
Implementation of multi-objective evolutionary
algorithm for task scheduling in heterogeneous

distributed systems
Yuanlong Chen, Dong Li, Peijun Ma

Harbin Institute of technology ,Heilong jiang, China
E-mail:cyuanlong@126.com

Abstract—This paper presents an effective method for task
scheduling in heterogeneous distributed systems. Its
objective is to minimize the last task’s finish time and to
maximize the system reliability probability. The optimum is
carried out through a non-domination sort genetic
algorithm. The experimental results based on both
randomly generated graphs and the graphs of some real
applications showed that, when compared to two well
known previous methods, such as heterogeneous earliest
finish time (HEFT) algorithm and Critical Path Genetic
Algorithm, this algorithm surpasses previous approaches in
terms of both last task’s finish time and the system
reliability probability.

Index Terms—DAG scheduling, ask graphs, heterogeneous
system, non-domination sort genetic algorithm

I. INTRODUCTION

Software engineer play an important role in control
software especially in some safety critical system.
Correct implementation of software ensures proper
operation of these systems. EXCELLENCE task scheduling
strategy will be to reduce the probability of these
system’s software error.

With the recent advancements in massive parallel
processing technologies, the problem of scheduling tasks
in multiprocessor system is becoming increasingly
important. The problem of scheduling task graph of a
parallel program ONTO a parallel and distributed
computing system is a well defined NP-complete problem.
This problem involves mapping a Directed Acyclic Graph
(DAG) for a COLLECTION of computational tasks and
their data precedence onto parallel processing systems.

Over the past few years, they have become the most
attractive option for high performance computing and
information processing. They have been increasingly
employed for critical applications such as aircraft control,
industrial process control, and etc. Increased
commercialization of heterogeneous distributed
computational systems pertains to the fact that ensuring
system reliability is of critical importance. Therefore, the
goal of a task scheduler is to assign tasks to available
processors such that precedence requirements for these
tasks are satisfied, with the overall execution length (i.e.,
makespan) minimized, while the reliability of the system
is maximized.

Some scheduling algorithms are therefore proposed to
deal with the heterogeneous SYSTEMS; for example,

Mapping heuristic (MH)[1], dynamic level scheduling
(DLS) algorithm, levelized min time (LMT) algorithm[2],
Critical-path-on-a-Machine (CPOP) algorithm, and
heterogeneous earliest finish time algorithm[3]. The HEFT
algorithm significantly outperforms the DLS, MH, LMT
and CPOP algorithms in terms of average schedule length
ratio [4,5].The HEFT algorithm SELECTS the tasks with the
so-called highest upward rank value at each step, and
assigns the selected task to the processor to minimize its
earliest finish time. Tasks mean computational time on all
processors and the mean communication rates on all links
were used to compute the upward rank value.

Recently, Genetic Algorithms (GAs) was widely
reckoned as a useful meta-heuristics for obtaining high
quality solutions for a broad range of combinational
optimization problems which included task scheduling
[6][7]. The GA operates on a number of solutions. Another
merit of genetic is that its inherent parallelism can be
exploited to further reduce its running time. However,
Standard GA algorithms for task scheduling are
monolithic, as they attempt to scan the entire solution. To
enable the GA algorithm search the solution more
effectively, CPGA was proposed .CPGA is based on
standard GA algorithm with some heuristic principles that
has been added to improve its performance [8].

Unfortunately, most of these algorithms can not
minimize the execution length, and at the same time
maximize the system’s reliability. While this problem
requires the simultaneous optimization of more than one
non-commensurable and competing criterion, solutions to
the multi-objective optimization problem are usually
computed by combining them into a single criterion to be
optimized. In this paper, a new modified GA algorithm is
proposed, namely, HEFT-No dominated Sorting Genetic
Algorithm (HEFT-NSGA) which seek to solve the multi-
objective optimization problem in task scheduling.

This paper is organized as follows: Section 2 surveys
the related work of our study. In section 3, our HEFT-
NSGA for task SCHEDULING is presented. Experimental
results are provided in Section 4 followed by conclusion
in Section 5.

II. RELATED WORK

A task scheduling system model consists of an
application, a target computing environment, and a
performance criteria for scheduling.

