
Biddy a multi-platform academic BDD
package

Robert Meolic

Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia
Email: meolic@uni-mb.si

Abstract Biddy is a BDD package under GPL, developed
at the University of Maribor. It uses ROBDDs with comple-
ment edges, as described in the paper K. S. Brace, R. L.
Rudell, R. E. Bryant, Efficient Implementation of a BDD
Package, 1990. Compared to other available BDD packages,
Biddy's most distinguishing features are its specially de-
signed C interface and an original implementation of auto-
matic garbage collection. More generally, the Biddy project
is not only concerned with the computer library, but also of-
fers a demo application for the visualization of BDDs, called
BDD Scout. The whole project is oriented towards a read-
able and comprehensible source code in C, which can be
compiled unchanged on different platforms, including
GNU/Linux and MS Windows.

Index Terms Boolean algebra, binary decision diagram,
symbolic manipulation of Boolean functions, formal meth-
ods, free software

I. INTRODUCTION

Boolean algebra is a mathematical structure applied
within many engineering and scientific fields, especially
those concerned with electronics, computers, and com-
munications. The Binary Decision Diagram (BDD) is a
data structure for representing Boolean functions. This
representation has gained popularity because it is canoni-
cal, and thus tautology checking, satisfiability checking,
and equivalence checking can be done in a constant time
(after the BDD has been created). Moreover, it is a com-
pact representation of many of those Boolean functions
that arise during practical problems.

Binary decision diagrams are not just another theory.
Many applications are heavily based on Boolean algebra
and BDDs. Some successful examples are hardware de-
sign methods, e.g. logic synthesis [1], formal methods
concerned with testing and verifying systems, e.g. sym-
bolic model checking [2], and methods for knowledge
representation and discovery e.g. the rough-set theory [3].
Recently, D. E. Knuth included an extensive section
about BDDs in his famous monograph The Art of Com-
puter Programming [4], where it states that "(BDDs)
burst on the scene in 1986, long after old-timers like me
thought that we had already seen all of the basic data
structures that would ever prove to be of extraspecial im-
portance" and that "(BDDs) have given me many more
surprises than anything else so far". And last, but not
least, a pioneering paper on BDD algorithms [5] is one of
the most cited paper in the history of computer science!

The BDD package is computer software, more pre-
cisely a sort of mathematical library, which allows other
programs to create and manipulate Boolean functions by
using BDDs. Many different BDD packages are avail-
able, usually as a piece of free software. Among others,
Wikipedia [6] lists ABCD [7], BuDDy [8], CAL [9],
CMU BDD [10], CUDD [11], JDD [12], and Biddy [13],
the package that this paper is about. Biddy is a minimalis-
tic BDD package that includes only the necessary func-
tions. It uses ROBDDs with complement edges, as de-
scribed in [14]. Biddy can be distinguished mostly by its
specially designed C interface and an original garbage
collection that is not based on a classic reference count.

Biddy is based on a BDD package written at the Uni-
versity of Maribor in 1992 [15][16]. Hence, it can be
categorized as one of the oldest BDD packages around
(not to brag but even D. E. Knuth remembers he "didn't
actually learn about binary decision diagrams until 1995
or so" [4]). In Maribor, the original BDD package was
written in Pascal and ran on VAX 4000-600. The history
of its further development can be summarized as follows.

Meolic included it into EST, a tool for the formal verifi-
cation of systems [17]. In 2006, the name Biddy first ap-
peared. Separate library was formed in 2007. So far Bid-
dy has been developed as an academic software (as de-
fined in [18]), thus clean implementation has been pre-
ferred over efficiency optimization .

In 2003, whilst being a part of EST, Biddy was includ-
ed within a survey of 13 BDD packages [19] and was one
of two awarded mark A for code quality. No matter how
subjective this classification is (the other A-graded pack-
age is the one maintained by the author of the survey :-) it
reflects the main goal of Biddy to promote a readable and
comprehensible source-code. The orientation towards
educational purposes is also supported by the licence,
which is GPL (published by FSF [20]), and the ability to
be compiled and used on different platforms, including
GNU/Linux and MS Windows.

Furthermore, this paper is organized as follows. Sec-
tion II provides some basic terms and definitions about
BDDs. In Section III, Biddy is briefly described from the
user's point of view. Section IV gives details about the
implementation. Section V introduces BDD Scout, a
demo application for the visualization of BDDs which is
being developed as part of the Biddy project. The conclu-
sion summarizes the current state of the project.

1358 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1358-1366

II. BINARY DECISION DIAGRAMS

The term Binary Decision Diagram was coined by S.
B. Akers in 1978 [21]. In his paper Akers predicted vari-
ous applications for BDDs but did not describe any useful
implementation. His work was extended in 1986 by R. E.
Bryant who introduced Ordered BDDs and also showed
computer algorithms for their manipulation [5]. In 1990,
Reduced Ordered BDDs were invented together with effi-
cient recursive algorithms [14][22], and afterwards the
activities involving BDDs quickly became widespread
[23][24][25][26][4].

