
Towards an Approach for Weaving Preferences
into Web Services Operation

Zakaria Maamar

Zayed University, Dubai, U.A.E
Email: zakaria.maamar@zu.ac.ae

Quan Z. Sheng

The University of Adelaide, Adelaide, Australia
Email: qsheng@cs.adelaide.edu.au

Yacine Atif

United Arab Emirates University, Al-Ain, U.A.E
Email: yacine.atif@uaeu.ac.ae

Sujith Samuel Mathew

The University of Adelaide, Adelaide, Australia
Email: sujith@cs.adelaide.edu.au

Khouloud Boukadi
University of Sfax, Sfax, Tunisia

Email: khouloud.boukadi@fsegs.rnu.tn

Abstract— Existing approaches on Web services privacy
dominate solutions from a users’ perspective, giving little
consideration to the preferences of Web service providers.
The integration of service providers’ preferences into Web
services’ operations is discussed in this paper. A Web
service provider indicates peer Web services that it could
interact with as well as the data that they could exchange
with. We focus on Privacy and (trust) Partnership
preferences based on which, we develop a Specification for
Privacy and Partnership Preferences (S3P). This
specification suggests a list of exceptional actions to deploy
at run-time when these preferences are not met. An
integration model of these preferences into Web services
design is illustrated throughout a running scenario, and an
implementation framework proves the S3P concept.

Index Terms—Composition, Partnership, Privacy,
Preference, Web service.

I. INTRODUCTION

Web services play a major role in the development of
loosely-coupled business applications that can cross
organization boundaries at run-time. This role is
witnessed from the widespread adoption of Web services
in different initiatives [4, 15, 16, 17, 20, 25]. Composition
of Web services handles users' requests that cannot be
satisfied by any single, available Web service, which
requires combining the available Web services.

In response to the dynamic nature of today's
environments, e.g., sudden drop in network bandwidth,
mobility of computing resources, and high rate of cyber
attacks, we enhanced in the past Web services with
mechanisms that allow them for example to reject
processing users' requests due to their current heavy
loads, and ask for better rewards due to the pressing
nature of these requests [13]. In this paper, we continue
this enhancement with emphasis on why and how
providers of Web services need to express the
preferences of their Web services. By preference, we
refer to the conditions and terms that regulate the proper
(and expected as well) use of a Web service. We consider
two types of preferences: partnership that is geared
towards composition, and privacy that is geared towards
controlling the data flow in composition. As a result,
privacy becomes critical when independent Web services
are put together in the same composition.

Although there is no substantial research on
partnership issues in compositions (issues like semantic
disparity and policy incompatibility are assumed properly
addressed in this paper), research on privacy issues
through the Platform for Privacy Preferences (P3P,
www.w3.org/P3P) and the Enterprise Privacy
Authorization Language (EPAL,
www.zurich.ibm.com/security/enterprise-privacy/epal)
initiatives, is still confined to users, only, who interact
with Web sites [2, 24, 26]. A user would like to know the
purpose of submitting her credit card number to a Web
site, how long this Web site will retain this number, how
she could verify that this number was really deleted, etc.
This way of analyzing privacy overlooks the concerns of

Manuscript received July 3, 2011; revised September 1, 2011;
accepted October 29, 2011.

Corresponding author: Z. Maamar, Zayed University, Po Box
19282, Dubai, U.A.E.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1429

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.7.1429-1439

providers of Web services in terms of (i) what data their
Web services can receive, (ii) when their Web services
can forward data, and (iii) what data their Web services
can store. Similar questions can be asked when
partnership is analyzed, e.g., with whom Web services
can interact and for how long. For illustration purposes,
let us assume two Web services s1 and s2 along with their
respective partnership and privacy preferences. In
compliance with these preferences s1 invokes s2 during an
agreed upon time period (e.g., 2pm-4pm only) and s1

submits data to s2 because s2 guarantees the deletion of
these data within 48 hours. If these preferences cannot be
satisfied, either s2 is invited to review its preferences or
the search for another peer that will interact with s1 is
initiated.

Previous research on Web services focuses on privacy
from a user’s perspective and always guarantees the
automatic and continuous participation of Web services
in compositions. This should not be the case, as discussed
in this paper. First, the providers question the data that
their Web services consume and exchange. Second, the
providers question the compositions that their Web
services take part in. The same questions may apply to
security issues as well. However, standards in Web
service security have been extensively addressed in the
literature. We focus in this paper on privacy issues to
illustrate the accommodation of preferences in Web
services compositions. The approach we propose is
extensible to additional preferences. Our contributions are
strictly dedicated to Web services and built upon a
Specification for Privacy and Partnership Preferences
(S3P). S3P uses tags to represent partnership preferences
of component Web services and a privacy flow to
represent the restrictions on the data flow between
component Web services. Main contributions are
summarized as follows:

• Identify arguments that reflect Web services'
partnership and privacy preferences.

• Develop a set of corrective actions to take when
partnership or privacy preferences are
unsatisfied at run-time.

• Provide graphical means to illustrate partnership
and privacy preferences during the modeling of
component and composite Web services.

The remainder of this paper is organized as follows.
Section 2 is an overview of some related work. Section 3
discusses preference integration into Web services
operation through the adoption of the S3P. Examples of
preference arguments and satisfaction of these arguments
are, also, discussed in this section. Section 4 provides a
proof of concept to test the feasibility of the S3P. Finally,
Section 5 draws some concluding remarks and identifies
some future research work.

