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Abstract—This paper presents an effective method for task 
scheduling in heterogeneous distributed systems. Its 
objective is to minimize the last task’s finish time and to 
maximize the system reliability probability. The optimum is 
carried out through a non-domination sort genetic 
algorithm. The experimental results based on both 
randomly generated graphs and the graphs of some real 
applications showed that, when compared to two well 
known previous methods, such as heterogeneous earliest 
finish time (HEFT) algorithm and Critical Path Genetic 
Algorithm, this algorithm surpasses previous approaches in 
terms of both last task’s finish time and the system 
reliability probability. 
 
Index Terms—DAG scheduling, ask graphs, heterogeneous 
system, non-domination sort genetic algorithm 

I.  INTRODUCTION 

Software engineer play an important role in control 
software especially in some safety critical system. 
Correct implementation of software ensures proper 
operation of these systems. EXCELLENCE task scheduling 
strategy will be to reduce the probability of these 
system’s software error. 

With the recent advancements in massive parallel 
processing technologies, the problem of scheduling tasks 
in multiprocessor system is becoming increasingly 
important. The problem of scheduling task graph of a 
parallel program ONTO a parallel and distributed 
computing system is a well defined NP-complete problem. 
This problem involves mapping a Directed Acyclic Graph 
(DAG) for a COLLECTION of computational tasks and 
their data precedence onto parallel processing systems.  

Over the past few years, they have become the most 
attractive option for high performance computing and 
information processing. They have been increasingly 
employed for critical applications such as aircraft control, 
industrial process control, and etc. Increased 
commercialization of heterogeneous distributed 
computational systems pertains to the fact that ensuring 
system reliability is of critical importance. Therefore, the 
goal of a task scheduler is to assign tasks to available 
processors such that precedence requirements for these 
tasks are satisfied, with the overall execution length (i.e., 
makespan) minimized, while the reliability of the system 
is maximized. 

Some scheduling algorithms are therefore proposed to 
deal with the heterogeneous SYSTEMS; for example, 

Mapping heuristic (MH)[1], dynamic level scheduling 
(DLS) algorithm, levelized min time (LMT) algorithm[2], 
Critical-path-on-a-Machine (CPOP) algorithm, and 
heterogeneous earliest finish time algorithm[3]. The HEFT 
algorithm significantly outperforms the DLS, MH, LMT 
and CPOP algorithms in terms of average schedule length 
ratio [4,5].The HEFT algorithm SELECTS the tasks with the 
so-called highest upward rank value at each step, and 
assigns the selected task to the processor to minimize its 
earliest finish time. Tasks mean computational time on all 
processors and the mean communication rates on all links 
were used to compute the upward rank value. 

Recently, Genetic Algorithms (GAs) was widely 
reckoned as a useful meta-heuristics for obtaining high 
quality solutions for a broad range of combinational 
optimization problems which included task scheduling 
[6][7]. The GA operates on a number of solutions. Another 
merit of genetic is that its inherent parallelism can be 
exploited to further reduce its running time. However, 
Standard GA algorithms for task scheduling are 
monolithic, as they attempt to scan the entire solution. To 
enable the GA algorithm search the solution more 
effectively, CPGA was proposed .CPGA is based on 
standard GA algorithm with some heuristic principles that 
has been added to improve its performance [8]. 

Unfortunately, most of these algorithms can not 
minimize the execution length, and at the same time 
maximize the system’s reliability. While this problem 
requires the simultaneous optimization of more than one 
non-commensurable and competing criterion, solutions to 
the multi-objective optimization problem are usually 
computed by combining them into a single criterion to be 
optimized. In this paper, a new modified GA algorithm is 
proposed, namely, HEFT-No dominated Sorting Genetic 
Algorithm (HEFT-NSGA) which seek to solve the multi-
objective optimization problem in task scheduling. 