A Binary Decision Diagram is a directed, acyclic graph
with one root. Its leaves are called terminal nodes (also

All oth-
er nodes are called non-terminal nodes (also branch
nodes) and are labelled by variables. Every non-terminal

-
tions are associated with edges. A Boolean function rep-
resented by an edge is recursively calculated as

),,(ETvITETvEvF , (1)

where v is a variable in the root (also called top vari-
able), E is a Boolean function represented by the root's

T is a Boolean function represented by

An Ordered Binary Decision Diagram (OBDD) is a
BDD where variables occur along every path from the
root to a leaf in strictly ascending order, with regard to
fixed ordering. Algorithms appear to be much more effi-
cient if they can assume the same variable order for the
all involved OBDDs. Moreover, the size of an OBDD
heavily depends on its variable order. An OBDD is a Re-
duced Ordered Binary Decision Diagram (ROBDD) if it
contains neither isomorphic subgraphs nor nodes with
isomorphic descendants. The most important property of
ROBDD is the canonicity of the representation. The other
one is node sharing (requires the same ordering of all
ROBDDs), i.e. when more than one Boolean function is
simultaneously represented, the merging of isomorphic
subgraphs is applied between all of them. Hence, every
node can belong to more functions.

An important extension of ROBDDs is the
introduction of complemented edges. Every edge has an
additional field (a single bit is sufficient), which is used
to distinguish between the regular and complemented
edges. A complemented edge complements the
represented Boolean function. In this way, there is no
need to keep termi
by the comple
way to main
regular in every node. Examples of a ROBDD with and
without complemented edges are given in Fig. 1.

III. M ANIPULATION OF BOOLEAN FUNCTIONS USING
BIDDY LIBRARY

Biddy is written in C. The source code is purified and
improved in such a way that it could be compiled with a
C or C++ compiler without errors and warnings.

Precompiled packages include dynamically linked library
(i.e. *.so on GNU/Linux, *.dll on MS Windows,
*.dylib on Mac OS X), and the appropriate C header
biddy.h

1. Currently, there are no interfaces for other
programming languages. The supplied C header is quite
small because of nice abstractions. Its data declaration
part is given in Fig. 2 (this is real code, only some com-
ments have been removed).

1 The header is included in development version, only.

Figure 1. ROBDD without complemented edges and ROBDD with

complemented edges for Boolean function

cbcbaca

/* Constant definitions */

#define FALSE 0
#define TRUE !FALSE

/* Macro definitions */

#define Biddy_isEqv(f,g) \
 (((f).p == (g).p) && \
 ((f).mark == (g).mark))
#define Biddy_isTerminal(f) \
 ((f).p == biddy_termTrue.p)
#define Biddy_isNull(f) \
 ((f).p == biddy_termNull.p)

/* Type declarations */

typedef char Biddy_Boolean;
typedef char *Biddy_String;
typedef int Biddy_Variable;
typedef void (*Biddy_VoidFunction)();

/* Structure declarations */

typedef struct Biddy_Edge {
 void *p;
 Biddy_Boolean mark;
} Biddy_Edge;

/* Variable declarations */

EXTERN Biddy_Edge biddy_one;
EXTERN Biddy_Edge biddy_zero;
EXTERN Biddy_Edge biddy_null;

Figure 2. Data declaration part of biddy.h

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1359

© 2012 ACADEMY PUBLISHER

Constant and macro definitions are self-explanatory
and so are types Biddy_Boolean and Biddy_String.
Biddy_Variable is a type used for refering to variables
in BDD. The variables are stored in a table and refer-
enced by indices. For the user, it is unimportant, how the
variables are stored, they could be, for example, also
stored in a binary tree and referenced by pointers (assum-
ing that pointers are compatible with integers). BDD

-
tion of Biddy package (performed by function
Biddy_Init), whilst all other BDD variables must be
created explicitely with function Biddy_FoaTerminal.
Type Biddy_VoidFunction is used to declare functions
that extend Biddy's capability of memory management.
These special functions are started each time Biddy tries
to free redundant memory, and are intended to delete in-
valid entries in user caches.

The most important part of Biddy's external header is
its declaration of structure Biddy_Edge. Each edge in a
BDD corresponds to one Boolean function. Biddy_Edge
consists of a pointer to a node and an optional mark. Void
pointer is used o achieve separation of interface and im-
plementation. Although this is not strict encapsulation (C
does not have such a mechanisms as, for example C++),
the user is encouraged to use the provided API functions,
only, and not to travel through the BDD by direct usage
of pointers nor rely on the node's internal structure.
Among others, Biddy_GetThen, Biddy_GetElse, and
Biddy_GetVariable are functions available in API.