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1367

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1367-1374

A. Related definition
An application is represented by a directed acyclic

graph, whereV is the set of tasks and),,(EVG = E
is the set of edges between the tasks. Each edge

represents the precedence constraint such

that, task should complete its execution before

task starts. is an

Ejie ∈),(

iv

jv Data mm× (is the number of

tasks) matrix of communication data, where is
the amount of data required to be transmitted from task

 to .

m

jidata ,

iv jv
In a given task’s graph, a task without any parent is

called entry task, and a task without any child is called an
exit task. In this paper, we have asserted that the task
graph is a single-entry-single-exit task graph. If there are
more than one entry (exit) task, they are connected to a
zero-cost pseudo entry (exit) task with zero-cost edges,
which do not affect the schedule.

We assume that the target computing environment
consists of n heterogeneous processors, ,

connected in a fully connected topology. Let W be an
 computation cost

nppp "21,

nm× matrix in which each

gives the execution time to complete task on

processor .

jiw ,

iv

jp
Each processor may fail due to hardware fault which

result in task’s failure. These faults may be transient or
permanent and are independent. Each independent fault
results in the failure of only one processor.

Basic Terminologies:
1) The feasible schedule S ensures that task’s

constraints between tasks of all tasks are met. A partial
schedule is one which does not contain all tasks.

2) For a task , and are scheduled start
time and scheduled finish time respectively. For a

iv)(ivSt)(ivft

processor , and are the processor’s
start time (the time it takes to run a task) and FINISH time
(the time it takes to complete a task) respectively.

jp)(jpSt)(jpft

3) For a task , is its scheduled processor. ijv jp
4) For a communication , is the

communication’s delay between task and , if TASKS

 and are scheduled on different processors, that is

jie , jicomu ,

iv jv

iv jv

),(),(),(hk ppdjidatajicomu ×= (1)

where task is mapped onto processor , task is

mapped onto processor , and is the time
iv kp jv

hp),(hk ppd
required to send a unit length data from to . kp hp

5) Processor ready time is it’s available
time when it runs a task.

sp j ')(jpR

6) For a task , and are the

scheduled earliest start time of task on processor ,

and the scheduled earliest

iv),(jiEST),(jiEFT

iv jp
finish time of task on

processor respectively.
iv

jp

)),()(max(max(),(ikcomukftjiEST += (2)

)())(ikj vparentvpR ∈

 (3)

),(),(),(jiwjiESTjiEFT += (4)

7) The Data Arrival Time () of at processor

is defined as:

DAT iv

jp

)),()(max(),(kicomukftjiDAT +=

)(ik vparentv ∈ (5)

If tasks and are scheduled kv iv on the same

processor, then equals zero.),(kicomu
8) The parent task that maximizes the above

expression is called the favored predecessors of and it

is denoted by .
iv

),(ji pvfavored
9)Let >=<)(3),(2),(1)(afafafaF and

>=<)(3),(2),(1)(bfbfbfbF be the vector values of
the cost function F for solutions a and b respectively.
Then, a dominates b if for all)()(bfiafi ≤

)3,2,1(=ii and either or)(1)(1 bfaf <
)(2)(2 bfaf < or .)(3)(3 bfaf <

10) Reliability Probability of Processor: The reliability
probability of processor p during a time interval t is

tpe λ− [9, 10]. Under a task allocation S, the time required

to execute all the tasks assigned to processor p

is ∑=

N

i ip pitX
1

),(cos , if task is scheduled on

processor

iv

p , then ,1=ipX otherwise then
the corresponding processor reliability can be formulated
as

,0=ipX

formula (7);

 (6)
ip

N

i ipp EX
p eSPR ∑= =

λ−
1)(

11) Reliability probability of path during a time

interval t is

pqe
tpqe μ− [9, 10]. Under a task allocation S, the

time required for data communication between the
terminal processors and

is

p q

∑ ∑= ≠

N

1i ij ijjqip qpddataXX)),((; then, the

corresponding path reliability can be given by formula (7);

1368 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

∑ ∑= = ≠

μ−
N

i ij jijqippq qpddataXX

pq eSPR 1 ,)),((
)(

 (7)

12) System’s reliability probability with the task
allocation is S computed as follows:

 (8)
∏ ∏∏
= = ≠

−==
P

p

P

p pq

Xcount
pqp eSRSRSR

1 1

)()()()(

+λ= ∑ ∑
= =

ipip

N

i

P

p
p EXScount

1 1
)(

∑∑∑∑
= ≠ = ≠

μ
N

i ij

P

p pq pq

ij
jqip W

C
XX

1 1
pq)(

 (9)
 The first term of the function reflects the

unreliability caused by the execution of tasks on
processors of various reliabilities, and the second term
reflects the unreliability caused by the inter-processor
communication through different paths of various
reliabilities.

