may
transform is F-logic, and also provides the reverse
support.

Should automate the verification tool prototype to be
able service to provide the effective verification support
to OWL-S the description Web, have the important
theory and the practical significance, and has the
widespread application prospect.

ACKNOWLEDGMENT

This work was supported in part by a grant from
Shenzhen Science and Technology Program
(JC201006020820A and JC201006020791A), Team of
Scientific and Technological Innovation of Shenzhen
Institute of Information Technology (CXTD2-002),
Natural Science Foundation of Guangdong Province,
China (S2011040000672), Guangdong Provincial
Education and Science Project of the 11th "five-year
plan"(2010tjk411), Research Fund of Shenzhen Institute
of Information Technology (YB201008, JY2010003).

REFERENCES

[1] He Keqing, Liang Peng, Li Bing , et al. Meta-modeling of
Requirement for Networked Software, An Open
Hierarchical & Cooperative Unified Requirement
Framework URF [J] .DCDIS2B , 2007 , 14 (S6) : 293-
298..

[2] Charles Haley, Robin Laney, Jonathan Moffett, Bashar
Nuseibeh, "Security Requirements Engineering: A
Framework for Representation and Analysis," IEEE
Transactions on Software Engineering, vol. 34, no. 1, pp.
133-153, Jan. 2008, doi:10.1109/TSE.2007.70754.

[3] Ivan Jureta, John Mylopoulos, Stephane Faulkner,
"Revisiting the Core Ontology and Problem in
Requirements Engineering," re, pp.71-80, 2008 16th IEEE
International Requirements Engineering Conference, 2008

[4] Wilco Engelsman, Henk Jonkers, Henry M. Franken and
Maria-Eugenia Iacob, Architecture-Driven Requirements
Engineering, Advances in Enterprise Engineering II,
Lecture Notes in Business Information Processing, 2009,
Volume 28, 134-15

[5] [3B] Matthias Klusch, Benedikt Fries, and Katia Sycara;
OWLS-MX: A hybrid Semantic Web service matchmaker
for OWL-S services, Web Semantics: Science, Services
and Agents on the World Wide Web, Volume 7, Issue 2,
April 2009, pp. 121-133.

[6] Cesare Pautasso, Olaf Zimmermann Frank Leymann,
Restful web services vs. "big"' web services: making the

right architectural decision, WWW '08 Proceeding of the
17th international conference on World Wide Web, pp.
805-814

[7] John Erickson, Keng Siau, Web Services, Service-Oriented
Computing, and Service-Oriented Architecture: Separating
Hype from Reality, Journal of Database Management
(JDM), Volume 19, Issue 3. 2008. pp. 13-17.

[8] Shoichi Morimoto, A Survey of Formal Verification for
Business Process Modeling, Computational Science –
ICCS 2008, Lecture Notes in Computer Science, 2008,
Volume 5102/2008,Springer, pp.514-522.

[9] Qi Guo, Tianshi Chen, Haihua Shen, Yunji Chen, Weiwu
Hu, On-the-Fly Reduction of Stimuli for Functional
Verification, ats, 2010 19th IEEE Asian Test Symposium,
2010, pp.448-454.

[10] Feng He, Jiajin Le. Hierarchical Petri-nets model for the
design of e-learning system. Second International
Conference, Edutainment 2007, Hong Kong, China, June
2007. Lecture Notes in Computer Science, Vol. 4469,
pp.283-292.

[11] Juan C. Vidal, Manuel Lama, Alberto Bugarín, OPENET:
Ontology-based engine for high-level Petri nets, Expert
Systems with Applications, Volume 37, Issue 9, September
2010, pp. 6493-6509

[12] Sylvain Hallé, Graham Hughes, Tevfik Bultan and Muath
Alkhalaf, Generating Interface Grammars from WSDL for
Automated Verification of Web Services, Service-Oriented
Computing, Lecture Notes in Computer Science, 2009,
Volume 5900/2009, pp.516-530.

[13] Moldt, D., Ortmann, J.: DaGen: A Tool for Automatic
Translation from DAML-S to High-Level Petri Nets. In
Wermelinger, M., Margaria, T., eds.: FASE 2004, LNCS
2984, Springer (2004) 209–213D. Kornack and P. Rakic,
“Cell Proliferation without Neurogenesis in Adult Primate
Neocortex,” Science, vol. 294, Dec. 2001, pp. 2127-2130

[14] Matthew Staats and Mats P. E. Heimdahl: Partial
Translation Verification for Untrusted Code-Generators,
Formal Methods and Software Engineering, Lecture Notes
in Computer Science, 2008, Volume 5256/2008, pp.226-
237.

[15] Emilia Oikarinen, Tomi Janhunen: A Translation-based
Approach to the Verification of Modular Equivalence,
Journal of Logic and Computation, Volume19, Issue4,
May 6, 2008, pp. 591-613.

Tao He received the PhD
degrees in computer science from
the Shanghai University of
Shanghai, in 2009. From 2009 to
2011, he was an associate professor
in the Institute of Shenzhen Institute
of Information Technology,
Shenzhen, China. His research

interests are in software engineering, software testing,
software formalization as well as Web engineering.

Liping Li received the PhD degrees in computer science
from the Shanghai University of Shanghai, in 2011. From 2007
to 2011, she was an associate professor in the Shanghai Second
Polytechnic University, Shanghai, China. Her research interests
are in software engineering, software testing, software
formalization as well as Web engineering.

1616 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