The variables are defined by the keyword EXTERN
which is in fact a macro defined before the data declara-
tion part. On GNU/Linux and Mac OS X systems, this
macro is simply expanded to keyword extern but on MS
Windows it is expanded to a certain code which is re-
quired for the declaration of external symbols in DLL
files (moreover, it is a different expansion whether you
build a DLL or just use it). The edges biddy_one and
biddy_zero represent Boolean functions 1 and 0, re-
spectively, whilst biddy_null represents a non-valid
(null) edge.

Biddy is capable of all the typical operations regarding
Boolean functions.

� Tautology checking. For the given Boolean
function G check if 1G . Macro
Biddy_isEqv is suitable for performing this
operation.

� Equivalence checking. For the given Boolean

functions 1G and 2G check if 21 GG . Again,

macro Biddy_isEqv is suitable for performing
this operation.

� Complement. For the given Boolean function G

calculate G . Function Biddy_NOT can be used to
calculate complement.

� Binary operations (AND, OR, etc.). For the
given Boolean functions 1G and 2G and the

given binary operation , calculate 21 GG .

Function Biddy_ITE is capable of calculating all
binary operations on Boolean functions.

� Restriction. For the given Boolean function G ,
given variable x , and given constant }1,0{c

calculate cxG
✁

| . Function Biddy_Restrict

calculates restriction.
� Composition. For the given Boolean functions

G and H and given variable x , calculate

HxG
✂

| . Function Biddy_Compose calculates

composition.
� Existential and universal quantification. For the

given Boolean function G and given variable x ,
calculate Gx. and Gx. . Functions Biddy_E
and Biddy_A calculate the existential and
universal quantifications, respectively.

As an example, a simple program using Biddy library
is given in Fig. 3. It calculates the 13-th minterm of the
Boolean function),,,(dcbaF . On the Ubuntu

(GNU/Linux) system, where Biddy library was installed
from the available deb package, this program is compiled
with the following command:

gcc -DUNIX -o mint13 mint13.c -lbiddy

On MS Windows (either 32 or 64 bit version) you have to
use:

gcc -DWIN32 -DUSE_BIDDY -o mint13.exe
mint13.c ✄lbiddy

IV. IMPLEMENTATION DETAILS

Biddy sources consist of files biddy.h, biddyInt.h,
biddyMain.c, biddyStat.c, and those used for com-
piling and packaging. File biddyMain.c includes defini-
tions of constants, variables and functions, except those
used for statistics; these have been separated and put into
file biddyStat.c. Coding style, i.e. the naming of func-

#include <biddy.h>

int createMinterm13() {
 Biddy_Edge a,b,c,d,TMP1,TMP2,F;

 a = Biddy_FoaTerminal("a");
 b = Biddy_FoaTerminal("b");
 c = Biddy_FoaTerminal("c");
 d = Biddy_FoaTerminal("d");
 TMP1 = Biddy_ITE(a,b,biddy_zero);
 TMP2 = Biddy_ITE(
 Biddy_NOT(c),d,biddy_zero);
 F = Biddy_ITE(TMP1,TMP2,biddy_zero);
 printf("F has %d nodes.\n",
 Biddy_NodeNumber(F));
}

int main() {
 Biddy_About();
 Biddy_Init();
 createMinterm13();
 Biddy_Exit();
 return 0;
}

Figure 3. A simple program using Biddy library

1360 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

tions, macros, and variables, the style of documentation,
the organization and naming of source files etc. respects
conventions from [27]2:

� exported functions, macros, types, and structures
have a prefix Biddy_, e.g.
Biddy_SimpleFunction, they are all defined in
file biddy.h (also called external header)

� internal functions, macros, types, and structures
have a prefix Biddy, e.g.
BiddySimpleFunction, they are all defined in
file biddyInt.h (also called internal header)

� local functions, macros, types, and structures
(visible to one file only) do not have a prefix, e.g.
SimpleFunction,

� exported variables have a prefix biddy_, e.g.
biddy_simpleVariable,

� internal variables have a prefix biddy, e.g.
biddySimpleVariable,

� local variables (visible to one function or one file
only) do not have a prefix, e.g. simpleVariable.

The main data structures are the Node Table, ITE
Cache, EAX Cache, and some special lists for memory
management. They are all declared in file biddyInt.h,
as given in Fig. 4.