)(Scount

 Maximizing the system reliability is equivalent to
minimizing .)(Scount

B. The Heterogeneous-Earliest-Finish-Time (HEFT)
Algorithm

The HEFT algorithm has two major phases: a task
prioritizing phase for computing the priorities of all tasks
and a processor selection phase for selecting the tasks in
the order of their priorities, thereby scheduling each
selected task on its best processor, which minimizes the
task’s finish time.

Task Prioritizing Phase: This phase requires the
priority of each task to be set with the upward rank value,

which is based on mean computation and mean
communication costs. The task list is generated by sorting
the tasks by decreasing order

urank

of .It can easily be

shown that the decreasing order of values
provides a topological order of tasks, which is a linear
order that preserves the precedence constraints.

urank

urank

Processor Selection Phase: The HEFT algorithm
schedules the task on the processor on which the task has
the earliest finish time.

The upward rank of a task is recursively defined by
formula (11) and (12).

iv

))(()(,
)(

max juji
nsuccn

iiu nrankwwnrank
ij

++=
∈ (11)

 exitexitu wnrank =)((12)

C. The Critical Path Genetic Algorithm (CPGA)
The CPGA algorithm is considered as a hybrid of SGA

principles and heuristic principles. The same principles

and operators which are used in Standard Genetic
Algorithm are used in the CPGA algorithm.

SGA algorithm is started with an initial population of
feasible solutions. Therefore, by applying some operators,
the best solution can be obtained after some generations.
The selection of the best solution is determined according
to the value of the fitness function. According to this, the
chromosome is divided into two sections, the mapping
and the scheduling sections. The mapping section
contains the processor indices where tasks are to be run.
The scheduling section determines the sequence for
processing the tasks.Figure2 shows an example of such
representation of the chromosome.

Figure 1. A task graph and the computation time on different

processors

Figure 2. Chromosome encoding

The same principles and operators which are used in
SGA algorithm have been used in the CPGA algorithm.
The encoding of the chromosome is the same as in SGA,
but, in the initial population, the second part (schedule) of
the chromosome can be constructed using ALAP [16].

In CPGA, three modifications have been applied in the
SGA to improve the scheduling performance. These
modifications are:

Reuse idle time:
The idle time of the processor is used to assign some

tasks to idle time slots
Priority of the CPNs:
According to the modification, the initial population is

produced using the following steps:
Initially, the entry task is the selected task and it is

marked as a critical path task. An immediate task is
marked as a critical path task. An immediate successor
(of the selected task) that has the highest priority value is
selected and it is marked as a critical path task. This
process is repeated until the exit node is repeated. In each

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1369

© 2012 ACADEMY PUBLISHER

generation of population, the critical path task is
scheduled as early as possible.
Load balance:

The aim of load balance modification is to obtain the
minimum schedule length and, at the same time, satisfy
the load balance.

III. HEFT-NO DOMINATED SORTING GENETIC
ALGORITHM (HEFT-NSGA)

Task scheduling is also a class of optimization
problems. Existing scheduling algorithms handle task
scheduling as a single objective optimization. But in
many practical applications, multi-objectives need to be
optimized at the same time.

Evolutionary algorithm has successfully been applied
to the field of multi-objective optimization. In order to
achieve global search evolutionary algorithm, maintain
the composition of the population of potential solutions
between generations ， this means that, population to
population is effective for searching best solutions to
multi-objective optimization problems.

In the case of multiple objectives, there may not be one
solution which is best in comparison to all other
objectives. In a typical multi-objective optimization
problem, there exist a set of solutions which are superior
to the rest of the solutions in the search space when all
objectives are considered, but they are inferior to other
solutions in the space in one or more objectives. These
solutions are known as Pareto-optimal solutions or non-
dominated solutions. The rest of the solutions are known
as dominated solutions. Since none of the solutions in the
non-dominated set is absolutely better than any other, any
one of them is an acceptable solution.