II. RELATED WORK

Web services provide unique opportunities to extend
Web applications dynamically, but face some challenges
that compromise their effectiveness to cross organization
boundaries and computing platforms [20]. These
challenges include automated discovery of services,

dynamic service reconfiguration, end-to-end security,
privacy, to cite just a few. Our literature review on the
particular issue of Web services privacy includes a good
number of research projects such as [3, 5, 6, 8, 10, 14, 21,
23, 24, 26, 27, 28]. We found that [21] is the only project
that addresses this issue from the perspective of providers
of Web services and not from the perspective of users of
Web services.

In [3], Benbernou et al. develop a privacy agreement
model for Web services. Despite the increasing number
of privacy policies that organizations post on their Web
sites, individuals are generally reluctant to disclose their
personal data to these Web sites. In response to this
reluctance, Benbernou et al.'s privacy-agreement model
adopts the WS-agreement specification [1], to stress out
the importance of defining rights and obligations of users
towards organizations.

In [6], Chafle et al. discuss the centralized
orchestration of Web services composition with focus on
constraints on the data flows in this composition. In this
orchestration, the data are routed through a central
coordinator that has access to the input/output data of all
the component Web services. Chafle et al. note that (i) in
certain business scenarios, Web services may have
restrictions on the source (resp., destination) of the data
they receive (resp., send) and (ii) handling these
restrictions using current security mechanisms
(encryption, authentication) is sometimes inefficient. The
solution of Chafle et al. uses three modules
(decentralizer, topology filtering, and deployment) and
splits a composite Web service into a set of partitions,
one partition per component Web service. A partition is
like a proxy that processes, transforms, and manages the
incoming/outgoing data in compliance with the
restrictions imposed on a component Web service and the
data requirements of a composite Web service.

In [8], Hamadi et al. develop privacy-aware protocols
for Web services. Like other researchers, they note that
(i) Internet users have concerns about their personal data
being collected and managed by various organizations,
and (ii) a small number of Web sites offer real Web
services that could be used to investigate privacy and its
impact on Web services acceptance by the IT industry
and users. To remedy this lack of real Web services,
Hamadi et al. study some B2C Web sites/portals like
Amazon.com along with their privacy policy documents.
Their response to privacy is a modeling technique (based
on state chart) that (i) captures privacy abstractions while
describing the operation of a Web service and (ii) weaves
these abstractions into this operation.

In [24], Xu et al. note that privacy concerns of users
need to be handled while the development of composite
Web services is in progress. The number of people who
access the Web continues to grow, which has exacerbated
these concerns. To address this exacerbation and P3P
shortcomings, Xu et al. develop privacy-conscious
composite Web services. When a user submits data to a
Web service, the user would make sure that these data are
managed according to her privacy preferences. To this
end, the user requests the model of a Web service so that

1430 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

she knows how this Web service processes and shares
data. In their work, automated techniques check the
compliance of a Web service's model with a user's
privacy preferences. If the check succeeds, the user
forwards her request to the Web service for processing.
Otherwise, the user forwards the violation as an
obligation to the composite Web service for further
actions.

In [27] Liu et al. emphasize that the increased use of
Web services has meant that more and more personal
information of consumers is being requested and shared
with these Web services’ providers. Thus it is critical to
guarantee that the private data of consumers are collected,
used and disclosed according to strict policies. The
authors suggest developing a minimal privacy
authorization that still permits achieving the functional
goals. Authorization policies to specify privacy privileges
and trust relationships among services are used.

Although the aforementioned approaches offer a
snapshot of the initiatives on Web services' preferences
with emphasis on privacy, there is no clear vision that
articulates how these preferences should be looked at
from the particular perspective of providers of Web
services. The work of Rezgui et al. is, to a certain extent,
the only one that embraces this perspective by
highlighting the concerns of providers in terms of data
usage, storage, and disclosure [21]. However questions
like what privacy preferences are appropriate for Web
services, how these preferences are reviewed in case of
no-satisfaction at run time, and how these preferences are
modeled, are left unanswered and solutions are provided
on a case-by-case basis.

III. PREFERENCE INTEGRATION INTO WEB SERVICES

THROUGH S3P

This section consists of three parts. First, we propose
some arguments that show Web services' partnership and
privacy preferences. Then, we illustrate these arguments
using a running example. Finally, we work out an S3P
instance of this example based on these arguments.

A. Preference arguments

In Section 1, partnership and privacy are introduced as
types of preferences. In the following, we suggest some
arguments per type of preference and show how the
operation of a Web service is restricted if these
preference arguments turn out unsatisfied at run-time. It
should be noted that preference arguments should be
defined using a dedicated ontology but this is outside this
paper's scope.

Partnership preferences are related to the
compositions that Web services take part in. Some
examples of partnership arguments are as the following:

• Participation-duration argument: because Web
services can engage in long-running
compositions that last days and even weeks [12,
19], a Web service sets the maximum time that it
will remain committed to a composition whether
this composition is complete or not. By doing
this, the Web service disengages automatically

from the compositions that last more than
expected and participates in other compositions
should this become possible.

• Invocation-period argument: to maintain a
certain level of QoS [18, 22], a Web service sets
different time periods (e.g., off peak, peak) to
process requests. These periods are based on
business hours, computing resources
availabilities, etc.

