
A Novel PIM System and its Effective Storage
Compression Scheme

Liang Huai Yang†, Jian Zhou, Jiacheng Wang

School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
†Email: yang.lianghuai@gmail.com

Mong Li Lee

School of Computing, National University of Singapore, Singapore
Email: leeml@comp.nus.edu.sg

Abstract—The increasingly large amount of personal
information poses a critical problem to users. Traditional
file organization in hierarchical directories is not suited to
the effective management of personal information. In order
to overcome the shortcomings of the current hierarchical
file system and efficiently organize and maintain personal
information, some new tools are expected to be invented. In
this paper, we propose a novel scheme called concept space -
a network of concepts and their associations – and use topic
map as the underlying data model. We present a
materialized view scheme to provide users with a flexible
view of the file system according to their own cognition. We
also reduce the storage requirement to save space usage of
this system by borrowing some ideas from XML data
management and contriving a novel and efficient data
compression scheme. To demonstrate the effectiveness of the
above idea, we have implemented a prototype personal
information management system called NovaPIM and
presented its system architecture. Extensive experiments
show that our proposed scheme is both efficient and
effective.

Index Terms—Personal Information Management, concept
space, data compression

I. INTRODUCTION

Personal information management (PIM) refers to the
activities people performed to acquire, store, organize and
retrieve their items of digital information for everyday
use [1]. PIM gained intensive attention in recent years [11,
12,13,14,15,16]. Academic research on personal
information tools stems from the early days of Hypertext
research including Vannevar Bush's vision of a PIM
device called “memex” [10] more than six decades ago,
“a memex is a device in which an individual stores all his
books, records, and communications, and which is
mechanized so that it may be consulted with exceeding
speed and flexibility. It is an enlarged intimate
supplement to his memory.” However, most systems only
provide a fixed, rigid hierarchical file organization. To
make matters worse, there is no alternate way, for
example, using different views, to access the personal
information.

The goal of PIM[6,7] is to offer easy access and
manipulation of all of the information on a person's
desktop, with possible extension to mobile devices,
personal information on the Web, or even all the
information accessed during a person's lifetime. Personal
information has a great diversity, which ranges from
office documents, PDF documents, emails, XML data,
relational data, music files, images, to videos etc. Besides
heterogeneity, the data is distributed in laptops, desktop
PCs, mobile phones, local systems, email servers and
other network systems, leading to information
fragmentation[2]. The increasingly large amount of
personal information poses a critical problem to users.
Thus, how to integrate these data is one of the challenges
of PIM.

Traditional file organization in hierarchical directories
may not be suited to the effective management of
personal information because it ignores the semantic
associations and bears no connection with the
applications that users will run. Further, the physical
hierarchical directories can give user only one view.

In this paper, we introduce the notion of concept space
to manage the collection of personal information objects.
Similar to the view of relational database, the term
concept represents user’s logical view of the personal
information items which may locate in different file
directories in the file system. We utilize the graphical
data model to organize the concept space where the nodes
are the concepts and the edges are the shortcuts to the
specific files or hyperlinks to some specific html
documents. Consequently, there will be large number of
such links in this system. These links share many prefixes
and gives us the opportunity to compress the contents.

Based on these ideas, we design a PIM system called
NovaPIM that provides flexible views of the information
items and overcomes the weakness of current file system
which has only one monolithic physical organization.
NovaPIM also use a dictionary based compression
scheme to reduce the overheads of the storage space for
the contents of the graphical data model. Experiments
results verify the effectiveness of this scheme.

The remainder of the paper is organized as follows.
Section II reviews briefly the related work on PIM;
Section III describes the architecture of our system
NovaPIM; Section IV addresses the issue of storage

Manuscript received OCT 10, 2011; revised NOV 2, 2011; accepted
NOV 4, 2011.

†Correspondent author

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1385

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1385-1392

compression on NovaPIM; and experimental evaluations
for our proposed scheme are given in Section V. Finally,
we summarize our work in Section VI.

