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Abstract— Security is an important non-functional require-
ment that should be analyzed in any system or software
that is potentially exposed to security threats. Since we can’t
manage what we don’t measure, it is not enough to address
only the qualitative assessment of security. In this paper,
we propose a novel approach that leads to a qualitative
and quantitative analysis of communication protocols. Our
approach is based on probabilistic model-checking and
probabilistic attack scenarios. To the best of our knowledge,
the present work is the first initiative that combines these two
techniques in the verification of security of communication
protocol. Considering that security attacks are random in
nature, we quantify this randomness using probability values
denoting the likelihoods of attacks to occur. The composed
model formed by the attack scenario and the system model is
then analyzed using the probabilistic model-checker PRISM
against a set of security and performance requirements.
As a case study, we demonstrated the applicability of our
approach on Secure Real-time Transport Protocol over Real-
Time Streaming Protocol (RTSP/SRTP).

I. INTRODUCTION

The application-level protocols are mainly used for

control and ensure the delivery of data with real-time

properties that respect protocol policies. They are widely

used by many applications such as streaming video, IP

telephony, video conferences, internet radio and distance

learning. Currently, they provide an extensible framework

to enable controlled, on-demand delivery of real-time

data, such as audio and video based applications. The

main problem that they suffer from is security which

affects the application performance. In this paper, we ad-

dress the issue of security evaluation of a communication

protocol based on their behavioural models to analyze

how well a protocol is meeting its security requirements.

Furthermore, we would like to prove that the protocol

is free from deadlocks [1] then improve network per-

formance criteria such as communication quality due to

the fact that a “5% rate inefficiency causes a significant

degradation in audio/video quality” [2].

From a security perspective, a strong system is one in

which the cost of an attack is greater than the potential

gain to the attacker. Conversely, a weak system is one

where the cost of an attack is less than the potential

gain. The cost of an attack should take into account

not only money, but also time of recovery and potential

for criminal punishment [3]. Current research initiatives

focus mainly on qualitative model checking to ensure the

correctness of the protocol under study, while security

evaluation of a communication protocol is much less

common.

Following the characteristic of a communication pro-

tocol, we address security issues by running an attack

scenario composed of a set of proposed attacks against the

protocol model using Model Checking technique. Model

Checking [4], [5] is a formal verification technique that

can detect design faults that are difficult to discover other-

wise. In addition, it is a counterexample-based technique.

Basically, it verifies a properties/constraints against a

model through exhaustive state-space search exploration,

and generates a trace of states called a counterexample

when the property is violated.

In this work, we use the PRISM model checker [6] to

quantify the protocol security by modeling the protocol

as a probabilistic timed automata [7] (PTA) that interacts

with the attacks which are also expressed as PTAs.

Then, security properties are expressed using probabilistic

temporal logic PCTL [5]. We selected PTAs as the best

formalism to express the behaviour of a communication

protocol because it’s easy to exhibit the main proto-

col features such as non-determinism and probabilistic

choice. PTAs can be seen as an extension to probabilistic

automata and finite state machine. In addition, PTAs

supports the notion of time which provides the real time

flavor for the protocol. In this paper, in addition to the

verification contribution, we provide a formal definition

for PRISM as well as a formal semantic of an attack

scenario. To our knowledge, this is the first time this has

been done.

The remainder of this paper is organized as follows:

Section II presents the related work. Section III describes

our approach. The attack scenario is formally presented

in Section IV and the probabilistic verification technique

is detailed in Section V. The PRISM semantic is given

in the Section VI. Section VII presents the results of

the application of our approach on Secure Real-time

Transport Protocol over Real-Time Streaming Protocol

(RTSP/SRTP). Finally, we conclude the paper in Section

VIII and present our future works.

II. RELATED WORK

In this section, we cite different works related to

our work and the ones concerning RTSP modeling and

network attacks in RTSP.
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Chaki and Data [8] presented ASPIER, a model-

checking based framework dedicated to security protocol.

The tool analysis authentication and secrecy properties.

The framework supports two phases: protocol compilation

and verification. In the first, the C program describing

the protocol is translated into ASPIER protocol language

by extracting its corresponding Control Flow Graph.

Secondly, CEGAR approach is applied to verify the

ASPIER model by involving predicates to abstract the real

behaviour. But, this tool is limited only to two security

requirements are secrecy and authentication.