• Payment-mode argument: in return to processing
requests, a Web service is compensated either (i)
instantly after these requests are complete or (ii)
deferred until the successful completion of the
composition in which this Web service
participates now. In case of composition failure,
the Web service requests
compensation/cancelation charges on top of its
regular charges. If the Web service turns out the
source of the failure, then it will be subject to
financial penalties.

Privacy preferences are related to the data that Web
services exchange in compositions. The following are
examples of privacy arguments:

• Data-source argument: a Web service sets a list
of peers from which it accepts data without
checking their “credentials” [7, 11].

• Data-destination argument: a Web service sets a
list of peers for which it forwards data without
checking their “credentials” [7, 11].

• Data-retention-period-at-destination argument:
a Web service sets a time frame for the
destination peers to retain its data whether these
data are updated or not. Afterwards, these data
should be either deleted or forwarded. In the
case of data forward, the privacy preferences of
both sender and destination peers need to be
satisfied. To counter-balance data-retention-
period-at-destination argument that a sender
Web service announces, each recipient Web
service announces its data-retention-period-at-
reception argument as well.

• Data-disclosure-distance argument: a Web
service sets the maximum distance (e.g., number
of edges that correspond to dependencies) for its
data to be disclosed from one peer to another
without seeking its direct approval. For example,
in Figure 1 (we adopt state chart in our work [9];
states and transitions correspond to component
Web services and dependencies between these
component Web services, respectively) data-
disclosure-distance for s1 is set to 2, which
means data of s1 are disclosed to its direct
connected peers (i.e., s2) and the next direct
connected peers (i.e., s3 and s4). To counter-
balance data-disclosure-distance argument, each
recipient Web service announces its data-
destination argument so that the sender Web
service approves the peers included in this
argument.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1431

© 2012 ACADEMY PUBLISHER

It should be noted that data-source and data-
destination arguments are critical in peer-to-peer-based
composition. This is not the case in centralized-based
composition where Web services might not know with
whom they interact. Interactions in this composition are
routed through a central component.

s
2

s
3

s
4

s
1
.distance = 2

s
5

s
1

Figure 1. Illustration of data-disclosure-distance argument

B. Running example: cookout party

Our running example identifies a university student
who organizes a cookout party for her recent graduation.
The list of Web services implementing this party
includes:

1. CateringWS: looks for and contacts catering
companies according to criteria such as budget

allocated, number of guests expected, and type
of cuisine.

2. GuestWS: sends invitees invitations, keeps track
of the confirmed ones, and follows-up on the
unconfirmed ones through reminders.

3. PlaceBookingWS: looks for a place to host the
cookout party, books the place, and completes
the necessary paperwork like payment.

4. WeatherWS: checks the weather forecast for the
day of the cookout party. In case of bad weather,
the party takes place at the student's place.

Figure 2 represents the specification of the business
logic that underpins the cookout-party composition. Some
dependencies include: the party does not take place
without checking the weather forecast on a specific date,
and the quantity of food to prepare depends on the
number of guests confirmed. For illustration purposes, we
instantiate the preference arguments of CateringWS and
PlaceBookingWS.

Bad weather

PlaceBookingWS
Nice

weather
GuestWSWeatherWS

Confirmation

booking

Guest

confirmation
CateringWS

Figure 2. Specification of the cookout-party composition

CateringWS's partnership preferences are as follows:
• Participation-duration argument: 48 hours -- if

the execution of the cookout-party composition
lasts more than 48 hours, CateringWS will
disengage from the composition. A remedy to
this “expected” disengagement needs to be
planned by the composition engineer by for
example negotiating a longer engagement period
with CateringWS.

• Invocation-period argument: null.
• Payment-mode argument: deferred --

CateringWS expects payment after the
composition completes successfully. In case of
failure that leads into cancelation, CateringWS
charges additional fees because of the penalty
included in the agreement with the catering
company.

PlaceBookingWS's privacy preferences are as follows:
• Data-source argument: null.
• Data-destination argument: GuestWS.
• Data-retention-period-at-destination argument:

up to 1 month from date of receipt.
• Data-disclosure-distance argument: 2 -- Data of

PlaceBookingWS are transferred through
GuestWS up to CateringWS without the approval
of PlaceBookingWS.

C. S3P Establishment

In Section 2, we mentioned how Hamadi et al. inject
privacy details into the specification (which is based on
state chart) of a Web service [8]. Unfortunately, this
injection does not comply with the separation-of-

concerns principle since the revised specification of this
Web service is strongly coupled to privacy details. As a
result, changes in these details affect this specification
and vice-versa. To address this limitation, our approach
for handling Web services' preferences takes two inputs,
namely the specification of a composition and the
preferences of each component Web service in this
composition, and produces one output, which is the S3P
of this composition. An S3P is independent from the
specification of a composition (i.e., loosely coupled). In
an S3P, tags anchored to component Web services
correspond to partnership preferences and the privacy
flow corresponds to the application of privacy preferences
on the data flow between the component Web services. In
the following, we establish the S3P for the cookout-party
using CateringWS and PlaceBookingWS.