This paper is organized as follows: Section 2 surveys 
the related work of our study. In section 3, our HEFT-
NSGA for task SCHEDULING is presented. Experimental 
results are provided in Section 4 followed by conclusion 
in Section 5. 

II.  RELATED WORK 

A task scheduling system model consists of an 
application, a target computing environment, and a 
performance criteria for scheduling. 
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A.  Related definition 
An application is represented by a directed acyclic 

graph, whereV  is the set of tasks and ),,( EVG = E  
is the set of edges between the tasks. Each edge 

represents the precedence constraint such 

that, task   should complete its execution before 

task starts.  is an 

Ejie ∈),(

iv

jv Data mm×  ( is the number of 

tasks) matrix of communication data, where   is 
the amount of data required to be transmitted from task 

  to   . 

m

jidata ,

iv jv
In a given task’s graph, a task without any parent is 

called entry task, and a task without any child is called an 
exit task. In this paper, we have asserted that the task 
graph is a single-entry-single-exit task graph. If there are 
more than one entry (exit) task, they are connected to a 
zero-cost pseudo entry (exit) task with zero-cost edges, 
which do not affect the schedule. 

We assume that the target computing environment 
consists of n heterogeneous processors, , 

connected in a fully connected topology. Let W  be an 
 computation cost 

nppp "21,

nm× matrix in which each  

gives the execution time to complete task   on 

processor  . 

jiw ,

iv

jp
Each processor may fail due to hardware fault which 

result in task’s failure. These faults may be transient or 
permanent and are independent. Each independent fault 
results in the failure of only one processor. 

Basic Terminologies: 
1) The feasible schedule S  ensures that task’s 

constraints between tasks of all tasks are met. A partial 
schedule is one which does not contain all tasks. 

2) For a task , and are scheduled start 
time and scheduled finish time respectively. For a 

iv )( ivSt )( ivft

processor , and are the processor’s 
start time (the time it takes to run a task) and FINISH time 
(the time it takes to complete a task) respectively. 

jp )( jpSt )( jpft

3)  For a task , is its scheduled processor.  ijv jp
4) For a communication ,  is the 

communication’s delay between task and , if TASKS 

 and  are scheduled on different processors, that is 

jie , jicomu ,

iv jv

iv jv

),(),(),( hk ppdjidatajicomu ×=           (1) 

where task  is mapped onto processor , task  is 

mapped onto processor , and  is the time 
iv kp jv

hp ),( hk ppd
required to send a unit length data from  to . kp hp

5) Processor ready time is it’s available 
time when it runs a task. 

sp j ' )( jpR

6) For a task , and are the 

scheduled earliest start time of task  on processor , 

and the scheduled earliest 

iv ),( jiEST ),( jiEFT

iv jp
finish time of task on 

processor  respectively. 
iv

jp

      )),()(max(max(),( ikcomukftjiEST +=           (2)  

            
)())( ikj vparentvpR ∈

                    (3) 

        ),(),(),( jiwjiESTjiEFT +=          (4) 

7) The Data Arrival Time ( ) of  at processor 

is defined as: 

DAT iv

jp

)),()(max(),( kicomukftjiDAT +=  

                )( ik vparentv ∈                           (5) 

If tasks  and  are scheduled kv iv on the same 

processor, then  equals zero. ),( kicomu
8) The parent task that maximizes the above 

expression is called the favored predecessors of and it 

is denoted by . 
iv

),( ji pvfavored
9)Let >=< )(3),(2),(1)( afafafaF  and 

>=< )(3),(2),(1)( bfbfbfbF  be the vector values of 
the cost function F  for solutions a and b respectively. 
Then, a dominates b if  for all )()( bfiafi ≤

)3,2,1( =ii  and either  or )(1)(1 bfaf <
)(2)(2 bfaf <  or . )(3)(3 bfaf <

10) Reliability Probability of Processor: The reliability 
probability of processor p  during a time interval t  is   

 
tpe λ− [9, 10]. Under a task allocation S, the time required 

to execute all the tasks assigned to processor p  

is ∑=

N

i ip pitX
1

),(cos , if task is scheduled on 

processor 

iv

p , then ,1=ipX otherwise   then 
the corresponding processor reliability can be formulated 
as 