NSGA-Ⅱ is by far one of the best evolutionary multi-
objective optimization algorithm[11].

The developed HEFT-NSGA algorithm is considered
as a hybrid of the NSGA and the heuristic principles .On
the other hand, the same principles and operators which
are used in NSGA algorithm are also used in the HEFT-
NSGA algorithm .The encoding of the chromosome is the
same as in SGA.

A. Generating initial population
By performing the following steps, chromosomes

would be created.
1) Set st(m)(processor’s start processing time)=0

ft(m)(processor’s finish processing time)=0;
2) Select a task whose predecessors are scheduled; iv
3) Select the processor in which task has the

earliest finish time, however, if two or more processors
have earliest finish times, select one of them in random;

iv

4) if task scheduled on processor , set

;
iv kp

)()(ik vftpft =
5) Repeat steps 2 to 4 until all tasks are scheduled and

new chromosomes are generated;
6) check the tasks in the chromosomes weather they

satisfy the logical requirements;

7) Repeat steps 1 to 6 using the number of initial
population.

B. HEFT-NSGA algorithm
The initialized population is sorted based on non-

domination sort into each front. The first front being
completely non-dominated set in the current population,
and the second front being dominated by the individuals
in the first front only and the front goes on and on. Each
individual in the fronts are assigned rank (fitness) values
based on the front which they belong to. Individuals in
first front are given a fitness value of 1 and individuals in
second are assigned fitness value as 2 and so on.

In addition to fitness value, a new parameter called
crowding distance is calculated for each individual. The
crowding distance is a measure of how close an
individual is to its neighbors. Large average crowding
distance will result in better diversity in the population.

Parents are selected from the population by using
binary tournament selection based on the rank and
crowding distance. An individual selected has either its
rank lesser than the other or its crowding distance greater
than the other. The selected population generates
offspring from crossover and mutation operators.

The current parent population and current offspring is
sorted again based on non-domination and only the best
N individuals are selected, where N is the population size.
The selection is based on rank and the crowding distance
on the last front.

Step 1: Initialize the parameter and encode the
chromosome;

Step 2: Generate Initial Population
Step 3: Non-Dominated sort: The initialized population

is sorted based on non-domination;
Step 4: While stop criterion is not satisfied, do begin.
 4.1) currentnew PP ←

4.2) repeat for (2
PN) times,

);(newDad PselectP ←

)(newmom PselectP ← ;

)(, momDadnew PPcrossoverP ← ;
End repeat;
4.3) for each chromosome∈ do begin Pnew
Mutate (chromosome);
End for.
4.4)Non-Dominated sort (). newcurrent PP ,

Step 5: Return the best chromosomes pN
The non-dominated fast sort algorithm is described as

below.
For each individual p in population P, do the following:
Initialize Φ=pS . (This set contains all individuals

that are dominated by p .)

Initialize 0=pn . (This is the number of individuals
that dominate p .)

1370 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

For each individual in q P ,
If dominated then, p q
Add q to the set i.e. , pS }{qSS pp ∪=
Else if dominates then q p
Increase the domination counter for i.e.

,

p
1+= pp nn

If i.e. no individual dominate then
belongs to the first front;

0=pn p p

Set rank of individual to one, i.e. . p 1=rankp
Update the first front set by adding to front one, i.e.

.
p

}{11 pFF ∪=
This is carried out for all the individuals in the main

population P .
Initialize the front counter to one.
While the front is non-empty, i.e. ; ith Φ≠iF

Set Q = ∅ . The set for storing the individuals for (i
+ 1)th front.

for each individual p in front ,for each individual

in (is the set of individuals dominated by

), , decrease the domination count for
individual .

iF
q pS pS
p 1−= qq nn

q
If , then none of the individuals in the

subsequent fronts would dominate q.
0=qn

Hence, set . 1+= iqrank

Update the set with individual i.e. . Q q qQQ ∪=
Increase the front counter by one.