Partnership preferences. They are represented with
tags in the S3P. Each tag is structured as follows (Table
1): (i) argument name, (ii) preference type, (iii) corrective
actions to take (shown in italic) if the preference is
unsatisfied at run time, and (iv) the authority that
executes the corrective actions. For example in Table 1,
Tag #2 invocation-period argument, CateringWS receives
an invocation request from the composite Web service.
However, this request does not fall within the invocation
period that was agreed-upon between both. As per the
corrective actions for this argument, CateringWS either
rejects the request or applies extra fees if it accepts to
process this request. The extra fees are on top of the
regular fees that CateringWS charges and reports using
payment-mode argument (Tag #3).

1432 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

TABLE I.
STRUCTURE OF TAGS ANCHORED TO WEB SERVICES

Argument name
Preference

type Corrective actions Authority

1 participation
duration

partnership If participation-duration exceeded
Then replace component WS

Composite
WS

2 invocation period partnership If request falls outside the agreed upon period
Then reject invocation xor apply extra fees on the
composite WS

Component
WS

3 payment mode partnership If late payment
Then apply penalties on the composite WS

Component
WS

4 data retention

period
(at destination)

privacy If retention-duration exceeded
Then apply penalties on the destination WS

Component
WS
(source)

Privacy preferences. Because of the use of state charts

(in case of Petri-Nets, places and transitions will be
adopted instead of states and transitions) to specify
compositions (Figure 2), the privacy flow of the S3P is
obtained by (i) adding new direct links (i.e., transitions)
between the component Web services (i.e., states), or (ii)
adding generic Web services between the component

Web services. A generic Web service is limited to
conveying data from one Web service to another without
acting on these data. Except data-retention-period-at-
destination argument that is handled using a tag (Table 1,
Tag #4), handling the other privacy arguments calls for
developing a dedicated flow (Figure 3):

PlaceBookingWS GuestWSWeatherWS CateringWS

(A)

PT
1

PT
2

Generic WS
(B)(B)

Privacy flowPT Partnership tag

Legend

Figure 3. Handling Web services’ preferences

• Case of adding a new link (Figure 3-(A)):
WeatherWS sets data-disclosure-distance
argument to 1, i.e., data to disclose up to
PlaceBookingWS and GuestWS (in case of bad
weather). However, GuestWS requires data input
from WeatherWS in case of fine weather so that
it informs the invitees of the location of the party
(in case of fine weather, there is no direct link
between WeatherWS and GuestWS). This
location is a data input for GuestWS. To satisfy
this preference, a direct link (a transition) that
forms the privacy flow is added to the S3P from
WeatherWS to GuestWS (Figure 3-(A)). Adding
this link requires that GuestWS satisfies data-
destination argument of WeatherWS

• Case of adding a generic Web service (Figure 3-
(B)): GuestWS does not satisfy data-destination
argument of WeatherWS, so the exchange of
data through the existing link between these two
Web services violates this preference. To deal
with this violation, two options exist: (i) submit
data via PlaceBookingWS, which is the current
case in Figure 2, or (ii) introduce a generic Web
service from WeatherWS to GuestWS. In either
case, it is required that data-disclosure-distance
argument is greater to one. Otherwise, this
privacy preference cannot be satisfied.

In the following, we present two algorithms to handle
privacy preferences with focus on data-disclosure-
distance and data-retention-period-at-destination
arguments. We map a composition specification (e.g.,
Figure 2) onto a graph G=(N,E). In this graph the nodes
N and edges E correspond to Web services and
dependencies between these Web services, respectively.
Each edge is a couple of the form <si,sj> where the edge
is directed from si to sj. Furthermore, the graph has two
unique nodes: START and END. START node has no
predecessors whereas END node has no successors. The
graph is supposed to meet two basic conditions: (i) every
node in the graph is directly or indirectly reachable from
START node, and (ii) END node is reachable from every
node in the graph.

In the algorithm for handling data-disclosure-distance
argument (Figure 4), the following functions are used:
Indirect-Neighbor(si), Input-Data(si), Output-Data(si),
Distance(Path(si,1[s]n,sj)), Connect(si,sj), and
Connect(si,s,si). This algorithm checks the data
dependencies between Web services and establishes, if
necessary, new connections either direct or indirect,
between these Web services so that data-disclosure-
distance argument is satisfied at run-time.

1. Indirect-Neighbor(si): returns the set of Web
services that are indirectly connected to si
through other Web services (0,n) with 0 and n
standing for minimum and maximum,

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1433

© 2012 ACADEMY PUBLISHER

respectively. This set permits forming paths
(Path(si,0[s]n,sj)), needs to be pruned from
duplicate paths, and could be empty. The set of
all the paths is stored for later use. If si and sj are
directly connected, Indirect-Neighbor(si) is
equal to Ø, i.e., zero services between them.

2. Input-Data(si): returns the set of data that si

requires for functioning.
3. Output-Data(si): returns the set of data that si

returns after functioning.
4. Distance(Path(si,1[s]n,sj)): returns a set of

numerical values that represent the numbers of
Web services that separate si from sj (distance at
least greater or equal to one). These numbers
illustrate the shortest and longest paths between
si and sj.

5. Connect(si,sj): permits to form a new direct
transition between si and sj. This transition is
added to meet some privacy requirements.

6. Connect(si,s,sj): permits to form a new indirect
transition between si and sj through a generic

Web service s. This indirect transition is added
to meet some privacy requirements.