,0=ipX

formula (7); 

                               (6) 
ip

N

i ipp EX
p eSPR ∑= =

λ−
1)(

11) Reliability probability of path during a time 

interval t  is   

pqe
tpqe μ− [9, 10]. Under a task allocation S, the 

time required for data communication between the 
terminal processors  and  

is

p q

∑ ∑= ≠

N

1i ij ijjqip qpddataXX )),(( ; then, the 

corresponding path reliability can be given by formula (7); 
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∑ ∑= = ≠

μ−
N

i ij jijqippq qpddataXX

pq eSPR 1 , )),((
)(

       (7) 

12) System’s reliability probability with the task 
allocation  is S computed as follows:  

       (8) 
∏ ∏∏
= = ≠

−==
P

p

P

p pq

Xcount
pqp eSRSRSR

1 1

)()()()(

+λ= ∑ ∑
= =

ipip

N

i

P

p
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∑∑∑∑
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μ
N

i ij

P

p pq pq
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jqip W

C
XX
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                    (9) 
  The first term of the function  reflects the 

unreliability caused by the execution of tasks on 
processors of various reliabilities, and the second term 
reflects the unreliability caused by the inter-processor 
communication through different paths of various 
reliabilities. 

)(Scount

  Maximizing the system reliability is equivalent to 
minimizing . )(Scount

B.  The Heterogeneous-Earliest-Finish-Time (HEFT) 
Algorithm 

The HEFT algorithm has two major phases: a task 
prioritizing phase for computing the priorities of all tasks 
and a processor selection phase for selecting the tasks in 
the order of their priorities, thereby scheduling each 
selected task on its best processor, which minimizes the 
task’s finish time. 

Task Prioritizing Phase: This phase requires the 
priority of each task to be set with the upward rank value, 

which is based on mean computation and mean 
communication costs. The task list is generated by sorting 
the tasks by decreasing order 

urank

of .It can easily be 

shown that the decreasing order of values 
provides a topological order of tasks, which is a linear 
order that preserves the precedence constraints. 

urank

urank

Processor Selection Phase: The HEFT algorithm 
schedules the task on the processor on which the task has 
the earliest finish time. 

The upward rank of a task is recursively defined by 
formula (11) and (12). 

iv

))(()( ,
)(

max juji
nsuccn

iiu nrankwwnrank
ij

++=
∈       (11) 

                  exitexitu wnrank =)(                      (12) 

C.  The Critical Path Genetic Algorithm (CPGA) 
The CPGA algorithm is considered as a hybrid of SGA 

principles and heuristic principles. The same principles 

and operators which are used in Standard Genetic 
Algorithm are used in the CPGA algorithm. 

SGA algorithm is started with an initial population of 
feasible solutions. Therefore, by applying some operators, 
the best solution can be obtained after some generations. 
The selection of the best solution is determined according 
to the value of the fitness function. According to this, the 
chromosome is divided into two sections, the mapping 
and the scheduling sections. The mapping section 
contains the processor indices where tasks are to be run. 
The scheduling section determines the sequence for 
processing the tasks.Figure2 shows an example of such 
representation of the chromosome. 

 
Figure 1.  A task graph and the computation time on different 

processors 

 
Figure 2.  Chromosome encoding 

The same principles and operators which are used in 
SGA algorithm have been used in the CPGA algorithm. 
The encoding of the chromosome is the same as in SGA, 
but, in the initial population, the second part (schedule) of 
the chromosome can be constructed using ALAP [16]. 