Now the set Q is the next front and hence QFi = .
Crowding Distance: Once the non-dominated sort is

complete, a crowding distance is assigned; the individuals
are selected based on their ranks, and all individuals in
the population are assigned a crowding distance value.

Comparing the crowding distance between two
individuals in different front is meaningless. The crowing
distance is calculated as follows;

For each front , is the number of individuals.
Initialize the distance to zero for all the individuals i.e.

, where

iF n

0)(=ji dF j corresponds to the

individual in

jth
front . For each objective function m ,

sort the individuals in front based on objective i.e.

.Assign infinite distance to boundary

values for each

iF

iF m
),(mFsortI i=

individual in . iF ∞=)(1dI and

 ∞=)(ndI
For ,)1(2 −= ntok

minmax

)1()1()()(
mm

kk ff
mkImkIdIdI

−
∗−−∗+

+= (13)

Where, is the value of the mth objective

function of the individual in

mkI)(
thk I .

The basic idea behind the crowding distance is to find
the Euclidian distance between each individual in a front
based on their m objectives in the m dimensional hyper
space. Individuals in the boundary are always selected
since they have infinite distance assignment.

Selection: Once the individuals are sorted based on
non-domination and with crowding distance assigned, the
selection is carried out using a crowded comparison-
operator (). The comparison is carried out as follows
based on:

n≺

1) Non-domination rank i.e. individuals in front

will have their rank as .
rankp

iF iprank =
2) Crowding distance , ,If)(ji dF qp n≺

rankrank qp < , or if p and q belong to the same front

then i.e. iF)(qi d)(pi FdF >
The individuals are selected by using a binary

tournament selection with crowed-comparison- operator.
Since standard genetic algorithm may require some

time to find an ideal result, it is necessary to modify some
principles .In HEFT-NSGA, once a task is selected to
schedule on a processor, some steps are altered, and the
pseudo code of this algorithm is as follows:

1) 0][=∀ jPRT , and RT is the ready time of the
processors;

2) Let LT be a list of tasks according to the topological
order of DAG;

3) For i=1 to m, and m is the number of tasks in DAG;
a) Remove the first task ti from list LT,

b) For j=1 to n ,and n is number of Processors,
If can jP make task complete as early as possible,

scheduled on ,
iv

iv jp
)},(],[max{][jiDATpRTvST ji =

 jiii wvSTvFT ,][][+=

][][ij vFTpRT =
END If
END For
END For

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the performance of the
HEFT-NSGA algorithm with two well-known scheduling
algorithms in heterogeneous distributed system: the
HEFT and CPGA algorithms. We consider two sets of
graphs as the basis for testing the algorithms: randomly
generated application graphs and graphs that represent
some of the numerical real world problems.

A. comparison metrics
Comparisons of the algorithms are based on the

following three metrics:

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1371

© 2012 ACADEMY PUBLISHER

Makespan or scheduling length is defined as:
Makespan = EFT (), exitv
Where EFT () is the exitv earliest finish time of the

schedule exit task.
Schedule Length Ratio [SLR]. The main performance

measure of a scheduling algorithm on a DAG graph is the
schedule length (makespan) of its output schedule. Since
a large set of application graphs with different properties
are used, it is necessary to normalize the schedule length
to the lower bound, which is called the Schedule Length
Ratio (SLR). The SLR is defined as

∑
∈

=

min

)}({cosmin
CPv

i
i

vt
makespanSLR (14)

Where, is the critical path of the DAG when the
task node weights are evaluated as the minimum

minCP

computation cost among the eligible processors.
Reliability probability: The application reliability

probability can be evaluated by the reliability of the exit
task, and is defined as follows

Reliability probability = .][exitVp

B. Randomly generated application graph
In this study, we first considered the randomly

generated application graphs such that, a random graph
generator was implemented to generate weighted
application DAGs with various characteristics that
depended on several input parameters. The simulation
based framework allows assigning set of values to the
parameters used in the random graph generator.

For the generation of random graphs which are
commonly used to compare scheduling algorithms [4，5,
12,13], five fundamental characteristics of the DAG are
considered:

DAG size （ m ） :The number of tasks in the
application DAG

Communication to computation cost ratio (CCR): this
is defined as the ratio of the average communication cost
to the average computation cost.