Clarke et al. [9] presented BRUTUS, a tool for ver-

ifying properties of security protocols. First, a honest

principal with adversaries are modeled. Next, the protocol

requirements are specified by using first-order logic that

includes past-time modal operator. BRUTUS explores the

state space using depth-first search with integration of

partial-order with symmetry reductions. This tool don’t

cover security quantification and how adversaries are

modeled.

Akbarzadeh and Azgomi [10] use security protocol lan-

guage to describe a protocol with a possible attack. This

presentation is transformed into a variety of stochastic

Petri nets called the colored stochastic activity networks

(CSAN) supported by PDETool. They use PRISM to

verify the generated CSAN model but they didn’t show

how the possible attacks are selected and how security

can be evaluated.

Norman and Shmatikov [11] use PRISM model checker

to analyze property as a contract signing protocol: fair-

ness, timeliness, Rabins probabilistic protocol for fair

commitment exchange. The probabilistic contract sign-

ing protocol of Ben-Or, Goldreich, Micali, and Rivest;

(BGMR) and a randomized protocol for signing contracts

of Even, Goldreich, and Lempel. This work is restricted

in a specific protocol which is contract signing protocol.

Xin et al. [12] proposed a performance analysis frame-

work for RTSP-based applications. It is mainly based

on four modules which include: a protocol identification

module, an application layer session management module,

an attack model module and an attack analysis module.

The measured performance is the time delay between the

occurrence of an attack and its detection. The authors

didn’t show how those modules work and interact. Lei

and Dejian [13] implemented a Distributed Denial-of-

Service tool for streaming applications. The tool measures

streaming media applications performance by taking into

consideration evaluated metrics such as: memory cost,

time cost per disk read/write, CPU cost and current send

rate. This proposed tool is limited to the performance

instead of security. Bilien et al. [14] studied the possibility

of establishing a secure VoIP telephone call using SIP.

The security was introduced either by SRTP or IPSec and

measured with both TCP and TLS. The measurements

of the delays shows that the call establishment delay

will not be significantly affected by introducing these

security protocols. We observe that their work focuses

only on delay. Turki and Abdul Waheed [14] showed

Figure 1. Security Policies Evaluation Approach

the verification of RTSP without security features by

modeling its behaviour using the PROMELA modeling

language. The obtained model is then fed to the SPIN

model checker. Since, the results given by SPIN are

qualitative, it’s difficult to evaluate the security risk of

a protocol.

The cited works in contrast to our approach do not

handle the models’ interaction with probabilistic attacks

and security estimation based on probabilistic symbolic

checkers for streaming/communication protocols.

III. APPROACH

We present in this section our approach for the secu-

rity policies verification and performance analysis of a

communication protocol designed as probabilistic timed

automata (PTA). In Figure 1, the proposed approach is

illustrated. The approach consists in mapping the studied

protocol along with its related attack scenario (studied in

next section) to a corresponding composed PTA. Also, it

can be extended to other mathematical formalisms such

as priced probabilistic timed automata. In addition, it is

supported by the most known probabilistic model checker

such as UPPAAL [15] and PRISM [6]. From our analysis,

we found that PRISM1 is more scalable than UPPAAL

while it is probabilistic symbolic-based model checker.

The combined PTA of the resulting model is encoded

into the PRISM input language. The policies requirements

are expressed in PCTL in order to evaluate the security

requirements, the probabilities for best/worst cases.

IV. ATTACK SCENARIO

In the present section, we present in detail the attack

behavior and show its impact on a specific application

122486 downloads of PRISM to October 11, 2011
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such as RTSP. As defined in [16], an attack is an attempt

to gain unauthorized access to an Information System’s

(IS) services, resources, or information or the attempt to

compromise an ISs integrity, availability, or confidential-

ity, as applicable. Formally, the behaviour of an attack

scenario can be described by a compostion of PTAs and

can be expressed with the following BNF syntax form:

Att = ǫ | atti ∨p att | attj ∧ att | attk · att
where:

• ǫ is the empty attack

• atti ∨p att means the attack atti can be executed

by a probability (p) else att will be launched by a

probability (1-p)

• attj ∧ att means the attack attj executes in parallel

with att
• attk · att means the attack att execute when attj

will finish

The behaviour of each attack is a PTA where the atomic

action of an attack are: send a message(!m), receive a

message (?m), or either modify a message (m = y). In

the definition 4.1, we present the formal definition of a

PTA.