In the algorithm for handling data-retention-period-
at-destination argument (Figure 5), the following
functions are used on top of Input-Data(si) and Output-
Data(si) that were introduced earlier: Direct-Neighbor(si),
Check-Duration(si,sj), Pass(si,sj), and Relax-Duration(si).
This algorithm checks the data dependencies between
Web services and either authorizes the flow of data
between these Web services or invites some Web services
to review their retention periods of the data they receive.

1. Direct-Neighbor(si): returns the set of Web
services that are directly connected to si.

2. Check-Duration(si,sj): verifies that data-
retention-period-at-destination argument of si is
in agreement with data-retention-period-at-
reception argument of sj.

3. Pass(si,sj): submits data from si to sj.
4. Relax-Duration(si) : is an invitation to the

provider of si to relax its data-retention-period-
at-reception argument.

Proc Data-Disclosure-Distance(si)
Input: INeighsi: set of all indirect neighbors to si
Input: Pathsi: set of all paths that come out of si
Auxiliary: i, j: integer
Begin

INeighsi ← Ø
Pathsi ← Ø
INeighsi ← Indirect-Neighbor(si)
Pathsi ← Indirect-Neighbor(si)
For each sj in INeighsi do

If Output-Data(si) ∩ Input-Data(sj) <> Ø then
//sj needs data from si
If Data-Disclosure-Distance(si) < Distance((Path(si,1[...]n,sj))) then

//sj is not supposed to receive data from si
Connect(si,sj)
//Figure 3-(A) case, establishes a new dependency between si and si
//this assumes that si accepts to interact directly with sj
//as per data-destination privacy preference

Else
If (Path(si,1[...]n,sj) exists)
 and (Distance((Path(si,1[...]n,sj))) <= Data-Disclosure-Distance(si)) then

//Find a path that already connects si and sj and
//verify if this path does not violate data-disclosure-distance preference
Use(Path(si,1[...]n,sj))

Else
Connect(si,Generic-WS,sj)
//No path exists so establish a new dependency between si and sj through a generic WS
//Figure 3-(B) case

End if
End if

End if
End for

End

Figure 4. Algorithm for handling data-disclosure-distance argument

1434 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

Proc Data-Retention-Period-at-Destination(si)
Input: DNeighsi : set of all direct neighbors to si
Auxiliary: i, j: integer
Begin

DNeighsi ← Ø
DNeighsi ← Direct-Neighbor(si)
For each sj in DNeighsi do

If Output-Data(si) ∩ Input-Data(sj) <> Ø then

//sj needs data from si
If Check-Duration(si,sj) then

//sj and si data durations are in agreement
Pass(si,sj)

Else
Relax-Duration(sj)
//sj and si data durations are not in agreement
//sj is invited to relax its data retention duration

End if
End if

End for
End

Figure 5. Algorithm for handling data-retention-period-at-destination argument

D. Formalization

This section formalizes the concepts and definitions
given in the previous sections.
1. Based on Figure 2 that shows a state chart-based

specification of a composite Web service, we define
this specification as a 5-tuple CWS =
<WS,L,T,ws0,F> where:

- WS is a finite set of states that correspond to
Web services' names;

- ws0 is the initial Web service in WS;
- F ⊆ WS is the set of final Web services;
- L is a set of labels;
- T ⊆ WS * L * WS is the transition relation.

Each transition t=(wssrc,l,wstgt) consists of a
source Web service wssrc ∈ WS, a target
Web service wstgt ∈ WS, and a transition
label l ∈ L.

Example 1: Figure 2 is a state chart of the
specification of the cookout-party composite
Web-service. Several states like WeatherWS
(initial state) and CateringWS (final state) and
several transitions like (WeatherWS,
NiceWeather, PlaceBookingWS) are represented.
In this transition example, WeatherWS and
PlaceBookingWS are the source and target
states, respectively, and NiceWeather is the
transition's label.

2. A preference model, PM, is denoted as PM =
<PAP,PRP> where:

- PAP is the set of partnership preferences.
Given a composite Web service
specification CWS, a partnership preference
pap of a component Web service WS in
CWS is a tuple papWS =
(name,value,description,c.action,authority,
Ont) where:

i. name is the name of the
partnership preference.

ii. value is a value (numerical, string,
etc.) assigned to the partnership
name.

iii. description is a narrative
description of the partnership
preference.

iv. c.action is a list of corrective
actions to take when the
partnership preference is
unsatisfied.

v. authority is the body in charge of
executing the list of corrective
actions when the partnership
preference is unsatisfied.

vi. Ont refers to the ontology defining
the partnership preference.

- PRP is the set of Privacy Preferences.
Its definition is similar to PAP.

3. A privacy flow, denoted as PF, of a composite Web
service CWS is a 5-tuple PFCWS =
<WSPF,LPF,TPF,wsPF

0,FPF> where:
- WSPF is a finite set of states that correspond

to Web services' names; three exclusive
cases could exist (|P$ represents the
cardinality of the set P):

i. |WSPF| = |WS|; the number of Web
services in the privacy flow is
equal to the number of Web
services in the specification of the
composite Web service.

ii. |WSPF| < |WS|; the number of Web
services in the privacy flow is less
than the number of Web services in
the specification of the composite
Web service. The privacy flow
requires less Web services (Figure
3-(A)).