In CPGA, three modifications have been applied in the 
SGA to improve the scheduling performance. These 
modifications are: 

Reuse idle time:  
The idle time of the processor is used to assign some 

tasks to idle time slots 
Priority of the CPNs: 
According to the modification, the initial population is 

produced using the following steps: 
Initially, the entry task is the selected task and it is 

marked as a critical path task. An immediate task is 
marked as a critical path task. An immediate successor 
(of the selected task) that has the highest priority value is 
selected and it is marked as a critical path task. This 
process is repeated until the exit node is repeated. In each 
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generation of population, the critical path task is 
scheduled as early as possible. 
Load balance: 

The aim of load balance modification is to obtain the 
minimum schedule length and, at the same time, satisfy 
the load balance. 

III.   HEFT-NO DOMINATED SORTING GENETIC 
ALGORITHM (HEFT-NSGA) 

Task scheduling is also a class of optimization 
problems. Existing scheduling algorithms handle task 
scheduling as a single objective optimization. But in 
many practical applications, multi-objectives need to be 
optimized at the same time. 

Evolutionary algorithm has successfully been applied 
to the field of multi-objective optimization. In order to 
achieve global search evolutionary algorithm, maintain 
the composition of the population of potential solutions 
between generations ， this means that, population to 
population is effective for searching best solutions to 
multi-objective optimization problems. 

In the case of multiple objectives, there may not be one 
solution which is best in comparison to all other 
objectives. In a typical multi-objective optimization 
problem, there exist a set of solutions which are superior 
to the rest of the solutions in the search space when all 
objectives are considered, but they are inferior to other 
solutions in the space in one or more objectives. These 
solutions are known as Pareto-optimal solutions or non-
dominated solutions. The rest of the solutions are known 
as dominated solutions. Since none of the solutions in the 
non-dominated set is absolutely better than any other, any 
one of them is an acceptable solution. 

NSGA-Ⅱ is by far one of the best evolutionary multi-
objective optimization algorithm[11]. 

The developed HEFT-NSGA algorithm is considered 
as a hybrid of the NSGA and the heuristic principles .On 
the other hand, the same principles and operators which 
are used in NSGA algorithm are also used in the HEFT-
NSGA algorithm .The encoding of the chromosome is the 
same as in SGA. 

A.   Generating initial population 
By performing the following steps, chromosomes 

would be created. 
1) Set st( m)(processor’s start processing time)=0 

ft(m)(processor’s finish processing time)=0; 
2) Select a task  whose predecessors are scheduled; iv
3) Select the processor in which task  has the 

earliest finish time, however, if two or more processors 
have earliest finish times, select one of them in random; 

iv

4) if task  scheduled on processor , set 

; 
iv kp

)()( ik vftpft =
5)  Repeat steps 2 to 4 until all tasks are scheduled and 

new chromosomes are generated; 
6)  check the tasks in the chromosomes weather they 

satisfy the logical requirements; 

7)  Repeat steps 1 to 6 using the number of initial 
population. 

B.  HEFT-NSGA algorithm 
The initialized population is sorted based on non-

domination sort into each front. The first front being 
completely non-dominated set in the current population, 
and the second front being dominated by the individuals 
in the first front only and the front goes on and on. Each 
individual in the fronts are assigned rank (fitness) values 
based on the front which they belong to. Individuals in 
first front are given a fitness value of 1 and individuals in 
second are assigned fitness value as 2 and so on. 

In addition to fitness value, a new parameter called 
crowding distance is calculated for each individual. The 
crowding distance is a measure of how close an 
individual is to its neighbors. Large average crowding 
distance will result in better diversity in the population. 

Parents are selected from the population by using 
binary tournament selection based on the rank and 
crowding distance. An individual selected has either its 
rank lesser than the other or its crowding distance greater 
than the other. The selected population generates 
offspring from crossover and mutation operators. 

The current parent population and current offspring is 
sorted again based on non-domination and only the best 
N individuals are selected, where N is the population size. 
The selection is based on rank and the crowding distance 
on the last front. 