Definition 4.1 (Probabilistic Timed Automata):
A probabilistic timed automata (PTA) is a tuple

M = (S, s, αM, δM,L) where:

• S is a finite set of states,

• s is an initial state,

• αM is a finite alphabet,

• δM ⊆ S×αM×Dist (S) is a probabilistic transition

relation,

• L : S → 2AP is a labelling function mapping each

state to a set of atomic propositions taken from a set

AP constrained with time.

The composition of more than one PTA is defined as

follow:

Definition 4.2 (Parallel Composition of PTAs):
Let M1 = (S1, s1, αM1

, δM1
,L1) and M2 =

(S2, s2, αM2
, δM2

,L2) are two PTAs. Their

parallel composition M1 ‖ M2 is a PTA

M = (S1 × S2, (s1, s2), αM1
∪ αM2

, δM1‖ M2
,L)

where δM1‖ M2
is defined such that (s1, s2)

a
−→ µ1 × µ2

if and only if the following holds:

• s1
a
−→ µ1 and s2

a
−→ µ2 and a ∈ αM1

∩ αM2

• s1
a
−→ µ1 and µ2 = ηs2 and a ∈ αM1

\αM2
∪ τ

• s2
a
−→ µ2 and µ1 = ηs1 and a ∈ αM2

\αM1
∪ τ

• L(s1, s2) = L(s1) ∪ L(s2)
We can define, a probabilistic choice between at least

two PTA’s (PTA1 and PTA2) as a PTA with a special

characteristic. The initial state of the global PTA has

two probabilistic paths. One with a probability (p) and

followed by PTA1, the second one with a probability (1-

p) and followed by PTA2. The formal composition with

a probabilistic choice is given in the Definition 4.4.

Definition 4.3 (Probabilistic choice between PTAs):
Let M1 = (S1, s1, αM1

, δM1
,L1) and M2 =

(S2, s2, αM2
, δM2

,L2) are two PTAs. The

probabilistic choice between M1 and M2 is

M1 ∨p M2 in a given state sref is a PTA M =

((S1 ∪ s1)× (S2 ∪ s2), sref , αM1
∪ αM2

, δM1‖ M2
,L)

where δM1∨p M2
is defined such that:

• sref
p
−→ s1

• sref
1−p
−−→ s2

The sequential Composition of at least two PTA’s (PTA1

and PTA2) is a PTA where the final state of PTA1 is

replaced by the first state of PTA2. Its formal definition

is given in the Definition 4.4.

Definition 4.4 (Sequential Composition of PTAs):
Let M1 = (S1, s1, αM1

, δM1
,L1) and M2 =

(S2, s2, αM2
, δM2

,L2) are two PTAs. The

probabilistic choice between M1 and M2 is

M1.M2 in a given state sref is a PTA M =
(S1 × (S2 ∪ s2), s1, αM1

∪ αM2
, δM1‖ M2

,L) where

δM1∨p M2
is defined such that:

• Final(M1) −→ s2
In the following we discuss different attacks related

to the RTSP protocol. For each attack represented as a

probabilistic automata, a time constraint in the form of

(t < value) is added to each transition2.

A. Flooding attack

This attack aims at depleting the resources of RTSP

services so that they become unavailable for processing

legitimate requests or it forces the service’s processing

time to be considerably extended. In Figure 2, we present

the behaviour of this attack for the RTSP server. The

attacker has two choices to flood the server either by

DESCRIBE messages with a probability of measure p1 or

by SETUP messages with a probability of measure 1−p1.

If the attacker fail, it can repeat sending the same message

with a probability of p2 for DESCRIBE messages or p3
for SETUP messages. Also, it can end the attack by a

probability of 1− p2 (or 1− p3 for the second one).

Start Describe

Setup End

p1

1− p1

p2

1− p2

p3
1− p3

Figure 2. Behaviour of Flooding attack

B. Session Hijacking attack

An attacker builds a message such that it is able to

masquerade as an authorized message from a trusted

principal. As a result, consumers of these messages can be

manipulated into responding or processing the deceptive

message. The attacker can receive a session ID by a

probability (P) then modify it by a probability (P1) and

send it by a probability (P2). Finally, it can have all the

rights that a legal client has and access the server resource.