II. RELATED WORK

PIM has attracted much attention for decades since
Vannevar Bush’s memex[10]. The increasingly large
amount of personal information(emails, sms, documents,
photos, videos, etc.), available from PCs, mobile phones,
PDAs, digital cameras, internet etc., poses a critical
problem to users. How to manage and organize this
information for personal productivity? As such, much
research has focused on this issue in recent years[11,12,
13,14,15,16]. PIM workshops sponsored by NSF (USA)
have been held for several years since 2005. Whittaker[28]
reviews research on three different information curation
processes: keeping, management and exploitation. A
series of research prototypes have been proposed in the
academic community: SIS[20], Lifestreams[21],
Agenda[23], gIBIS[24], Rufus[25], iMeMex [14,13],
SEMEX[6], Haystack[12], MyLifeBits[11], etc. Among
them, SIS and Lifestreams are document oriented retrieval
system, while the early tools like Agenda, gIBIS and
Rufus, and the recent ones like SEMEX, Haystack and
MyLifeBits, are based on relational model, and all data are
uniformly represented in this data model. This approach
can take advantage of the mature technology of RDBMS.
As RDBMS depends on rigid relational schema, this
approach cannot fully meet the needs of PIM. iMeMex,
on the other hand, presents an iDM data model, which
characterize itself with a graph data model to express the
data space, provides a formal method to represent a
unified view of resources(such as document, directory,
relational table, XML document, data stream etc.). The
theoretical foundation of iMeMex is RDF (Resource
Description Framework), iMeMex's architecture consists
of three layer: application layer, PDSMS (Personal Data
Space Management System) layer, and resource layer, as
shown in Figure 1. Stephen[22] gives a good description
of PIM issues from the perspective of personal
knowledge database. He addresses such issues as data
model of personal knowledge database, the theoretical
problems involved, and taxonomy of PIM tools.

There exist many PIMS tools in industry but still far
from satisfactory. Here we enumerate some popular ones:
Microsoft's OneNote, Micro Logic's Info Select 1 and
Thomson's EndNote2. OneNote makes note taking easier,
but it is an independent application separated from other
applications as email client, Internet explorer, and file
system. Info Select integrates email and note taking
functionalities into it, it is a good supplement to file
system[15]. EndNote focuses on the management and
organization of literature without considering other
aspects of PIM.

As PIM involves a diversity of data types with their
implicit semantics and lack of associations between data
objects, traditional desktop systems are incapable of PIM.

1 http://www.miclog.com/software/
2 http://www.endnote.com/

Keyword based information retrieval is not sufficient for
PIM, hence a flexible querying scheme is desired [26].

Figure 1. Architecture model of iMeMex PSDMS

iMeMex[14,13] uses RDF as its knowledge
representation model. RDF is more "low-level" than the
topic maps[19]. In RDF, resources are represented as
triplets (subject, predicate, object). In topic maps, topics
have characteristics of various kinds: names, occurrences
and roles played in associations with other topics. The
essential semantic distinction between these different
kinds of characteristic is absent in RDF. And more often
than not, schema is absent from PIM. Consequently, the
data model of topic maps is exploited as our system's
underlying model.

III. AN OVERVIEW OF OUR PIM SYSTEM – NOVAPIM

A. The prototype PIM system--NovaPIM
To overcome the shortcomings of the current

hierarchical file system in managing personal information,
we propose to use concept to organize and manage the
collection of personal information objects. A concept is a
logical view that a user uses to organize the information
items (files, URLs, emails…) and includes one or more
sub-concepts or topics. For each sub-concept or topic, it
can be materialized to a file which may contains one or
more shortcuts or hyperlinks to the physical files. These
concepts form an information space that we call it
Concept Space, which is a network of concepts and their
associations. Based on this idea, we have implemented a
prototype PIM system called NovaPIM shown in Figure 2.
Concepts are visualized as a tree-structure shown on the
left-hand tab folders while their relationships are
represented as folder and sub-folder or shortcuts/
hyperlinks in a file which can be edited/rendered on the
right-hand tab folder. Figure 2 shows an example concept
of “Path Compression”.

Next, we’ll discuss the system architecture and its
rationales behind it.

B. System Architecture
Figure 3 illustrates the architecture of our system

NovaPIM. It consists of three layers: Application Layer,
Concept Space Layer and Resource Layer.

1) Application Layer

1386 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Application Layer is the top layer of the system. It
provides various functionalities related to personal
information management, such as query and search, email
service, task management, agenda scheduling, etc.. The
functions may be composed from existing independent
applications through application integration, e.g., in place
activation of Microsoft office application via OLE
techniques. Some have to be constructed from scratch.
For example, the capability of flexible querying/search
for PIM system is desired, here we envision that the
system provides not only the traditional keyword based
searching capability but also the structure querying
capability, even the DB&IR capability[8]. Much of the
user interaction with PIMS involves exploring the data,
and users do not have a single schema to which they can
pose queries. Consequently, it is important that queries
are allowed to specify varying degrees of structure,
spanning keyword queries to more structure-aware
queries. The query system should be able to exploit both
exact matching and approximate matching scheme.

2) Concept Space Layer
As stated above, we use concept to organize / associate

PIM items. Concepts are assumed to be basic constituents
of thought and belief, and the basic units of thought and
knowledge that underlie human intelligence and
communication [17]. Every concept consists of the
intension and the extension. The intension of a concept
consists of all properties or attributes that are valid for all
those objects to which the concept applies. It is an
abstract description of common features or properties
shared by elements in the extension. The extension of a
concept is the set of objects or entities which are
instances of the concept, or rather, the extension consists
of concrete examples of the concept. All objects/entities
in the extension have the same properties or attributes
that characterize the concept. A concept is thus described
jointly by its intension and extension. All the concepts
and their associations form the Concept Space Layer
which is the core of the PIM system. In essence, it is a
graph-data model.