Step 1: Initialize the parameter and encode the 
chromosome; 

Step 2: Generate Initial Population  
Step 3: Non-Dominated sort: The initialized population 

is sorted based on non-domination; 
Step 4: While stop criterion is not satisfied, do begin. 
 4.1)  currentnew PP ←  

4.2)  repeat for ( 2
PN ) times, 

);( newDad PselectP ←  

)( newmom PselectP ← ; 

)( , momDadnew PPcrossoverP ← ; 
End repeat; 
4.3) for each chromosome∈  do begin Pnew
Mutate (chromosome); 
End for. 
4.4)Non-Dominated sort ( ).  newcurrent PP ,

Step 5: Return the best chromosomes pN
The non-dominated fast sort algorithm is described as 

below. 
For each individual p in population P, do the following: 
Initialize Φ=pS . (This set contains all individuals 

that are dominated by p .) 

Initialize 0=pn . (This is the number of individuals 
that dominate p .) 
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For each individual  in q P , 
If  dominated  then, p q
Add q  to the set  i.e. , pS }{qSS pp ∪=
Else if  dominates  then q p
Increase the domination counter for  i.e. 

, 

p
1+= pp nn

If  i.e. no individual dominate  then  
belongs to the first front;  

0=pn p p

Set rank of individual  to one, i.e. .  p 1=rankp
Update the first front set by adding  to front one, i.e. 

. 
p

}{11 pFF ∪=
This is carried out for all the individuals in the main 

population P . 
Initialize the front counter to one.  
While the  front is non-empty, i.e. ; ith Φ≠iF

Set Q = ∅ . The set for storing the individuals for (i 
+ 1)th front. 

for each individual p  in front ,for each individual 

in  ( is the set of individuals dominated by 

), , decrease the domination count for 
individual . 

iF
q pS pS
p 1−= qq nn

q
If , then none of the individuals in the 

subsequent fronts would dominate q.  
0=qn

Hence, set . 1+= iqrank

Update the set  with individual  i.e. . Q q qQQ ∪=
Increase the front counter by one. 

Now the set Q  is the next front and hence QFi = . 
Crowding Distance: Once the non-dominated sort is 

complete, a crowding distance is assigned; the individuals 
are selected based on their ranks, and all individuals in 
the population are assigned a crowding distance value.  

Comparing the crowding distance between two 
individuals in different front is meaningless. The crowing 
distance is calculated as follows; 

For each front ,  is the number of individuals. 
Initialize the distance to zero for all the individuals i.e. 

, where 

iF n

0)( =ji dF j  corresponds to the  

individual in 

jth
front . For each objective function m , 

sort the individuals in front  based on objective  i.e. 

.Assign infinite distance to boundary 

values for each 

iF

iF m
),( mFsortI i=

individual in . iF ∞=)( 1dI  and 

 ∞=)( ndI
For , )1(2 −= ntok

minmax

)1()1()()(
mm

kk ff
mkImkIdIdI

−
∗−−∗+

+=  (13) 

Where,  is the value of the mth  objective 

function of the individual in 

mkI )(
thk I . 

The basic idea behind the crowding distance is to find 
the Euclidian distance between each individual in a front 
based on their m objectives in the m dimensional hyper 
space. Individuals in the boundary are always selected 
since they have infinite distance assignment. 

Selection: Once the individuals are sorted based on 
non-domination and with crowding distance assigned, the 
selection is carried out using a crowded comparison- 
operator ( ). The comparison is carried out as follows 
based on: 

n≺

1) Non-domination rank  i.e. individuals in front 

will have their rank as . 
rankp

iF iprank =
2) Crowding distance , ,If )( ji dF qp n≺

rankrank qp < , or if p  and q  belong to the same front 

then  i.e.  iF )( qi d)( pi FdF >
The individuals are selected by using a binary 

tournament selection with crowed-comparison- operator. 
Since standard genetic algorithm may require some 

time to find an ideal result, it is necessary to modify some 
principles .In HEFT-NSGA, once a task is selected to 
schedule on a processor, some steps are altered, and the 
pseudo code of this algorithm is as follows: 