Node Table is a hash table with chaining. It stores all
nodes and ensures a quick search for a node with given
variable and references to descendants. It also prevents
multiple instances of nodes with the same variable and
references to descendants. Adding and searching for
nodes are both done by function Biddy_FoaNode using
the Find-Or-Add principle. The variable and descendants

-
spectively. The chains of nodes are bi-directional (ele-

-
rectly addressed nodes. If a particular chain is empty, the
hash table a contains null pointer. Otherwise, it contains a
pointer to the first node in the chain. The first element of
each chain has
a pointer but not one to a regular node) to enable the cor-
rect relinking when it is being deleted. Moreover, the

 in the structure
BiddyNode, respectively, and that the hash function used
to spread the nodes across the table never returns zero.

ITE Cache and EAX Cache are fixed-size hash tables.
ITE Cache stores the arguments and results from the per-
formed ITE operations. All binary operations are imple-
mented via the ITE operation, as shown in Fig. 5. This is
efficient not only because one algorithm is sufficient for
all operations but also because, in this way, all operations
share the same cache. In order to avoid distinguishing the
same calls (e.g.)0,,()0,,(fgITEgfITE), the ar-

guments given to the ITE operation are transformed into a
predefined normal form before being stored in the ITE
Cache. This normalization is performed according to the
rules given in [14]. The algorithm for operation ITE is

2 These conventions originate in J. Ousterhout's Tcl/Tk Eng. Manual.

shown in Fig. 6. EAX Cache stores the parameters and
results of the performed existential and universal
quantifications. One cache is efficiently used to store the
results from both operations (fafa ..). In-

deed, any cache is limited and if a certain result has been
deleted (they are in fact overwritten), then the calculation
has to be performed again.

/* NODE TABLE: a hash table with chaining */

typedef struct BiddyNode {
 struct BiddyNode *prev, *next, *list;
 Biddy_Variable v;
 Biddy_Edge f, t;
 int count;
} BiddyNode;
typedef struct {
 BiddyNode **table;
 BiddyNode **blocktable;
 int size;
 int generated, blocknumber, max, num,
 numf, foa, compare, add, garbage;
} BiddyNodeTable;

/* VARIABLE TABLE: dynam. allocated table */

typedef struct {
 Biddy_String name;
 int order;
 Biddy_Edge term;
 Biddy_Boolean value;
} BiddyVariable;
typedef struct {
 BiddyVariable *table;
 int size;
} BiddyVariableTable;

/* CACHE LIST: unidirectional list */

typedef struct BiddyCacheList {
 struct BiddyCacheList *next;
 Biddy_UserFunction gc;
} BiddyCacheList;

/* ITE CACHE: a fixed-size hash table */

typedef struct {
 BiddyNode *f, *g, *h;
 Biddy_Edge result;
 Biddy_Boolean hmark;
 Biddy_Boolean ok;
} BiddyIteCache;
typedef struct {
 BiddyIteCache *table;
 int size;
 int search, find, overwrite;
} BiddyIteCacheTable;

/* EAX CACHE: a fixed-size hash table */

typedef struct {
 BiddyNode *f;
 BiddyVariable v;
 Biddy_Edge result;
 Biddy_Boolean fmark;
 Biddy_Boolean ok;
} BiddyEAxCache;
typedef struct {
 BiddyEAxCache *table;
 int size;
 int search, find, overwrite;
} BiddyEAxCacheTable;

Figure 4. Structure declaration part of biddyInt.h

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1361

© 2012 ACADEMY PUBLISHER

The efficiency of a BDD package depends heavily on
the adequacy of the memory management, i.e. deleting
nodes which were created during previous calculations
but are no longer needed for further calculations. This op-
eration is called garbage collection. For the deleted node,
any record in any cache referencing this node (either as
argument or result) is invalid, and may be reused. Biddy
has the Cache List that keeps references to those func-
tions intended for marking invalid entries in caches. ITE
Cache and EAX Cache are registered on the Cache List
during initialization, whilst any user-defined cache must
be registered using function Biddy_AddCache.

The main problem with garbage collection is the detec-
tion of unnecessary nodes. Some help from the user is re-
quired because, during different calculations, a lot of tem-
porary nodes are created and it is hard for the system to
automatically guess which results will be used during fur-
ther calculations. It could be assumed that all results will
be needed in the future but this permissive strategy is, in
fact, very poor for the majority of practical applications.

Biddy implements an original method called garbage
collection with a formulae counter not used by other
BDD packages. It works via an internal global variable
biddyCount and an element count in every node. If a
nodes count is equal to zero then this is a fortified node,
if it is equal to the value of biddyCount then this is a
fresh node, and otherwise it is a bad node. Fortified nodes
belong to those results from previous calculations which

are assumed (by the user) to be needed in the future.
Fresh nodes have been created during the current
calculation and must remain, at least until the end of this
calculation. Bad nodes are safe to delete at any moment.
Indeed, all descendants of a fortified node should be
fortified and the descendants of a fresh node must not be
bad. Biddy offers function Biddy_isOK to check
whether a particular node is not bad.