2for the clarity of the figure, those constraints are not shown
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Start Intercept Modify End
p

p1

1− p1

p2

1− p2

Figure 3. Behaviour of Session Hijacking attack

C. TEARDOWN attack

TEARDOWN attack terminates the communication

session of the client. We show in Figure 4 the behaviour

of a TEARDOWN attack against an RTSP server. The

attacker starts by preparing to send a TEARDOWN mes-

sage. In the case where the intruder has no knowledge

regarding this attack’s success, the attacker could repeat

sending the TEARDOWN messages with a probability p
or the messages may stop which would end the cycle by

a probability of 1− p.

Start Teardown End
p1

p2

1− p2

Figure 4. Behaviour of TEARDOWN attack

D. Example of an Attack Scenario

Basing on the previous attacks, we construct the attack

scenario related to RTSP protocol as presented by in

Figure 5. It is composed from four attacks are: 1) Describe

flooding attack, 2) Setup hijacking session attack, 3)

intercept RTSP message followed by teardown attack,

and 4) play or pause flooding attack. Each attack can be

launched by a uniform distribution 0.25 each.

Figure 5. RTSP Attack Scenario

V. PROBABILISTIC VERIFICATION

The actual probabilistic model checkers such as PRISM

are mainly based on the stochastic version of the classical

shortest path problem. This problem firstly is formulated

by Eaton and Zadeh [17] who called it the problem of

pursuit.
In this section, we introduce probability computation in a

symbolic model checker. It proceeds by induction on the

parse tree of the formula, as in the case of CTL model

checking [4]. To show that, we select the MDP as a special

[18] formalism of probabilistic automata that exhibit both

probabilistic and nondeterministic behaviour. It is defined

in the Definition 5.1.

Definition 5.1 (Markov Decision Process):A Markov

decision process (MDP) is a tuple M = (S, s, αM, δM,L)
where:

• S is a finite set of states,

• s is an initial state,

• αM is a finite alphabet,

• δM : S× αM → Dist (S) is a (partial) probabilistic

transition function,

• L : S → 2AP is a labeling function mapping each

state to a set of atomic propositions taken from a set

AP.

To reason formally about MDPs, we need a probabilistic

space over it. And, as it is a nondeterministic behaviour,

the adversarynotion is introduced to decide which action

should be chosen in any state of the MDP. In general,

the choice is made depending on the history execution

of the MDP. The Definition 5.2 describes the adversary

function.

Definition 5.2 (Adversary):An adversary of an MDP

M = (S, s, αM, δM,L) is a function σ : FPathM →
Dist(αM ) that maps every finite path of the system onto

a distribution where:

• σ(ρ)(a) > 0 only if a ∈ A(last(ρ)),
• FPathM is a finite set of nodes (states),

• Dist(αM ) is a labeled function assigning to each

node of the automaton the set of atomic propositions

that are true in that node.

Reachability analysis is the kernel of a model checker,

and the probabilistic reachability refers to the mini-

mum/maximum probability with which a given set of

states of a probabilistic system (T ⊆ S) can be reached

from a particular state (s). To this end, reachs (T ) is the

set of paths that starts from s and contains a state from

T .

reachs (T ) = {π ∈ IPathM,s|π (i) ∈ Tandi ∈ N}
=

⋃

ρ∈ I{π ∈ IPathM,s|π has prefix ρ} , where I is

the (countable) set of all finite paths from s ending in T,

and each element of this union is measurable. And, this

is equivalent to compute the probabilistic bounds of the

reached paths:

Pmin
M,s (reachs (T )) = infσ∈AdvMProbσM,s(s, ψ)(1)

Pmax
M,s (reachs (T )) = supσ∈AdvMProbσM,s(s, ψ)(2)

In fact, find the probability xs = Pmin
M,s (reachs (T )), s ∈

S is the unique solution of the following linear program-

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1491

© 2012 ACADEMY PUBLISHER



ming problem:

maxΣs∈ Sxs
xs = 1 &∀ s ∈ Ss=1

min

xs = 0 &∀ s ∈ Ss=0
min

xs ≤
∑

δM (s, a)(s
′

) · xs′ ∀ s /∈ (Ss=1
min ∪ Ss=0

min)
In the case of xs = Pmax

M,s (reachs (T )), s ∈ S it is simi-

lar to the previous problem following linear programming

problem:

minΣs∈ Sxs
xs = 1&∀ s ∈ Ss=1

min

xs = 0&∀ s ∈ Ss=0
min

xs ≤
∑

δM (s, a)(s
′

) · xs′ ∀ s /∈ (Ss=1
min ∪ Ss=0

min)