1) 0][ =∀ jPRT , and RT is the ready time of the 
processors; 

2) Let LT be a list of tasks according to the topological 
order of DAG; 

3) For i=1 to m, and m is the number of tasks in DAG; 
a ) Remove the first task ti from list LT, 

b ) For j=1 to n ,and n is number of Processors, 
If    can jP make task  complete as early as possible, 

scheduled  on , 
iv

iv jp
        )},(],[max{][ jiDATpRTvST ji =   

        jiii wvSTvFT ,][][ +=          

        ][][ ij vFTpRT =  
END If 
END For 
END For 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we compare the performance of the 
HEFT-NSGA algorithm with two well-known scheduling 
algorithms in heterogeneous distributed system: the 
HEFT and CPGA algorithms. We consider two sets of 
graphs as the basis for testing the algorithms: randomly 
generated application graphs and graphs that represent 
some of the numerical real world problems. 

A.  comparison metrics 
Comparisons of the algorithms are based on the 

following three metrics: 
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Makespan or scheduling length is defined as: 
Makespan = EFT ( ), exitv
Where EFT ( ) is the exitv earliest finish time of the 

schedule exit task. 
Schedule Length Ratio [SLR]. The main performance 

measure of a scheduling algorithm on a DAG graph is the 
schedule length (makespan) of its output schedule. Since 
a large set of application graphs with different properties 
are used, it is necessary to normalize the schedule length 
to the lower bound, which is called the Schedule Length 
Ratio (SLR). The SLR is defined as 

          
∑
∈

=

min

)}({cosmin
CPv

i
i

vt
makespanSLR              (14) 

Where, is the critical path of the DAG when the 
task node weights are evaluated as the minimum 

minCP

computation cost among the eligible processors. 
Reliability probability: The application reliability 

probability can be evaluated by the reliability of the exit 
task, and is defined as follows 

Reliability probability = . ][ exitVp

B.  Randomly generated application graph 
In this study, we first considered the randomly 

generated application graphs such that, a random graph 
generator was implemented to generate weighted 
application DAGs with various characteristics that 
depended on several input parameters. The simulation 
based framework allows assigning set of values to the 
parameters used in the random graph generator. 

For the generation of random graphs which are 
commonly used to compare scheduling algorithms [4，5, 
12,13], five fundamental characteristics of the DAG are 
considered: 

DAG size （ m ） :The number of tasks in the 
application DAG 

Communication to computation cost ratio (CCR): this 
is defined as the ratio of the average communication cost 
to the average computation cost. 

Computational cost heterogeneity factor, h : higher 
value indicates higher variance for the computation 

cost of a task, with respect to the processor in the system 
and vice versa 

h
[5]. 

In all the experiments, only graphs with a single entry 
node and a single exit node were considered, as the input 
parameters were restricted to the following values: 

}{ 120,100,80,60,40,20∈v  

}{ 0.2,0.1,5.0∈h  

}{ 0.2,5.1,0.1,5.0∈CCR  

C.  Random application performance results  
The goal of these experiments is to compare the 

proposed HEFT-NSGA algorithm with the other two 
algorithms, HEFT and CPGA. 

The performance of the algorithms was compared with 
respect to various graph characteristics. The first set of 
experiments compares the performance of the algorithms 
with respect to various CCR and graph size. The results 
are shown in Fig.3-5.According to the results ,when the 
CCR<1 the SLR-based ranking of the algorithms is 
{HEFT-NAGS,CPGA,HEFT},when the CCR>1 the 
SLR-based ranking of the algorithms is {HEFT-
NSGA,HEFT,CPGA}.We also observe from results that 
HEFT-NSGA outperforms CPGA and HEFT algorithms 
in terms of the makespan, SLR, and reliability probability. 
By multiobjective genetic algorithm, HEFT-NSGA trying 
to find solutions that the schedule system can reach a 
better balance than other algorithms between objectives. 
We also can observe from Fig 4 and Fig 5 that from a 
certain indicators, HEFT-NSGA have improved not so 
obvious, but together, all indicators are better than other 
algorithms to improve. 