The concept of concept space was first proposed from
information retrieval perspective by Deng[3] in 1983,
where he stated that Concept Space was composed of the
concepts and the semantic network. Concept reflects the
objective nature of things and the characteristics of the
general. As we know, semantic network is a knowledge
representation scheme involving nodes and links (arcs or
arrows) between nodes, where the nodes represent objects
or concepts and the links represent relations between
nodes. The links are directed and labeled; thus, a
semantic network is a directed graph. In theory, this
definition is consistent with ours though there is no
standard definition of Concept Space by now.

As stated before, the data model of Topic Maps is
exploited as our system's underlying model. A type
hierarchy is helpful to enforce “is-a” relationship.
However, we have no pre-defined schema (or concept
hierarchy) in our system. Instead, we use the extensions
of concepts. In this respect, it's truly different from the
traditional DBMS. In addition, we relax the use of

semantic network and take a more practical approach. For
instance, we are using synonyms or even generic
“related-to” to express relationship between concepts. In
the future, we may introduce other “associations” into our
system. The reason underlying this preference is detailed
below.

(a)editing a topic with drag/drop support

(b)application embeddings

Figure 2. Our prototype PIM system—NovaPIM�

Figure 3. The Architecture of our system NovaPIM

Figure 4. The network of concepts.

During using and maintaining the personal information
items, different users may have different view of the
same items. In addition, the user's viewpoint of things
may evolve as his cognition advances or time goes by.
Users may classify/categorize the files according to
different considerations (e.g. file content, file type,

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1387

© 2012 ACADEMY PUBLISHER

subject, and time modified/downloaded) in different
situations. Hence, it is impractical to force users to use a
predefined “semantic network” in managing their
information collection. Consequently, NovaPIM takes a
more practical stand, which allows users to freely define
their own concepts by using their own terms. Here, each
concept refers to a collection of resources that have
similar or related information. NovaPIM realizes the
associations between concepts through shortcuts/
hyperlinks or folders/subfolders. These concepts form a
network as shown in Figure 4. As a result, such a scheme
allows users to have flexible views of the same
information items, which is reminiscent of the view
scheme in RDBMS. As such, this scheme is so powerful
that it relieves people from the restrictions of one
physical organization allowed in the file system. With
this scheme, users can build up a network of concepts
with different needs (e.g. the need of work, personal
preference or habit). In addition, inductive inference and
learning can be exploited to derive relationships between
the intensions of concepts based on the relations between
the extensions of concepts. Through the connections
between extensions of concepts, one may establish
relationships between concepts[18].

As a result, the Concept Space Layer uses concepts to
represent the data/file objects of various types/formats
and interconnects them. This abstraction of resources
facilitates the user and the Application Layer. Concept
Space Layer acts as the mediator between the Application
Layer and the physical Resource Layer and is the core of
PIMS. It achieves the physical data independence through
the mapping of Concept Space Layer/Resource Layer.

3) Resource Layer
The personal information may be in various forms. It

can be a document (in formats as word, txt, pdf, mp3,
rmvb, wav, etc.), email, URL, etc. or it can be structured
data in DBMS. It is noteworthy to mention that
unstructured data comprises the vast majority of data
found in an organization, some estimates run as high as
80%[9]. In personal information items, this number
becomes even larger. In PIM system, the management of
unstructured text is of primary importance. The items
may scatter in the different locations/directories in the file
system.

C. NovaPIM Implementation and Discussion
We have implemented a prototype system called

NovaPIM by Eclipse Java to demonstrate the proposed
idea. A hyper graph model is adopted for our proposed
concept space. Each vertex in the graph is a concept (it is
the extent of the concept in our case) and each edge is the
association between concepts. Although the underlying
theoretical foundation is topic map, it is relaxed in our
implementation. When a user uses unstructured data, the
data is usually lack of schema or a user may not provide
the metadata. That's a big difference from traditional
database system which always has a set of predefined
schema. As such, NovaPIM takes a more practical
approach. Currently it is a big challenge to define a view
for a concept using the topic map query language, and the
topic map query language in NovaPIM has a very limited

usage for its lack of schema. As a result, we resort to IR.
The combination of database technology and information
retrieval may be the best rescue.