Bertsekas and Tsitsiklis [17], prove that this mini-

mum is the unique solution for Bellman’s equation and

the successive approximation methods converge to the

optimal vector. This yield to the fact that the linear

programming problem can be solved as an equation

system problem. This mean, find the probability xs =
Pmin
M,s (reachs (T )), s ∈ S is the unique solution of

Bellman’s equation:

Xs =







1 if s ∈ Ss=1
min

0 if s ∈ Ss=0
min

mina∈ A(s)

∑

δM (s, a)(s
′

) · Xs′ otherwise
(3)

The Computing reachability probabilities can be

achieved through three ways: value iteration, the linear

programming problem or policy iteration. The first one is

the most used in practice due to its approximate algorithm

based on an iterative solution method which corresponds

to fixed point computation. From a practice experience,

the second approach is more scalable than the first one.

To complete the model checker process, a property

should be specified to verify if it holds or not, in other

case by which percent it can be true. For that, different

mechanism are dedicated such as temporal logic and

special automata. In our work, we selected a probabilistic

extension of CTL temporal logic called PCTL. It is

supported by the most tools and its BNF grammar is

expressed as follow:

Definition 5.3 (PCTL Syntax):The syntax of PCTL is

as follows:

φ ::= true|a |φ ∧ φ | ¬φ |P⊲⊳ p[ψ]
ψ ::= Xφ|φU≤ kφ|φUφ
where a is an atomic proposition, k ∈ N ,p ∈ [0, 1], and

⊲⊳∈ {<,≤, >,≥}.

To specify a satisfaction relation of a PCTL formula in a

state s, a class of adversaries (Adv) is defined [18]. It is

true if it is satisfied under all adversaries of a given MDP.

The satisfaction relation (|=Adv) of PCTL is defined

[18] inductively as follow:

• s |=Adv True Always
• s |=Adv a ⇔ a ∈ L(s)
• s |=Adv φ1 ∧ φ2 ⇔ s |=Adv φ1 ∧ s |=Adv φ2

• s |=Adv ¬φ ⇔ s �|=Adv φ
• s |=Adv P⊲⊳p[ψ] ⇔
• π |=Adv Xφ ⇔ π(1) |=Adv Xφ

• π |=Adv φ1 U≤ k φ2 ⇔ ∃ i ≥ k.(π(i) |=Adv

φ2 ∧ π(j) |=Adv φ1 ∀ j < i)
• π |=Adv φ1 Uφ2 ⇔ ∃ k ≥ 0. π |=Adv φ1 U≤ k φ2

From the basic PCTL syntax, several other useful opera-

tors can derived with a logical equivalences, such as:

1) Future: Fφ ≡ true U φ
and F≤ kφ ≡ true U≤ k φ.

2) Generally: Gφ ≡ ¬(F¬φ)
and G≤ kφ ≡ ¬(F≤ k¬φ).

Here , we will consider the basic PCTL operators “Next

and “Until to compute minimum of probability to reach

states that satisfy a formula ψ of type Xφ and φ1U
≤ kφ2.

In the case of ψ = Xφ, we have: Pmin
S (Xφ) =

mina∈ A(s)

∑

s′∈ Sat(φ) δM (s, a)(s
′

) · s′

In the case of ψ = φ1U
≤ kφ2, we have:

xls =















1 if s ∈ Sat(φ2)
0 if s /∈ (Sat(φ1) ∪ Sat(φ2))
0if s ∈ Sat(φ1)\ Sat(φ2) and l = 0

mina∈ A(s)

∑

s′∈ S δM (s, a)(s
′

) · xl−1
s′ otherwise

(4)

VI. PRISM SEMANTIC

In this section, we define the PRISM model and its

semantic. A system described as PRISM model comprises

a set of n modules, the state of each one is defined by an

evaluation of a set of finite-ranging local variables. The

global state of the system is the evaluation of the union

of all local variables Vl in addition tothe global ones Vg ,

which we denote V = Vg ∪ Vl. The behaviour of each

module is defined by a set of guarded commands and a set

of invariants in the case of probabilistic timed automata

(PTA) representing the clock constraints.

In MDP as in PA and PTA formalisms, a command

takes the following form: [act] guard → p1 : u1+...+pm :
um, which mean, for the action “act” if the condition

“guard” is true, then, the updates “ui” of the behaviour

can be changed by a probability “p i”. Its formal definition

is given in the Definition 6.1 to be used next.