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1435

© 2012 ACADEMY PUBLISHER

iii. |WSPF| > |WS|; the number of Web
services in the privacy flow is
greater than the number of Web
services in the specification of the
composite Web service. The
privacy flow requires more Web
services (Figure 3-(B)).

- wsPF
0 is the initial Web service in WSPF;

- FPF ⊆ WS is the set of final Web services;
- LPF is a set of labels; like the three cases that

feature the relationship between WSPF and
WS, similar cases apply to LPF and L.

- TPF ⊆ WSPF * LPF * WSPF is the transition
relation. Each transition tPF =
(wsPF

src,lPF,wsPF
tgt) consists of a source Web

service wsPF
src ∈ WSPF, a target Web service

wsPF
tg
∈ WSPF, and a transition label lPF ∈

LPF.
Example 2: Figure 3 is a state chart of the
specification of the privacy flow of the cookout-
party composite Web-service. Several states like
WeatherWS (initial state) and CateringWS (final
state) and several transitions like
(WeatherWS,B1,GenericWS) are included. In this
transition example, WeatherWS and

IntermediaryWS are the source and target states,
respectively, and B1 is the transition's label.

IV. APPROACH VALIDATION

To validate the integration of preferences into Web
services, we describe in this section the architecture of
the system through a proof of concept which we
implemented. The implementation is designed as a Web
application based on JEE framework. JSP (Java Server
Pages) is used to create interfaces for providers to design
and compose Web services. Java Servlets are used for
managing the flow of service composition.

A. System Architecture

The modules that constitute the architecture of the
system are shown in Figure 6. These modules are:
ServiceDesignInterface, BusinessLogicModeler,
InteractionPreferencesModeler, and ServiceManager.
The first module provides a Graphical User Interface for
service engineers (or providers) to design Web services.
The second module assists service engineers specify and
edit the business logic of compositions. The third module
takes the specification of a Web service and injects it
with preferences. The last module manages the
registration and repository of composite Web services.

Service engineer

BusinessLogicModeler

InteractionPreferenceModeler

InteractionsService Design

Interface Composite

Web services

specifications

S
erv

iceM
an

ager

Figure 6. System Architecture

B. Implementation Prototype

The prototype is implemented with a two-fold
objective which is to prove the architectural feasibility of
injecting preferences into Web services and to validate
the satisfaction of these preferences at run-time. The
implementation is designed as a Web application. JSP
(Java Server Pages) is used to create interfaces for
providers to design and compose Web services.
Operations of various modules are implemented with
Java Servlets for managing the composition, flow of
services and injecting preferences. For illustrative
purposes we explain the InteractionPreferencesModeler
module here.

The following assumptions are made: i) only one
instance of each Web service is considered and ii) the
flow of preferences for this implementation is as shown
in Figure 3, without the branching to the GenericWS.

A set of preferences for participating Web services are
defined where each individual preference has a name,
description and properties as XML tags. The properties
define attributes of a particular preference.

The InteractionPreferencesModeler module executes
the functionalities of tagging the component Web
services with partnership preferences and adding the
privacy flow to the initial specification. This shows the
consequences of applying privacy preferences on the data
exchange between the component Web services. Once the
preferences are set, these are injected by the
InteractionPreferencesModeler into the respective
component Web service.

The component Web service injected with the
preferences will be positioned as a part of the Web
composition based on the Business Logic given by the
providers. An example of the preferences that could be
injected is shown below.

1436 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

<CateringWS>
…
 <Preferences>
 <preference prefId="124">
 <name>Partnership</name>
 <description> … </description>
 <properties>
 <Participation-duration> …
 </Participation-duration >
 <Invocation-period> …
 </Invocation-period>
 <Payment-mode> … </Payment-mode>
 </properties>
 </preference>
 <preference prefId="125">
 <name>Privacy</name>
 <description> … </description>
 <properties>
 <Data-source> … </Data-source>
 <Data-destination> …
 </Data-destination>
 <Data-retention-period> …
 </Data-retention-period>
 <Data-disclosure-distance> …
 </Data-disclosure-distance>
 </properties>
 </preference>
 </Preferences>
…
</CateringWS>

The flow diagram shown in Figure 7 for service

composition describes an operation of
InteractionPreferencesModeler module.

C. Discussion

With the design and implementation of the proposed
system architecture, the various possibilities using S3P
for Web service composition were explored. It was
realized that the use of a standard protocol for specifying
and injecting preferences, universally accepted, would
enable the widespread use and control of Web service
composition. It is evident that, the number of
participating Web services and the respective preference
parameters affect the turnaround time for the successful
composition of Web services. The use of a business
modeling language such as BPEL (Business Process
Execution Language) would enhance the standardization
of the architecture for integration of business processes
with Web services. This also improves the possibilities of
modeling preferences of participant behavior in business
interactions. With the dynamic changes in preferences
and the changes in policy we achieved varying the
composition partnership and privacy information flow at
runtime. Integrating the composition of Web services
with the preferences of the providers using S3P was
successfully demonstrated using this framework.