The extent of a concept is defined and edited via a
HTML editor and the hyperlinks therein links to other
concepts or physical resources. In the future, we'll
introduce concept/view definition language to define
concepts. Another consideration is to improve on-demand
displaying of contents (concept/view) by active XML[27].
NovaPIM combines the tree and flat file to present its
hierarchical structure and graph structure. Concepts are
stored in XML file and the relationship is realized via ID
reference and hyperlinks that will be stated below. In
application layer, NovaPIM implements the embedding of
several applications such as PDF, HTML, Office, media,
email, etc., and provides a flexible query scheme which
incorporates concept hierarchy, file directory and
document content(refer to Figure 2 (b)). NovaPIM also
realizes email/task association. When an email arrives,
the system will check the contents of the mail and
compute its similarity with those tasks/topics/subjects
already defined.

NovaPIM overcomes the weakness of the current file
system. It provides the physical data independence
through the mapping between concept space layer and
physical resource layer. NovaPIM provides a view
scheme for user to create his own concept hierarchy
according to his cognitions. NovaPIM has a drag & drop
scheme to define the extent of a concept without
changing the file directory structure physically. One only
needs to drag and drop the files into a HTML editor(refer
to Figure 2 (a)); the shortcuts will be embedded into the
editor, e.g., “file:///C:/publication/PIMS/AsWeMay
Think.pdf”. The extent of a concept is similar in some
sense to the materialized view in DBMS.

By this way, some associations of concepts are
materialized as shortcuts/hyperlinks to the specific file
indicated by a specific file directory path/URL/URI
(hereafter, we call this a locator, hyperlink or path for
simplicity). A locator is a string which is composed of a
series of label names separated by path separator “/” and
ends with a file name. With this, we can uniquely
determine the file location in the file directory
structure/internet, and achieve the mapping from the
logical model (Concept Space) to the physical model (file
system). The same item/file can be referenced at any
number of times with no need of duplicating the
document. As the number of concepts increases, there
will be large number of such links in this system. These
links probably share many prefixes and thus gives us
opportunity to compress the contents. The issue of
content compression is addressed in next section.

IV. COMPRESSION SCHEME FOR NOVAPIM

In NovaPIM, the extent of a concept is a collection of
hyperlinks/locators. Taking all the shortcuts and
hyperlinks as whole, they form a tree. By borrowing the
labeling scheme from XML data that are widely used in
XML query processing, we achieve the goal of data
compression for NovaPIM. In this section, we adopt the

1388 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

ORDPATH[4,5] labeling scheme to form a dictionary-
based compression method to reduce the overheads of
storage space for NovaPIM.

Figure 5. An example of ORDPATH encoding

Figure 6. A Variant of ORDPATH Encoding

TABLE 1. VALUE TABLE
ORDPATH Encoding TAG RefCount
1 / 9
1.1 C: 4
1.3 D: 4
1.1.1 Music 2
1.3.1 Study 1
1.1.1.1 Hero.mp3 1
1.1.1.3 Fearless.mp3 5
1.1.1.5 Belief.mp3 5
1.3.1.1 XML 3
1.3.1.3 E-books 1
1.3.1.1.1 XML.pdf 1
1.3.1.1.3 DTD.doc 1
1.3.1.1.5 XML.ppt 2
1.3.1.3.1 Java.pdf 1
1.3.1.3.3 C++.pdf 1

A. ORDPATH node labeling scheme
ORDPATH is a prefix-based node labeling scheme, it

encodes the parent-child relationship by extending the
parent's ORDPATH label with a component for the child.
An example of the file directory path tree labeling using
ORDPATH is depicted in Figure 5. For example, 1.3.1
represents a parent node, 1.3.1.3 is its child node. The
ORDPATH value (“1.3.1.3”) with dot separated ordinal
values (“1”, “3”, “1”, “3”) reflects the successive levels
down the path from the root to the node represented.
During the initial load, ORDPATH assigns only positive
and odd integers, even and negative integers are reserved
for later insertions. If the newly inserted node is to be
added to the right of all the existing children, its label is
generated by adding +2 to the last ordinal of the last child.
If the newly inserted node is to be added to the left of all

the existing children, its label is generated by adding -2 to
the last ordinal of the first child. ORDPATH supports
insertion and update efficiently without relabeling any
existing label; it is also efficient to determine the parent-
child relationship. In our scenario, we use ORDPATH
value instead of file directory path. For instance, in Figure
5, the value “1.1.1.1” (7 characters) represents the path
“C:\Music\Hero.mp3”(17 characters) which reduces the
storage space by 10 characters. Though, the length of the
ORDPATH label will become long in case of deep trees
and trees with large fan-out. Overall, the length of
ORDPATH value is greatly shorter than that of file
directory path.