When a new node is created, it becomes a fresh node.
Moreover, all its descendants are being refreshed, i.e.
they are changed into fresh nodes if they are currently
bad. Refreshing is done by the recursive function
Biddy_Fresh. When the calculation is finished, the user
can fortify its result, i.e. change all its nodes into fortified
ones. Fortifying is done by the recursive function
Biddy_Fortify. At any time, the user can change all
the fresh nodes into bad nodes by calling
Biddy_IncCounter, which simply increments a
variable biddyCount. This is usually used to separate
different calculations, i.e. to mark all redundant nodes
from the already finished calculations.

Function Biddy_IncCounter or any other function
mentioned in the previous description does not actually
start garbage collection, i.e. node deleting. This is started
periodically by the system or explicitly by calling func-
tion Biddy_Garbage. Deleting nodes as often as possib-
le is not the best strategy. A currently unnecessary node
may become needed by the very next operation and it
would have to be recreated. Hence, Biddy uses the fol-
lowing approach. An amount (a memory block) of BDD
nodes is created during initialization. When all these
nodes have been used, garbage collection starts to delete
unnecessary ones. A new memory block full of BDD
nodes is created if none of the nodes can be deleted. Ref-
erences to allocated memory block are stored in the
Memory Block Table (element blocktable in structure
BiddyNodeTable).

A special multi-purpose pointer list is used as part of
every node in order to support efficient memory manage-
ment. When a block of new BDD nodes is created, all the
nodes are linked by this pointer into the List of Free
Nodes (its beginning is referenced by pointer
biddyFreeNodes). Nodes deleted by garbage collection
are not deallocated from memory, they are just returned
to this list. In this way, the number of time-consuming re-
quests for allocating and deallocating memory is greatly
reduced. When a new node is needed, it is simply taken

Truth
table

Symbol Boolean base ITE base

0000 0
gf

0 0

0001 gf gf)0,,(gfITE

0010 gf � gf),0,(fgITE

0011 f f f

0100 gf ✁ gf),0,(gfITE

0101 g g g

0110 gf gfgf),,(ggfITE
0111 g+f gf),1,(gfITE

1000 gf gf),0,(gfITE

1001 gf gfgf),,(ggfITE

1010 g g)1,0,(gITE

1011 gf
gf

gf)1,,(fgITE

1100 f f)1,0,(fITE

1101 gf gf)1,,(gfITE

1110 gf | gf)1,,(gfITE

1111 1 1 1

Figure 5. Binary operations on Boolean functions

Biddy_ITE(F,G,H) {
 normalization of arguments F,G,H
 if simple call return result
 if result in ITE Cache return result
 v = the smallest top variable of F,G,H
 T = Biddy_ITE(F,G,H)v=1
 E = Biddy_ITE(F,G,H}v=0
 result = Biddy_FoaNode(v,T,E)
 store F,G,H, and result into ITE Cache
 return result
}

Figure 6. Algorithm for ITE

1362 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

from the List of Free Nodes. For the nodes in use, the
pointer list is reused to link the node to another list
called List of New Nodes (its beginning and end are ref-
erenced by the pointers biddyFirstNewNode and
biddyLastNewNode, respectively). List of New Nodes
greatly reduces the time for garbage collection because
only nodes from this list are checked and not the whole
Node Table. It is even unnecessary to look over the whole
list, as from a particular node forward to the end, the list
contains only fresh nodes. This arbitrary node is refer-
enced by the pointer biddyFreshNodes and this refer-
ence is transferred to the end of the list each time
BiddyCount is incremented. During the garbage collec-
tion all fortified nodes are removed from the List of New
Nodes and, hence, the next call will not be bothered with
them. Indeed, they must be returned to the list if their sta-
tus is changed from fortified to fresh. For all fortified
nodes removed from the List of New Nodes, the pointer
list is reused once again to connect them to the List of
Fortified Nodes, which allows successive visiting of
them. The algorithm for garbage collection with a formu-
lae counter as used in Biddy, is shown in Fig. 7.

If the status of the nodes is not controlled by the user,
all nodes will remain fresh forever and the garbage col-
lection simply does nothing. There is nothing wrong with
this (for small examples this could even be the most effi-
cient method), but you will be unable to manipulate large
Boolean functions in such a way. A simple example of
controlling garbage collection is given in Fig. 8. It shows
the calculation of function F2, which requires calculation
of a temporary function F1. After the construction of F2,
function F1 is no longer needed, whilst function F2 itself
is supposed to be a useful result. Thus, it is fortified and
can be used during the calculation of F3. Function F1
must not be used during the calculation of F3 because
garbage collection may delete some nodes of F1 before
the calculation of F3 is finished.