Weather

Web

service

Registered

Resorts

Place

Booking

Web

service

Select

Venue

@Home

Confirm

Payment

Date

&

Time

Return

Confirmed

Venue Details

IF

“NICE”

Figure 7. Service composition flow (1)

V. CONCLUSION

In a dynamic environment like the Internet software
components including Web services need to be given the
opportunity of specifying their preferences: with whom
they like to interact, what data they like to release, what
requests they like to process, etc. Through the S3P we
assisted Web services in defining and verifying their
preferences at run-time. We suggested two types of
preferences, partnership geared towards satisfying
composition requirements, and privacy geared towards
satisfying data exchange requirements. In terms of
contributions, we identified arguments that illustrate Web
services' preferences, developed corrective actions to take
when these preferences are not satisfied, and last but not
least provided graphical means to model the integration
of these preferences into Web services design. These
means correspond to tags that label Web services and a
privacy flow that shows how data flow between Web
services. The privacy flow complies fully with the
separation of concerns principle. It is loosely coupled to
the business logic of compositions, and hence can be
amended with no impact on these compositions.

In term of future work, we plan to continue enhancing
the corrective actions per type of restriction and further
improve the prototype. Another direction is about the
second algorithm concerns “data-retention-period-at-
destination” privacy preference that aims at restricting the
use of the sender’s data beyond a certain time period.
Checking the implementation of such restrictions
assumes that the recipient is trustworthy and takes the
needed actions in responses to the restrictions that are put
on the data it receives. For instance, it could send
notification when data are deleted or forwarded. In the
opposite case, the recipient could retain data for longer
periods of time, change data if it is of type task-driven,
etc. In that case, the sender Web service could time-stamp
its data with a validity period.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1437

© 2012 ACADEMY PUBLISHER

Figure 7. Service composition flow (2)

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers
for their valuable comments and suggestions, which
helped improve the paper.

REFERENCES

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H.
Ludwig, T. N. J. Pruyne, J. Rofrano, S. Tuecke, and M.
Xu. Web Services Agreement Specification (WS-
Agreement). Grid Resource Allocation Agreement
Protocol (GRAAP) WG, March
2007.http://www.ogf.org/documents/GFD.107.pdf.

[2] S. Benbernou, H. Meziane, and M.-S. Hacid. Run-time
monitoring for privacy-agreement compliance. In
Proceedings of the Fifth International Conference on
Service-Oriented Computing (ICSOC’2007), 2007.

[3] S. Benbernou, H. Meziane, Y. H. Li, and Hacid. M. S. A
Privacy Agreement Model for Web Services. In
Proceedings of the 2007 IEEE International Conference on
Services Computing (SCC’2007), Salt Lake City, Utah,
USA, 2007.

[4] J. Bentahar, Z. Maamar, D. Benslimane, and P. Thiran. An
Argumentation Framework for Communities of Web
Services. IEEE Intelligent Systems, 22(6), 2007.

[5] Carminati, B. and Ferrari, E. and Hung, P.C. K. Web
service composition: A security perspective. In
Proceedings of the International Workshop on Challenges
in Web Information Retrieval and Integration (WIRI’2005)
in conjunction with the 21st International Conference on
Data Engineering (ICDE’2005), Tokyo, Japan, 2005.

[6] G. Chafle, S. Chandra, V. Mann, and M. Gowri Nanda.
Orchestrating Composite Web Services under Data Flow
Constraints. In Proceedings of The IEEE International
Conference on Web Services (ICWS’2005), Orlando,
Florida, US, 2005

[7] S. Elnaffar, Z. Maamar, H. Yahyaoui, J. Bentahar, and P.
Thiran. Reputation of Communities of Web services -
Preliminary Investigation. In Proceedings of the
International Symposium on Web and Mobile Information
Services (WAMIS’2008) held in conjunction with the 22nd
International Conference on Advanced Information
Networking and Applications (AINA’2008), Okinawa,
Japan, 2008.

[8] R. Hamadi, H. Y. Paik, and B. Benatallah. Conceptual
Modeling of Privacy-Aware Web Service Protocols. In
Proceedings of the 19th International Conference on
Advanced Information Systems (CAiSE’2007),
Trondheim, Norway, 2007.

[9] D. Harel and A. Naamad. The STATEMATE Semantics of
Statecharts. ACM Transactions on Software Engineering
and Methodology, 5(4), October 1996.

[10] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,
Y. Xu, and D. DeWitt. Limiting Disclosure in Hippocratic
Databases. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases (VLDB’2004),
Toronto, Canada, 2004

[11] Z. Li, S. Su, and F. Yang. WSrep: A Novel Reputation
Model for Web Services Selection. In Proceedings of the
First KES International Symposium on Agent and Multi-
Agent Systems: Technologies and Applications (KES-
AMSTA’2007), Wroclaw, Poland, 2007.

[12] M. Little. Transactions and Web Services.
Communications of the ACM, 46(10), October 2003.

[13] Z. Maamar, D. Benslimane, G. Kouadri Mostefaoui, S.
Subramanian, and Q. H. Mahmoud. Towards Behavioral
Web Services Using Policies. IEEE Transactions on
Systems, Man, and Cybernetics–Part A: Systems and
Humans, 38(6), 2008.

[14] Z. Maamar, D. Benslimane, and Q. Z. Sheng. Towards A
Two-Layered Framework for Managing Web Services
Interaction. In Proceedings of the 6th Annual IEEE/ACIS
International Conference on Computer and Information
Science (ICIS’2007), Melbourne, Australia, 2007.

[15] T. Margaria. Service is in the Eyes of the Beholder. IEEE
Computer, 40(11):33–37, November 2007.