B. Storage structure
For better managing the path tree, NovaPIM requires

an efficient storage structure to maintain the compression
dictionary. Two alternative ways exist. The first approach
is to adopt the adapted ORDPATH Value Table.
ORDPATH scheme uses a table with its schema as
R(ORDPATH, TAG, NODE TYPE, VALUE), where
ORDPATH is the encoding value of a file directory path
by using ORDPATH labeling scheme, TAG represents a
node label of a locator(from the file directory tree or
internet), the other two fields, i.e., NODE TYPE and
VALUE, are not used in NovaPIM and can be omitted
therefore. In addition, we need another field called
RefCount. In NovaPIM, a concept may contain/reference
many items from various resources. An item can be
referred to by different concepts at the same time.
“RefCount” indicates how many times a file or a document
is referenced. Its value is maintained dynamically. If it
reaches zero, this entry can be removed from table to save
space. When adding a path into the Concept Space, e.g.,
“C:\Music\Hero.mp3”, the value of RefCount of each
corresponding node (“C:”, “Music”, “Hero.mp3”) will be
added by 1; When deleting a path, the value of RefCount
of each corresponding node will be reduced by 1. Hence,
the new table schema becomes R' (ORDPATH, TAG,
RefCount), one such example table is shown in TABLE 1
for Figure 5. The Value table is maintained dynamically.
When a new shortcut or hyperlink needs to be encoded,
we firstly look up it in this dictionary. If it exists, we
replace it with its corresponding ORDPATH code. If not,
we use ORDPATH labeling scheme to add it to the
dictionary. When performing add, delete, move and
decode, these operations involve traverse a path and need
to visit several tuples in the table. Thus it leads to low
efficiency.

The second approach is to use the encoding tree as the
dictionary but with some adaptation. Each node has the
encoding with the prefix removed, and adds RefCount
attribute. The encoding example for Figure 5 after taking
this approach is shown in Figure 6. The RefCount for
each node is shown within the brackets of its encoding,
indicating the total occurrences of this node in different
paths. Similar to the ORDPATH Value Table, when
adding/deleting a path into the Concept Space, the value
of RefCount of each corresponding node will be
increased/decreased by 1. The operation of moving a

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1389

© 2012 ACADEMY PUBLISHER

subtree can be seen as the synthesis of adding after
deletion. Node insertion doesn't incur the re-encoding of
other nodes; node deletion doesn't affect the relationship
of ancestor/descendant, parent/child, and siblings. When
encoding, we can get the path/locator encoding by
traversing and concatenating each node's encoding
corresponding to the path/locator labels; when decoding,
we combine each node's label by traversing the dictionary
tree according to the encodings. This approach can reduce
the space overhead of the compression dictionary and is
very efficient when encoding/decoding. When the
hyperlinks scale is not too large, this approach is a good
choice. This paper takes this approach.

Next, we describe the data compression algorithm
below.

Algorithm: InsertHyperLink
Input: P – a hyper link to be inserted, DT- the dictionary tree
Output: the corresponding ORDPATH encoding of hyper link P, and

the modified dictionary
1.Parse P into tokens(label names) {P1, P2, P3…} according

separator (“\” , “/” or others)
2. Let current node Ncurr←the root node of DT;
3. For each label TP in {P1, P2, P3…}, see if TP is among the labels

of Ncurr .ChildNodes():
(1) if exists: increase RefCount by 1 for the corresponding child

node with TP as its label.
(2) if not exists, create a new right-most child node with TP as

its label for Ncurr, encode this new node and set RefCount to
1.

(3) Ncurr←the new child node;
4. Combining the ORDPATH encoding values for the nodes

corresponding to P's label with “.” as their separator and return it.

Figure 7. Adding a new HyperLink

Algorithm: DeleteHyperLink
Input: P - a hyper link to be removed, DT- the dictionary tree
Output: the modified dictionary
1. Parse P into tokens(label names) {P1, P2, P3…} according

separator (“\” , “/” or others)
2. Let current node Ncurr←the root node of DT;
3. For each label TP in {P1, P2, P3…}, see if TP is among the labels

of Ncurr .ChildNodes():
(1)if exists: decrease RefCount by 1 from the corresponding

node with TP as its label. If RefCount becomes 0, then delete
this node and return; else Ncurr←the child node with TP as its
label;

(2)if not exists, report error and return;

Figure 8. Deleting a HyperLink

C. Data Compression Algorithm
1) Shortcuts/hyperlinks Encoding
When adding a new item into Concept Space, the related
information of shortcut or hyperlink of the item may need
to be added into the dictionary tree. Here we take shortcut
as the example for description. First, we separate a
shortcut (e.g. “C:\Music\Hero.mp3”) into its individual
parts (“C:”, “Music”, “Hero.mp3”) by the separator “\”;
Next, we check whether the leading node (“C:”) exists or
not; if exists, check whether the sequent node (“Music”)
exists or not within its leading node's children; if the
leading node doesn't exist, then encode the leading node
into ORDPATH value. The remaining node (i.e.
“Hero.mp3”) is handled the same way as stated above.
Finally, for each node accessed, the value of RefCount will
be added by 1, the ORDPATH value of the last node is

the encoding value of the shortcut. The encoding
algorithm is depicted in Figure 7.
2) Decoding ORDPATH value into shortcuts/hyperlinks