Another, more complex example is shown in Fig. 9.
Here, function G is being iteratively computed. The tem-
porary functions F1 and F2 are created during each step.
The final G may be huge, therefore we allow for the
deleting of unnecessary nodes as the calculation goes
along. We do not need intermediate results for G, only the
final one, and therefore we do not use Biddy_Fortify
during the calculation.

V. BDD SCOUT

BDD Scout is a tool for the visualization of BDDs (see
the screenshot given in Fig. 10). It serves as a example
application when demonstrating the capabilities of Biddy.
There exist other free BDD visualization tools, for exam-
ple BDDTCL [28], BDD Visualizer [29], and JADE [30].
BDD Scout has been developed completely independent-
ly of them and although the current version is really more
a demo rather than a final product, it already includes
comparable or even innovative functions.

BDDTCL was an early bird. It has not been updated
for a long time and its capabilities are (according to the
available screenshot) similar to BDD Scout. BDD Visual-
izer is a web-based application. It generates PDF docu-
ments. It is not as flexible as BDD Scout and the user can
not adjust a generated graph nor interactively explore it.
JADE is the most sophisticated software from these
group. It is implemented in JAVA and produces nice
graphics. It allows for the study of different variable or-
dering algorithms and allows for good navigation possi-
bilities but, other that this, there is nothing spectacular.
Being subjective, the output graphs of BDD Scout can
sometimes be even more suitable for publications.

BDD Scout consists of two parts.
� The calculation part is written in C and consists of

creating, importing, and exporting BDDs, cal-
culating different statistics, and performing
benchmarks.

� GUI and the drawing part are extensions of a
separately developed Tcl/Tk application bddview,
and allows to load and save a graph, adjust the
graphical representation, and create PNG image
and PDF file (by utilizing ghostscript).

The calculation part currently includes a parser for
simple recursive BDD representation and a parser for the
prefix form of Boolean functions used in IFIP/ISCAS
benchmarks. For the time being, only one benchmark is
implemented (the code is maintained in separate files
bddscoutIFIP.c and bddscoutIFIP.tcl).

GarbageCollection () {
 if some bad nodes could exist {
 do all functions from Cache List
 forall nodes in List of New Nodes {
 if node is fortified
 move to List of Fortified Nodes
 if node is fresh
 do nothing
 if node is bad {
 delete it from Node Table
 move to List of Free Nodes
 }
 }
 }
}

Figure 8. Garbage collection in Biddy

F1 = create a BDD
F2 = create a BDD using F1
Biddy_Fortify(F2);
Biddy_IncCounter();
F3 = create a BDD using F2
Biddy_Fortify(F3);
Biddy_IncCounter();

Figure 7. Simple example of controlling garbage collection

G = biddy_zero;
while (some condition) {
 Biddy_IncCounter();
 Biddy_Fresh(G);
 F1 = create a BDD using G
 F2 = create a BDD using G
 G = create a BDD using F1 and F2
}
Biddy_Fortify(G);
Biddy_IncCounter();

Figure 9. Another example of controlling garbage collection

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1363

© 2012 ACADEMY PUBLISHER

A recursive BDD representation recognized by BDD
Scout has the following rules:

� The first word is the name of the BDD.
� The second word is the name of the top variable.
� Any variable name is followed by a description of

two subgraphs given in parentheses.
�
� Symbol * is used to denote complement edges.
�
� Spacing and indentation are unimportant.

An example of recursive BDD representation is given in
Fig. 11. The obtained graph is given in Fig. 14.

The prefix form of Boolean functions (as used in
IFIP/ISCAS benchmarks) has the following rules:

� The file is optionally started with the set of
variables given in the parentheses (to determine
variable ordering).

� There can be many Boolean functions within the
same file.

� Spacing and indentation are unimportant but the
function's name and symbol = must be given on
the same line.

� Supported operators (and also reserved words) are
NOT, OR, AND, and EXOR, written either
uppercase or lowercase.

The example of prefix form of Boolean functions is given
in Fig. 12. The obtained graph is given in Fig. 14 (it is
the same as in previous example).

Application bddview, which is used in the drawing
part of BDD Scout is a single Tcl/Tk script. It is a graph
viewer only and does not directly use Biddy or any other
BDD package. However, it is not a general graph viewer;
it is in many ways optimized to visualize ROBDDs with
complement edges. Internally, bddview uses a special tex-
tual representation that contains exact coordinates of all
nodes. In order to show graph for a particular BDD, BDD
Scout in the first place produces an appropriate
description in the bddview format. Program dot from the
graphviz package [31] is utilized to determine position of
each node.