Computational cost heterogeneity factor, h : higher
value indicates higher variance for the computation

cost of a task, with respect to the processor in the system
and vice versa

h
[5].

In all the experiments, only graphs with a single entry
node and a single exit node were considered, as the input
parameters were restricted to the following values:

}{ 120,100,80,60,40,20∈v

}{ 0.2,0.1,5.0∈h

}{ 0.2,5.1,0.1,5.0∈CCR

C. Random application performance results
The goal of these experiments is to compare the

proposed HEFT-NSGA algorithm with the other two
algorithms, HEFT and CPGA.

The performance of the algorithms was compared with
respect to various graph characteristics. The first set of
experiments compares the performance of the algorithms
with respect to various CCR and graph size. The results
are shown in Fig.3-5.According to the results ,when the
CCR<1 the SLR-based ranking of the algorithms is
{HEFT-NAGS,CPGA,HEFT},when the CCR>1 the
SLR-based ranking of the algorithms is {HEFT-
NSGA,HEFT,CPGA}.We also observe from results that
HEFT-NSGA outperforms CPGA and HEFT algorithms
in terms of the makespan, SLR, and reliability probability.
By multiobjective genetic algorithm, HEFT-NSGA trying
to find solutions that the schedule system can reach a
better balance than other algorithms between objectives.
We also can observe from Fig 4 and Fig 5 that from a
certain indicators, HEFT-NSGA have improved not so
obvious, but together, all indicators are better than other
algorithms to improve.

D. Application Graphs of Real Word Problems
Using real applications to tests the performance of

algorithms is very common [4,5,13,16,14 ,15].Hence, in
addition to randomly generated DAGs, we also simulated
two real-word problems: Gaussian elimination[4，5，
13，16],Fast Fourier transformation(FFT)[5,14].

For the experiments of Gauss elimination application,
the same CCR and range percentage values(given in
Section 5.2) were used. Since the structure of the
application graph is known, we do not need the other
parameters. A new parameter, matrix size(l),is used in
place of m(the number of tasks in the graph).The total
number of tasks in a Gaussian eliminateion graph is equal

to
2

22 −+ ll
 [5] .

For the comparison of SLR and the reliability
probability, the matrix size used in the experiments is
varied from 6 to 18, with an increment step of 2, and the
number of processors is set to 4.The average SLR and
reliability probability produced by each scheduling
algorithm related to matrix size are shown in Fig 6.From
Fig 6 we also observe that HEFT-NSGA outperforms
CPGA and HEFT algorithms significantly.

The FFT algorithm consists of two parts: recursive
calls and the butterfly operation. The task graph can be
divided into two parts recursive call tasks and butterfly
operation tasks. For an input size of vector ,there are
recursive call tasks and butterfly operation tasks. Each
path from the start task to any of the exit tasks in an FFT
task graph is a critical path since the computation costs of
tasks in any level are equal and the communication costs
of all edges between two consecutive levels are equal[5].

For the FFT-related experiments, only the CCR and
range percentage parameters, among the parameters given
in section D,were used , as in the Gauss elimination
application. According to the values of CCR we want, we
generate DAGs with different number of tasks .Fig 7
demonstrates that NSGA-HEFT algorithms outperforms
CPGA and HEFT algorithms in terms of makespan ,SLR
and reliability probability.

1372 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

V. CONCLUSION

With the development of parallel computing,
distributed system applications have been greatly
expanded. In some applications, scheduling system does
not require only the fastest scheduling task, since the
scheduling result is required to ensure the system’s
reliability probability to maximize at the same time.
Often, existing algorithms do not take into account the
mandate of the earliest completion time and system’s
reliability, since scheduling results obtained by these
algorithms may be outstanding in one aspect, but not
ideal for other areas. In this paper, multi-objective
evolutionary algorithm and heuristic algorithm combined
to make multiple objectives simultaneously optimized.
The performance of HEFT-NSGA is compared to two of
the existing scheduling algorithms: the HEFT and CPGA
algorithms. The comparison is based on both randomly
generated application DAGs and two real-world Gaussian
elimination problems, and fast Fourier
transformation .This simulation experiment results show
that HEFT-NSGA algorithm outperforms both HEFT and
CPGA algorithms in terms of scheduling
length(makespan),scheduling length ratio(SLR),and
reliability probability.