For a compression system, it is essential to get back the
original shortcut/hyperlink by decoding ORDPATH value
(say X = 1.1.1.1). By removing the rightmost component
of X (always an odd ordinal) and then all rightmost even
ordinal components [4], we get its parent (here 1.1.1) in
dictionary tree. Such process continues until up to root.
Eventually, we recover the original shortcut/hyperlink by
connecting the node successively by adding the separator
“\” in between.
3) Delete a shortcut/hyperlink

When deleting a shortcut/hyperlink from its
corresponding concept, reduce the value of RefCount by 1
for all the nodes of shortcut/hyperlink according to
ORDPATH value by visiting all nodes by the way
explained in Section 2) above. If the value of the
RefCount becomes 0, the corresponding entry is deleted.
The corresponding deletion algorithm is shown in Figure 8.
TABLE 2 EXPERIMENT DATASET 1

TABLE 3 EXPERIMENT DATASET 2

V. PERFORMANCE EVALUATION

A. Experimental Environment and Data Generation
The experiments were performed on an Intel Core 2

Duo 2.2GHz CPU with 2GB memory, running Window 7.
We produce two data sets from the real-life file
directories shown in TABLE 2 and TABLE 3. The first
column indicates the total number of distinct
shortcuts/hyperlinks; column two, three and five are the
average values of the depth, length and fanout of the
collections respectively; and the total number of nodes is
given in the fourth column. Note that the fanout is the
fanout of the dictionary tree. In TABLE 2, the average
depth of the data set is 5, and the average path length is
45.7(Bytes). The data set in TABLE 3 shows that the
average path depth is 8, and its average path length is
71.2(Bytes).

B. Experimental results
All results are shown in tables. The acronyms of the

table header are explained below. Paths is the total
number of distinct paths/locators; RC is the reference

Paths Avg
Depth

Avg
Length(B)

Nodes Avg
Fanout

500 4.8 33.5 329 46.86
1000 5.3 51.2 1011 21.04
2000 5.3 48.7 1955 11.70
3000 5.2 47.1 2669 10.34
4000 5.1 46.6 3999 7.56
5000 4.6 43.3 5006 8.56
7000 5.3 45.7 6307 15.20
11000 4.9 45.6 10036 9.67

Paths Avg
Depth

Avg
Length(B)

Nodes Avg
Fanout

5x104 8.7 76.2 50085 12.54
105 8.8 75.9 100152 11.95
106 7.2 61.5 1000018 14.51

1390 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

count RefCount which indicates the number of times a
resource is referred to by different concepts; ARC is the
average reference count; DS is the space occupied by the
dictionary tree in KB; ES is the space consumed by
encoding in KB; CS is the space consumed after
compressing the data set(hyperlinks) in KB; it consists of
two parts: the size of encoded data and the size of the
dictionary tree and thus it holds that CS = DS + ES; OS is
the space used without compression in KB; By
comparing the compressed space CS to the original data
size OS, we got the compression ratio CR(%), i.e., CR =
(OS - CS)/OS*100.
TABLE 4 EXP. RESULT OF DATASET 1 WITH RefCount SET TO 1

TABLE 5 EXP. RESULT OF DATASET 2 WITH RefCount SET TO 1

TABLE 6 EXP. RESULT OF DATASET 1 WITH RefCount
CONFORMING TO NORMAL DISTRIBUTION N(0, 32)

TABLE 7 EXP. RESULT OF DATASET 2 WITH RefCount
CONFORMING TO NORMAL DISTRIBUTION N (0, 32)

TABLE 4 ~ TABLE 9 illustrate the effectiveness of

our compression scheme on storage space. The
experimental results, where one hyperlink is only referred
to once by a concept, are shown in TABLE 4 and TABLE
5. In this case, the shared prefixes contribute to the effect.
From the results we know that the average compression
ratio is about 14% and 25% respectively.

TABLE 6 ~ TABLE 9 give the results when a
hyperlink is referred to more than once by several
concepts. In TABLE 6 and TABLE 7, the reference count
conforms to the normal distribution N(0,32), and their
average reference count is near 2; in TABLE 8 and
TABLE 9, the reference count conform to the normal

distribution N(0,52) with their average reference count
around 3.5.

The experimental results on data set 1 are shown in
TABLE 4, TABLE 6 and TABLE 8. With the increasing
of the average reference count, their average compression
ratio grows accordingly from 14%, 39% to 52%. The
experimental results on data set 2 is shown in TABLE 5,
TABLE 7 and TABLE 9, their average compression ratio
grows accordingly from 25%, 44% to 53% as the average
reference count increases.