Figure 10. Screenshot of BDD Scout v1.0 (arrows off, grid on, part of the graph is being selected)

Biddy
B (* i (d (1) (y (* 1) (1)))
 (d (y (* 1) (1)) (1)))
 (i (d (1) (y (* 1) (1)))
 (d (y (* 1) (1)) (1)))

Figure 11. A recursive BDD representation supported by BDD
Scout

(B i d y)
s1 = (or B (not y))
s2 = (or B i d)
s3 = (or B (not i) (not d))
s4 = (or (not B) i (not d) y)
s5 = (or (not B) (not i) d y)
Biddy = (and s1 s2 s3 s4 s5)

Figure 12. A prefix representation of Boolean functions supported
by BDD Scout

1364 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

The bddview format consists of the following
constructs:

� label <n> <name> <x> <y>
� node <n> <name> <x> <y>
� terminal <n> 1 <x> <y>
� connect <n1> <n2> <type>

Here, <n> is the unique number (integer), <name> is a
string, <x> and <y> are the coordinates (integer), and
<type> is a label, which can be one of the following:

�
�
�
�
�
�

The following remarks should be considered:
� (0,0) is the top left-hand corner,
� only one label is supported,
� single line and inverted single line should be used

to connect a label and a node, only,
� line to the right successor cannot be inverted,
� when using double line, the line to the left

successor is automatically inverted.
An example of bddview format is given in Fig. 13, and
the obtained graph is (again) given in Fig. 14.

VI. CONCLUSION

Biddy is a BDD package suitable for educational
purposes and also usable in prototyped research tools. It
has already been used for quite some time in different
projects. Hence, it is very unlikely that it contains major
bugs. Nevertheless, it is still being actively developed and
upgraded whilst many other free BDD packages are no
longer supported by their authors. Building and installa-
tion procedures are not ideal, as yet, but precompiled bi-
nary packages are being tested for working on various
systems. Debian and rpm packaging has been added, re-
cently.

This paper has not compared the effectiveness of Bid-
dy with other popular BDD packages. By considering the
goals of the project so far, it was found that such a com-
parison would be unsuitable, as yet (which does not mean
that Biddy is much slower than others). Biddy uses the
classical depth-first approach. It also uses common data
structures (node table, cache tables), which are imple-
mented straightforwardly without tricky shortcuts. A sim-
ple implementation style has been used intentionally to
improve the readability of the source code. Some opti-
mizations are planned in the future. In addition to this
work, the package will soon be extended with different
algorithms for reordering.

The most original part of Biddy is its implementation
of garbage collection. This method using a formulae
counter is still being investigated and probably, even
more advantages will be seen. Memory management is,
of course, the main factor of any powerful BDD package
and, hence, it will get a lot of attention during the ongo-
ing research.

be simply used to illustrate interesting programming para-
digm. On the other hand, it can be used to explore the
axioms and theorems of Boolean algebra (by the equiva-
lence checking of Boolean formulae). Its more obvious
usage is to help students understand the details of the
BDD package. And last, but not least, it can be used as an
engine for research applications as, for example, demo
implementation of Quine-McCluskey minimization [32]
or very real-world formal verification of systems, e.g.
stuck-at faults detection [33]. Moreover, BDD Scout can
be extended in order to show how BDD is constructed,
step by step, how BDD representation changes if a differ-
ent variable ordering is selected, to show the content of
the cache, to demonstrate how the cache hits the speed of
BDD computation, how garbage collection is triggered,
etc.

✁✂✄☎✁ ✆ ✝✞✟✠✠✡☛ ☞✆✆✌✆ ☞✆
✍✎✠☎ ☞ ✝✞☛ ☞✆✆ ✏✆
✍✎✠☎ ✑ ✝✟☛ ☞✆✆ ☞✑✒
✍✎✠☎ ✓ ✝✠☛ ✒✆ ☞✔✒
terminal 4 1 50 240
✍✎✠☎ ✒ ✝✡☛ ☞✆✆ ✑✑✒
terminal 6 1 100 290
✍✎✠☎ ✔ ✝✠☛ ☞✒✆ ☞✔✒
terminal 8 1 150 240
connect 0 1 s
connect 1 2 d
connect 2 3 l
connect 2 7 r
connect 3 4 l
connect 3 5 r
connect 5 6 d
connect 7 5 l
connect 7 8 r

Figure 13. An example of bddview format

Figure 14. The graph described by textual representations given in
Fig. 11, Fig. 12, and Fig. 13

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1365

© 2012 ACADEMY PUBLISHER

REFERENCES

[1] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, R. S.
Stankovic. Decision diagram techniques for micro- and
nanoelectronic design handbook. CRC Press, 2006.

[2] C. Baier J.-P. Katoen. Principles of Model Checking. The
MIT Press, 2008.

[3] Q. Wei, T. Gu, "Symbolic Representation for Rough Set
Attribute Reduction Using Ordered Binary Decision
Diagrams", Journal of Software, Vol. 6, No. 6, 2011, pp.
977-984.