[6] Wu, A.S., H. Yu, S. Jin, K.-C. Lin, and G. Schiavone, 2004.
“An Incremental Genetic Algorithm Approach to
Multiprocessor Scheduling,” IEEE Trans. Parallel and
Distributed Systems, 15: 824-834.

[7] Kwok, Y. and I. Ahmad, 1999,”Static Scheduling
Algorithms for Allocating Directed Task Graphs to
Multiprocessors,” ACM Computing Survey, 31: 406-471.

[8] Fatma A.Omara,Mona M.Arafa,Genetic algorithms fo task
scheduling problem.Journal of Parallel and Distributed
Computing,70(2010):13-22

[9] Attiya, G., Hamam, Y., 2006. Task allocation for
maximizing reliability of distributed systems: a simulated
annealing approach. Journal of Parallel and Distributed
Computing 66, 1259–1266

[10] Shatz, S.M., Wang, J.P., Goto, M., 1992. Task allocation
for maximizing reliability of distributed computer systems.
IEEE Transactions on Computers 41, 1156–1168.

[11] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and
elitist multi-objective genetic algorithm: NSGA-II. IEEE
Trans. On Evolutionary Computation, 2002,6(2):182−197.

[12] A. Dogan, F. Özgüner, Matching and scheduling
algorithms for minimizing execution time and failure
probability of applications in heterogeneous computing,
IEEE Trans. Parallel Distrib. Syst. 13 (3) (2002) 308-323

[13] Mohammad I. Daoud, Nawwaf Kharma, A high
performance algorithm for static task scheduling in
heterogeneous distributed computing systems, J.Parallel
Distrib. Comp �ut. 68 (4) (2008) 399 409.

[14] Y. Chung, S. Ranka, Application and performance analysis
of a compile-time optimization approach for list scheduling
algorithms on distributed memory multiprocessors, in:
Proc. Super Computing, 1992, pp. 512-521.

REFERENCE

[1] H. El-Rewini, T.G. Lewis, Scheduling parallel program
tasks onto arbitrary target machines, J. Parallel Distrib.
Comput. 9 (2) (1990) 138-153. [15] C.M. Woodside, G.G. Monforton, Fast allocation of

processes in distributed and parallel systems, IEEE Trans.
�Parallel Distrib. Syst. 4 (2) (1993) 164 174

[2] M. Iverson, F. Ozuner, G. Follen, Parallelizing existing
applications in a distributed heterogeneous environment, in:
Proceedings of Heterogeneous Computing Workshop,
1995, pp. 93-100.

[16] M. Wu, D. Dajski, Hypertool: a programming aid for
message passing systems, IEEE Trans. Parallel Distrib.
Syst. 1 (3) (1990) 330-343 [3] P.Y.R. Ma, E.Y.S. Lee, M. Tsuchiya, A task allocation

model for distributed computing systems, IEEE Trans.
Comput. 31 (1) (1982) 41-47

Yuanlong Chen was born in 1981, and received his M.S.
degree in 2007. He now works in school of computer science
and technology,Harbin Institute of technology. He is a doctor
and He is engage mainly in systems engineering and parallel
computing.

[4] G.Q. Liu, K.L. Poh, M. Xie, Iterative list scheduling for
heterogeneous computing, J. Parallel Distrib. Comput. 65
(5) (2005) 654-665

[5] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective
and low complexity task scheduling for heterogeneous
computing, IEEE Trans. Parallel Distrib. Syst.13 (3) (2002)
260-274.

Figure 3. Makespan，SLR and Reliability probability of HEFT ,CPGA and HEFT-NSGA

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1373

© 2012 ACADEMY PUBLISHER

Figure 4. Makespan,SLR and Reliability probability of HEFT ,CPGA and HEFT-NSGA for CCR=0.4

Figure 5. Makespan, SLR and Reliability probability of HEFT, CPGA and HEFT-NSGA for CCR=1.2

Figure 6. Makespan SLR and Reliability probability of CPGA,HEFT and HEFT-NSGA for Gaussian elimination

Figure 7. Makespan SLR and Reliability probability of CPGA,HEFT and HEFT-NSGA for FFT

1374 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