[16] B. Medjahed and Y. Atif. Context-based Matching for
Web Service Composition. Distributed and Parallel
Databases, Springer, 21(1), January 2007.

[17] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F.
Rosenberg, and S. Dustdar. A Context-based Mediation
Approach to Compose Semantic Web Services. ACM
Transactions on Internet Technology, Special Issue on
Semantic Web Services: Issues, Solutions and
Applications, 8(1), 2007.

[18] J. Myoung Ko, C. Ouk Kim, and I.-H. Kwon. Quality-of-
Service oriented Web Service Composition Algorithm and
Planning Architecture. Journal of Systems and Software,
81(11), November 2008.

[19] M. Papazoglou. Web Services and Business Transactions.
World Wide Web, 6(1), 2003.

1438 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

[20] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and
Research Challenges. IEEE Computer, 40(11):38–45,
November 2007.

[21] A. Rezgui, M. Ouzzani, A. Bouguettaya, and B. Medjahed.
Preserving Privacy in Web Services. In Proceedings of the
Fourth ACM International Workshop on Web Information
and Data Management (WIDM’2002) held in conjunction
with the Eleventh International Conference on Information
and Knowledge Management (CIKM’2002), MclEan,
Virginia, USA, 002.

[22] Y. Sun, S. He, and J. Y. Leu. Syndicating Web Services: A
QoS and User-driven Approach. Decision Support
Systems, 43(1), 2007.

[23] A. Tumer, A. Dogac, and I. H. Toroslu. A Semantic-Based
User Privacy Protection Framework for Web Services. In
Proceedings of the Workshop on Intelligent Techniques for
Web Personalization (ITWP’2003) held in conjunction
with the International Joint Conference on Artificial
Intelligence (IJCAI’2003), Acapulco, Mexico, 2003.

[24] W. Xu, V. N. Venkatakrishnan, R. Sekar, and I. V.
Ramakrishnan. A Framework for Building Privacy-
Conscious Composite Web Services. In Proceedings of the
2006 IEEE International Conference on Web Services
(ICWS’2006), Chicago, Illinois, USA, 2006.

[25] Q. Yu, A. Bouguettaya, and B. Medjahed. Deploying and
Managing Web Services: Issues, Solutions, and Directions.
The VLDB Journal, 17(3):537–572, 2008.

[26] M. Zuidweg, J. G. Pereira Filho, and M. van Sinderen.
Using P3P in a Web Services-based Context-Aware
Application Platform. In Proceedings of the 9th Open
European Summer School and IFIP Workshop on Next
Generation Networks (EUNICE’2003), Balatonfured,
Hungary, 2003.

[27] L. Liu, H. Zhu, Z. Huang, and D. Xie. Minimal Privacy
Authorization in Web Services Collaboration, Computer
Standards & Interfaces, 33(3), 2011.

[28] H. Meziane and S. Benbernou. A Dynamic Privacy Model
for Web Services, Computer Standards & Interfaces, 32(5-
6), 2010.

Zakaria Maamar is a full professor in the College of
Information Technology at Zayed University in Dubai, U.A.E.
His research interests are primarily related to service sciences
theories and methods, context-aware computing, and enterprise
systems interoperability. Dr. Maamar has published several
peer-reviewed papers in journals and conferences and regularly
serves on the program and organizing committees of several
international conferences and workshops. Dr. Maamar

graduated for his M.Sc. and Ph.D. in Computer Sciences from
Laval University in Canada in 1995 and 1998, respectively.

Quan Z. Sheng received the PhD degree in computer science
from the University of New South Wales, Sydney, Australia. He
is a senior lecturer in the School of Computer Science at the
University of Adelaide. His research interests include service-
oriented architectures, distributed computing, and pervasive
computing. He is the recipient of Microsoft Research
Fellowship in 2003. He is the author of more than 80
publications. He is a member of the IEEE and the ACM.

Yacine Atif received the PhD degree in Computer Science from
Hong Kong University of Science and Technology (HKUST) in
1996. After graduation, he worked at Purdue University in the
USA as a Post- Doc and then joined a faculty position at
Nanyang Technological University (NTU) in Singapore. Since
1999 he is with the UAE University as faculty, then Program
Chair at the College of Information Technology. Dr. Atif has
made a number of research contributions particularly in the
areas of Semantic Web and related Learning Technology
applications. He is also involved in the Technical Programs of
several research forums.

Sujith Samuel Mathew is a PhD student at the University of
Adelaide with research interests in Ubiquitous computing, the
Future Internet and Web Services. He has received his Master’s
degree in Software Engineering from the Visvesvaraya
Technological University (VTU), India. He has over ten years
of experience working both in the IT Industry and in IT
Academia. He has held positions as Software Engineer,
Technical Evangelist and Group Leader within the IT industry.
He moved into academia when he joined the Faculty of IT,
UAE University in 2006. Since then he has been teaching
various IT related topics and pursuing his research interests in
parallel.

Khouloud Boukadi is an associate professor in Computer
Science in the Multimedia, InfoRmation systems & Advanced
Computing Laboratory -Miracl (Faculty of Economics and
Management of Sfax - Tunisia). Her research interests include
service computing, context-aware computing, and agility of
information systems. She has a Ph.D. in Computer Sciences
from Ecole des Mines, Saint Etienne, France.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1439

© 2012 ACADEMY PUBLISHER