[4] D. E. Knuth. Art of Computer Programming, Volume 4,
Fascicle 1: Bitwise Tricks & Techniques; Binary Decision
Diagrams. Addison-Wesley Professional, 2009.

[5] R. E. Bryant, "Graph-Based Algorithms for Boolean
Function Manipulation", IEEE Transactions on Computers,
Vol. C-35, No. 8, 1986, pp. 677-691. Reprinted in M. Yoeli,
Formal Verification of Hardware Design, IEEE Computer
Society Press, 1990, pp. 253-267.

[6] Wikipedia: Binary decision diagram. On-line (21/10/2011).
 http://en.wikipedia.org/wiki/Binary_decision_diagram
[7] ABCD. On-line (21/10/2011).
 http://fmv.jku.at/abcd/
[8] BuDDy. On-line (21/10/2011).
 http://buddy.wiki.sourceforge.net/
[9] CAL. On-line (21/10/2011).
 http://embedded.eecs.berkeley.edu/Research/cal_bdd/
[10] CMU BDD. On-line (21/10/2011).
 http://www-2.cs.cmu.edu/~modelcheck/bdd.html
[11] CUDD. On-line (21/10/2011).
 http://vlsi.colorado.edu/~fabio/CUDD/
[12] JDD. On-line (21/10/2011).
 http://javaddlib.sourceforge.net/jdd/
[13] Biddy. On-line (21/10/2011).
 http://lms.uni-mb.si/biddy/
[14] K. S. Brace, R. L. Rudell, R. E. Bryant, "Efficient Imple-

mentation of a BDD Package", In: 27. ACM/IEEE Design
Automation Conference (DAC'90), 1990, pp. 40-45.

 pp. 299-307.
In Slovene.

with ROBDDs", 1993. Presented at IEEE Region 8 Student
Paper Contest, Paris-Evry 1993. Published in: IEEE
Student paper contest: regional contest winners 1990-1997,
IEEE, 2000.

[17] EST. On-line (21/10/2011).
 http://lms.uni-mb.si/EST/
[18] S. Paumier, "Why academic software should be Open

Source", INFOtheca: Journal of informatics and
librarianship, Vol. X, No. 1-2, 2009, pp. 51-54.

[19] G. Janssen, "A Consumer Report on BDD Packages", In:
16th Symposium on Integrated Circuits and Systems
Design, 2003, pp. 217.

[20] Free Software Foundation, Inc. On-line (21/10/2011).
 http://www.fsf.org/
[21] S. B. Akers, "Binary decision diagrams", IEEE

Transactions on Computers, Vol. C-27, No. 6, 1978, pp.
509-516.

[22] S. Minato, N. Ishiura, S. Yajima, "Shared Binary Decision
Diagram with Attributed Edges for Efficient Boolean
Function Manipulation", In: 27th ACM/IEEE Design
Automation Conference (DAC'90), 1990, pp. 52-57.

[23] R. E. Bryant, "Binary Decision Diagrams and Beyond:
Enabling Technologies for Formal Verification", In:
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD '95), 1995, pp. 236-243.

[24] R. Drechsler, B. Becker. Binary decision diagrams: theory
and implementation. Springer, 1998.

[25] C. Meinel, T. Theobald. Algorithms and Data Structures in
VLSI-Design: OBDD Foundations and Applications.
Springer-Verlag, 1998.

[26] R. Ebendt, G. Fey, R. Drechsler. Advanced BDD
optimization. Springer, 2005.

[27] S. Edwards, G. Swamy, "The VIS Engineering Manual",
1996. On-line (21/10/2011).

 http://vlsi.colorado.edu/~vis/prgDoc.html
[28] BDDTCL. On-line (21/10/2011).
 http://www2.parc.com/csl/members/kpartrid/
[29] BDD Visualizer. On-line (21/10/2011).
 http://www.cs.uc.edu/~weaversa/BDD_Visualizer.html
[30] JADE: Implementation and Visualization of a BDD

Package in JAVA. On-line (21/10/2011).
 http://www.informatik.uni-bremen.de/agra/eng/jade.php
[31] Graphviz. On-line (21/10/2011).
 http://www.graphviz.org/

hancing Quine-McCluskey", 2007.
COMPASSS Working Paper WP 2007-49.

 http://www.compasss.org/pages/resources/wpfull.html
ic

model checking for sensing stuck-at faults in digital
circuits", Inf. MIDEM, Vol. 32, No. 3, 2002, pp. 171-180.

Robert Meolic received his Ph.D from the University of
Maribor, Slovenia in 2005. He is currently an Assistant
Professor at the Faculty of Electrical Engineering and Computer
Science at the same university. His main research interests
include Boolean algebra, binary decison diagrams, temporal
logic and model checking. Dr. Meolic is a member of IEEE and
the Slovenian Electronic Communication Society SIKOM.

1366 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