TABLE 8 EXP. RESULT OF DATASET 1 WITH RefCount
CONFORMING TO NORMAL DISTRIBUTION N(0, 52)

TABLE 9 EXP. RESULT OF DATASET 2 WITH RefCount
CONFORMING TO NORMAL DISTRIBUTION N (0, 52)

VI. CONCLUSION AND DISCUSSION

This paper proposes to use the idea of concept space to
manage personal information and exploit topic map as the
underlying data model. Based on this, the paper presents
the prototype system NovaPIM. NovaPIM integrates
many desktop applications through application
embedding and give a solution to the problem of physical
data independence. A materialized view scheme is
provided to view the file system from different
perspectives according to user's own cognition. Users can
define his concept through drag & drop without
physically changing the directory structure. NovaPIM
combines both the tree and graph model to organize and
manage the data collection. For the diversity of personal
data, any single data model is not sufficient. The
combination of several data models may be the only right
way.

With the help of shortcuts/hyperlinks, we represent the
concept space in a graphical model. We adopted the
ORDPATH label scheme to reduce the storage overheads
of file directory path. The experimental results show its
effectiveness.

As pointed out before, the lack of schema is the
intrinsic nature of PIMS. To solve this issue, data mining
and machine learning techniques should come into play
to discover the schema among data collection and find the
relationships between concepts. An appropriate view
definition language is desired to face the schema lack
environment. All these are in our future research agenda.

Paths ARC DS ES CS OS CR
5x104 3.50 1518 4281.7 5799.6 13042.7 55.53
105 3.50 3020 8775 11795 25988.3 54.62
106 3.51 21365 84019 105384 210434 49.92

Paths RC DS ES CS OS CR
5x104 1 1518 1222 2740 3723 26

105 1 3020 2504 5524 7414 25
106 1 21365 23975 45340 60048 24

Paths ARC DS ES CS OS CR
5x104 1.91 1518 2341 3859 7132 46
105 1.91 3020 4796 7816 14206 45
106 1.92 21365 45949 67314 115077 42

Paths ARC DS ES CS OS CR
500 1.85 7 7 14 30 53
1000 1.85 29 25 54 92 41
2000 1.89 51 55 106 180 41
3000 1.91 68 75 143 265 46
4000 1.91 100 127 227 346 34
5000 1.92 133 152 285 403 29
7000 1.88 168 182 350 584 40
11000 1.90 262 348 610 937 35

Paths RC DS ES CS OS CR
500 1 7 4 11 16.37 33
1000 1 29.42 13.41 42.83 50.00 14
2000 1 51.84 28.99 80.82 95.19 15
3000 1 68.08 39.58 107.66 137.84 22
4000 1 100.71 66.53 167.24 182.03 8
5000 1 133.40 79.59 212.99 211.25 -0.8
7000 1 168.14 96.63 264.77 312.27 15
11000 1 262.31 182.39 444.70 490.03 9

Paths ARC DS ES CS OS CR
500 3.41 7 13 20 55 63
1000 3.42 29 45 74 170 56
2000 3.47 51 101 153 330 54
3000 3.52 68 139 207 486 57
4000 3.52 100 233 333 636 48
5000 3.53 133 280 413 741 44
7000 3.47 168 335 503 1076 53
11000 3.49 262.31 637 899 1713 47

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1391

© 2012 ACADEMY PUBLISHER

ACKNOWLEDGMENT

This work is supported in part by Zhejiang Provincial
NSF Project(Y1090096) and the NSFC Project
(61070042).

REFERENCES

[1] M. Lansdale. The psychology of personal information
management. Applied Ergonomics, 19(1), 1988, pp.55-66.

[2] W. Jones. Finders, keepers? The present and future perfect
in support of personal information management. First
Monday,2004,http://www.firstmonday.dk/issues/issue9_3
/jones/index.html.

[3] L. H. DENG. Library and Information Mathematics,
Northeast Normal University, 1983.

[4] P. O'Neil, E. O'neil, S. Pal, L. Cseri, G. Schaller, and N.
Westbury, “ORDPATHs: Insert-Friendly XML Node
Labels”, Proceedings of the ACM SIGMOD, 2004,
pp.903-908.

[5] R. Alkhatib and M. H. Scholl. Compacting XML
Structures Using a Dynamic Labeling Scheme. BNCOD,
2009, pp.158-170.

[6] X. Dong and A. Halevy. A Platform for Personal
Information Management and Integration. CIDR, 2005.

[7] S. T. Dumais, E. Cutrell, J. J. Cadiz E., G. Jancke, R. Sarin,
and D. C. Robbins. Stuff I've seen: A system for personal
information retrieval and re-use. SIGIR, 2003, pp.72-79.

[8] S. Chaudhuri, R. Ramakrishnan, G. Weikum. Integrating
DB and IR Technologies: What is the Sound of One Hand
Clapping?. CIDR, 2005.

[9] C. C. Shilakes and J. Tylman, "Enterprise Information
Portals", Merrill Lynch, 16 November, 1998.