Definition 6.1 (PRISM Command):A PRISM com-

mand is a tuple cmd = (act, guard, update) where:

• act: is an action label,

• guard: is a predicate over V ,

• update = {(pi, ui)|i < m,
∑m

i=1 pi = 1 and

ui ∈ {(V,N)}} where f : V → N.

A module that describes the behaviour of a sub-part from

a system is defined formally in the Definition 6.3.

Definition 6.2 (PRISM Module):A PRISM system is

a tuple M = (var, init, com) where:

• var is a finite set of module local variables,

• init is the initial values of var(M),
• com = {cmd} is a set of commands that define the

behaviour of the module.

A system that contains n sub-parts that each one is de-

scribed by a module and their relation is described by an

algebraic expression. The supported algebraic expression

in PRISM are:
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1) M1||M2 : It is a parallel composition of modules.

M1 and M2 synchronize on only actions appearing

in both M1 and M2,

2) M1|||M2: asynchronous parallel composition of M1

and M2 (fully interleaved, no synchronization),

3) M1|[a, b, ...]|M2: restricted parallel composition of

modules M1 and M2 (synchronizing only on actions

from the set a, b,...),

4) M/a,b,... : hiding of actions a, b, ... in module M,

5) Ma¡-b,c¡-d,... : renaming of actions a to b, c to d,

etc. in module M.

Finally, the system containing n modules is defined for-

mally in the Definition 6.3.

Definition 6.3 (PRISM System):A PRISM model is a

tuple P = (var, sys,M1, . . . ,Mn) where:

• var(P ) =
⋃n

i=1 VGi is a finite set of system vari-

ables. It is the union of all modules global variables

(VGi).

• sys is algebraic expression that defines the models’

communication,

• M1, . . . ,Mn is a countable set of modules.

VII. REAL TIME STREAMING PROTOCOL (RTSP)

The Real Time Streaming Protocol (RTSP) [19] is a

client-server application-level protocol for control over

the delivery of data with real-time features. RTSP pro-

vides an extensible framework to enable controlled, on-

demand delivery of real-time data, such as audio and

video. To deliver the continuous RTSP streams, it is

intended to control multiple data delivery sessions, and

provide a means for choosing delivery mechanisms based

upon RTP; an alternative mechanism is the Secure RTP

Profile (SRTP) [20]. SRTP profile is designed to support

confidentiality and authentication suitable for use with

links that may have relatively high loss rate, and that

require header compression for efficient operation. It pro-

vides confidentiality of RTP data packets by encrypting

the payload part. Furthermore, it supports message in-

tegrity protection by appending a message authentication

tag to the end of the packet and it supports source

origin authentication by using the TESLA authentication

algorithm (Timed Efficient Stream Loss-tolerant Authen-

tication).

Secure RTP profile when built within RTSP offers

secure retrieval of media from the media server, the invita-

tion of a media server to a conference, and adds additional

media to an existing presentation. RTSP requests can be

transmitted in several different ways:

• Persistent transport connections used for several

request-response transactions

• Transactions with one connection per

request/response

• Connectionless mode transactions.

The main methods used to define RTSP vocabulary are:

• DESCRIBE: a request includes an RTSP URL, and

the type of reply data that can be handled.

• SETUP: causes the server to allocate resources for a

stream and start an RTSP session.

Figure 6. Client State Machine

• PLAY and RECORD: starts data transmission on a

stream allocated via SETUP.

• PAUSE: temporarily halts a stream without freeing

server resources.

• TEARDOWN: frees resources associated with the

stream. The RTSP session ceases to exist on the

server.

• SUCCESS and ERROR: server’s response to client

requests.

From RTSP [19] and SRTP [20] RFC’s, we have extracted

and designed the behaviour of RTSP upon Secure RTP

profile as a state machine. Therefore, Figure 7 presents

the main behaviour of server end and Figure 6 shows the

client side.

Figure 7. Server State Machine

A. Properties

Here, we propose a set of properties to be verified

on the model resulting from the interaction between
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Property 1 2 3 4 5 6 7 8 9 10

Result 0 0.02 1 1 1 0.06 0.6 0.6 0.82 0.8

TABLE I.