D.  Application Graphs of Real Word Problems 
Using real applications to tests the performance of 

algorithms is very common [4,5,13,16,14 ,15].Hence, in 
addition to randomly generated DAGs, we also simulated 
two real-word problems: Gaussian elimination[4，5，
13，16],Fast Fourier transformation(FFT)[5,14]. 

For the experiments of Gauss elimination application, 
the same CCR and range percentage values(given in 
Section 5.2) were used. Since the structure of the 
application graph is known, we do not need the other 
parameters. A new parameter, matrix size(l),is used in 
place of m(the number of tasks in the graph).The total 
number of tasks in a Gaussian eliminateion graph is equal 

to
2

22 −+ ll
 [5] . 

For the comparison of SLR and the reliability 
probability, the matrix size used in the experiments is 
varied from 6 to 18, with an increment step of 2, and the 
number of processors is set to 4.The average SLR and 
reliability probability produced by each scheduling 
algorithm related to matrix size are shown in Fig 6.From 
Fig 6 we also observe that HEFT-NSGA outperforms 
CPGA and HEFT algorithms significantly. 

The FFT algorithm consists of two parts: recursive 
calls and the butterfly operation. The task graph can be 
divided into two parts recursive call tasks and butterfly 
operation tasks. For an input size of vector  ,there are  
recursive call tasks and  butterfly operation tasks. Each 
path from the start task to any of the exit tasks in an FFT 
task graph is a critical path since the computation costs of 
tasks in any level are equal and the communication costs 
of all edges between two consecutive levels are equal[5]. 

For the FFT-related experiments, only the CCR and 
range percentage parameters, among the parameters given 
in section D,were used , as in the Gauss elimination 
application. According to the values of CCR we want, we 
generate DAGs with different number of tasks .Fig 7 
demonstrates that NSGA-HEFT algorithms outperforms 
CPGA and HEFT algorithms in terms of makespan ,SLR 
and reliability probability. 
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V.  CONCLUSION 

With the development of parallel computing, 
distributed system applications have been greatly 
expanded. In some applications, scheduling system does 
not require only the fastest scheduling task, since the 
scheduling result is required to ensure the system’s 
reliability probability to maximize at the same time. 
Often, existing algorithms do not take into account the 
mandate of the earliest completion time and system’s 
reliability, since scheduling results obtained by these 
algorithms may be outstanding in one aspect, but not 
ideal for other areas. In this paper, multi-objective 
evolutionary algorithm and heuristic algorithm combined 
to make multiple objectives simultaneously optimized. 
The performance of HEFT-NSGA is compared to two of 
the existing scheduling algorithms: the HEFT and CPGA 
algorithms. The comparison is based on both randomly 
generated application DAGs and two real-world Gaussian 
elimination problems, and fast Fourier 
transformation .This simulation experiment results show 
that HEFT-NSGA algorithm outperforms both HEFT and 
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Figure 3.  Makespan，SLR and Reliability probability of HEFT ,CPGA and HEFT-NSGA 
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Figure 4.  Makespan,SLR and Reliability probability of HEFT ,CPGA and HEFT-NSGA for CCR=0.4 

 

Figure 5.  Makespan, SLR and Reliability probability of HEFT, CPGA and HEFT-NSGA for CCR=1.2 

 

Figure 6.  Makespan SLR and Reliability probability of CPGA,HEFT and HEFT-NSGA for Gaussian elimination 

 

Figure 7.  Makespan SLR and Reliability probability of CPGA,HEFT and HEFT-NSGA for FFT 
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