[10] V. Bush. As we may think. Atlantic Monthly, 176(1), 1945,
p:101-108.

[11] J. Gemmell, G. Bell, R. Lueder, SM Drucker, C. Wong.
MyLifeBits: Fulfilling the Memex vision. Proc. of the 10th
ACM International Conference on Multimedia, 2002,
pp.235-238.

[12] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, V. Sinha.
Haystack: A customizable general-purpose information
management tool for end users of semistructured data.
CIDR, 2005, pp.13-26.

[13] J.P. Dittrich, M. Antonio, M. Salles. iDM: A unified and
versatile data model for personal dataspace management.
VLDB, 2006, pp.367-378.

[14] L. Blunschi, J. Dittrich, O. R. Girard, S. K. Karakashian,
and M. A. V. Salles. A Dataspace Odyssey: The iMeMex
Personal Dataspace Management System. CIDR, 2007,
pp.114-119.

[15] W. Jones, J. Teevan. Personal Information Management.
Communications of the ACM, 49(1), 2006, pp.40-42.

[16] D. K. Barreau. Context as a factor in personal information
management systems. Journal of the American Society for
Information Science, 46(5), 1995, pp.327-339.

[17] Y. Y. YAO. Concept Formation and Learning: A
Cognitive Informatics Perspective. Proceedings of the
Third IEEE International Conference on Cognitive
Informatics, 2004, pp. 42–51.

[18] Y.Y. Yao. A step towards the foundations of data mining.
Data Mining and Knowledge Discovery: Theory, Tools,
and Technology V, B.V.Dasarathy(Ed.), The International
Society for Optical Engineering, 254-263, 2003.

[19] Topic Maps - XML Syntax. http://www.isotopic-maps.org/
sam/sam-xtm/2006-06-19/

[20] S. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, D. C.
Robbins. Stuff I've seen: a system for personal information
retrieval and re-use. SIGIR conference, 2003, pp.72–79.

[21] S. Fertig, E. Freeman, and D. Gelernter. Lifestreams: An
alternative to the desktop metaphor. In Conference
Companion on Human Factors in Computing Systems:
Common Ground, 1996, pp. 410–411.

[22] S. Davies. Still Building the Memex. Communications of
the ACM, 2011, 54(2):80-88.

[23] S. J. Kaplan, M. D. Kapor, E. J. Belove, R. A. Landsman,
and T. R. Drake. Agenda: A personal information manager.
Commun. ACM 33, 7 (July 1990), pp.105–116.

[24] J. Conklin and M. L. Begeman. gIBIS: A hypertext tool
for exploratory policy discussion. ACM Transactions on
Office Information Systems, Vol. 6, No. 4, October 1988,
pp.303-331.

[25] K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, J.
Thomas. The Rufus System: Information Organization for
Semi-Structured Data. In VLDB, pp.97-107, 1993.

[26] W. Wang, A. Marian, T. D. Nguyen. Unified Structure and
Content Search for Personal Information Management
Systems. International Conference on Extending Database
Technology, pp. 201-212 , 2011.

[27] S. Abiteboul, O. Benjelloun, T. Milo. Positive Active XML.
PODS Conference, 2004, pp.35-45.

[28] S. Whittaker. Personal Information Management: from
information consumption to curation. Annual review of
information science and technology (ARIST), Vol. 45
(2011), pp. 3-62.

Liang Huai Yang is a professor at
Zhejiang University of Technology. He
received the BSc. degree in Information
Science (Department of Mathematics) in
1989 and the PhD degree in Computer
Science from Peking University in 2001.
He assumed a research fellow position at
National University of Singapore during
2001~2005. He has published about 40
papers in major conferences and journals

in the database field. He has served on the program committee
of some database conferences, and as reviewers of some
journals such as Information Sciences, Information Systems,
International Journal of Electronics and Computers, etc.

Lee Mong Li is an Associate Professor and Assistant Dean in

the School of Computing at the National
University of Singapore (NUS). She
received her Ph.D. in Computer Science
from NUS in 1999. She was awarded the
IEEE Singapore Information Technology
Gold Medal for being the top student in the
Computer Science program in 1989. Mong
Li joined the Department of Computer
Science, National University of Singapore,
as a Senior Tutor in April 1989 and was

appointed Fellow in the School of Computing in February 1999.
She was a visiting Fellow at the Computer Science Department,
University of Wisconsin-Madison, from September 1999 to
August 2000 and Consultant at Quiq Incorporated, USA from
June to August 2000. Her research interests include the cleaning
and integration of heterogeneous and semi-structured data,
database performance issues in dynamic environments, and
medical informatics. Her work has been published in database
conferences such as ACM SIGMOD, VLDB, ICDE and EDBT,
data mining conference ACM SIGKDD and database
conceptual modeling conference (ER).

1392 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