VERIFICATION RESULT

Client, Server and Attacker models. To achieve that, we

express the presented properties by using PCTL tem-

poral logic given by this grammar: φ ::= true|a |φ ∧
φ | ¬φ | P⊲⊳ p[ψ] | R∼ r[Fφ] and

ψ ::= φ|ψ1U
tψ2|ψ1Uψ2|Xψ|ψ1 ∧ ψ2|¬ψ where: a is

an atomic proposition, t ∈ N ,p ∈ [0, 1],⊲⊳∈ {<,≤, >
,≥}, and R represents the rewards operators. The main

operators used to express our proposed properties are a

mix of propositional logic (!:Not, |:Or, &: And,→: Imply

), temporal logic (A: All, E: Exists, X: neXt, G: Globaly,

F: Finally, U: Until) and probabilistic temporal logic.

The proposed properties are both functional and security

related in nature, such as:

1) Deadlock: “The maximum probability to have a

deadlock in any state of the model”.

PCTL: Pmax=?[GF”deadlock”]

2) Losing messages: “The maximum probability of

losing at least one message?”

PCTL: Pmax=?[F(bs pos≥5)]

3) “Measure the probability to interrupt viewing me-

dia”.

PCTL: Pmin=?[G(r rtp⇒(X(endclient)))]

4) “What’s the probability that when an attack send

pause message the client should not see the media”.

PCTL: Pmin=?[when client playing⇒(as tear)]

5) “ What‘s the probability to hijack a session”.

PCTL: Pmin=? [G(when client playing⇒(F(SendSetup)

U endclient))]

6) “Measure the ability to intercept an RTP packet”.

PCTL: Pmax=? [F(receivepacket)]

7) “ Estimate the probability of the ability of an

attacker to pause the media viewed by one client”.

PCTL: Pmin=? [((when client playing)⇒
(F(SendPause)))⇒(F(stop))]

8) “Measure the minimum probability to inhibit a

client from reading the media”.

PCTL: Pmin=? [G (r setupok⇒(X (endclient)))]

9) Calculate the minimum probability that an attacker

premature a client to disconnect.

PCTL: Pmin=? [G(SendTeardown⇒(X(endclient)))]

10) “Find the minimum probability that an attacker

enfore a client to pause viewing”.

PCTL: Pmin=?[G(s play⇒(F(SendPause)U end-

client))]

B. Numerical Results and Discussion

The verification of the above properties are done using

the Jacobi method integrated within the PRISM model

checker version 3.3.1 to produce a MTBDD (Multi-

Terminal Binary Decision Diagram) model with 9524

transitions and 2383 states including the initial state.

Figure 8. Parameters sampling.

Figure 9. The probability variation for property #10

The attack model takes part in 76 states of the original

MTBDD and includes 187 transitions. These techniques

reveal the results summarized in Table I, from where

we conclude that the model is free from deadlock and

does not cause any significant degradation in audio/video

quality (first and second property). The RTSP server can

be down with 82% by using flooding attack. Furthermore,

the attackers probability of intercepting a message is 6%

and the client can lose his session’s connection by a

probability of 80%.

We conclude by providing a brief description of a number

of verification experimental results by tuning three main

parameters: the number of messages, the sever memory

size and the media size. These parameters are sampled

uniformly as illustrated in Figure 8.

We observe that the probability of packet interception

evaluated by the sixth property is constant even by

changing the number of messages or the media size as

depicted in Figure 10. Furthermore, the evaluation of

the seventh property by tuning the media size with the

message number parameter is showed in Figure 11. We

remark that the probability measured doesn’t change as a

function of the # of messages and the media size.
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Figure 10. The probability variation for property #6

In Figure 9, we show the probability evaluation of the

tenth property as a function of the message size variation.

This evaluation is always fixed even by changing the num-

ber of messages. Finally, The entire code is downloadable

from this foot link 3 within the list of the above listed

properties.

VIII. CONCLUSION

In this paper, we proposed a technique for the proba-

bilistic formal verification of a communication protocols

taking into consideration their communication capabili-

ties. To this end, we map the semantic model of the

protocol with its related attack scenario in the form of

probabilistic timed automata into the input language of the

probabilistic model checker PRISM. As application, we

apply our methodology on real time streaming protocol. It

helps in reducing development cost by allowing detection

of flaws and measuring security at the earlier stage

of software life-cycle. As a future work, we intend to

improve the scalability of our approach by developing

reduction techniques that take into consideration only the

affected part in the model for such property.

Figure 11. The probability variation for property #7

3http://users.encs.concordia.ca/∼s oucha/
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