
A Detailed Study of NHPP Software Reliability
Models

(Invited Paper)

Richard Lai*, Mohit Garg
Department of Computer Science and Computer Engineering,

La Trobe University, Victoria, Australia

Abstract—Software reliability deals with the probability that
software will not cause the failure of a system for a specified
time under a specified condition. The probability is a
function of the inputs to and use of the system as well as a
function of the existing faults in the software. The inputs to
the system determine whether existing faults, if any, are
encountered. Software Reliability Models (SRMs) provide a
yardstick to predict future failure behavior from k nown or
assumed characteristics of the software, such as past failure
data. Different types of SRMs are used for different phases
of the software development life-cycle. With the increasing
demand to deliver quality software, software development
organizations need to manage quality achievement and
assessment. While testing a piece of software, it is often
assumed that the correction of errors does not introduce any
new errors and the reliability of the software increases as
bugs are uncovered and then fixed. The models used during
the testing phase are called Software Reliability Growth
Models (SRGM). Unfortunately, in industrial practice, it is
difficult to decide the time for software release. An
important step towards remediation of this problem lies in
the ability to manage the testing resources efficiently and
affordably. This paper presents a detailed study of existing
SRMs based on Non-Homogeneous Poisson Process (NHPP),
which claim to improve software quality through effective
detection of software faults.

Index Terms—Software Reliability Growth Models, Non-
Homogeneous Poisson Process, Flexible Models

I. INTRODUCTION

Today, science and technology require high
performance hardware and high quality software in order
to make improvements and achieve breakthroughs. It is
the integrating potential of the software that has allowed
designers to contemplate more ambitious systems,
encompassing a broader and more multidisciplinary
scope, with the growth in utilization of software
components being largely responsible for the high overall
complexity of many system designs. However, in stark
contrast with the rapid advancement of hardware
technology, proper development of software technology
has failed miserably to keep pace in all measures,
including quality, productivity, cost and performance.

When the requirement for and dependencies on

computers increase, the possibility of a crisis from
computer failures also increases. The impact of failures
ranges from inconvenience (e.g., malfunctions of home
appliances), economic damage (e.g., interruption of
banking systems), to loss of life (e.g., failures of flight
systems or medical software). Hence, for optimizing
software use, it becomes necessary to address issues such
as the reliability of the software product. Using
tools/techniques/methods, software developers can
design/propose several testing programs or automate
testing tools to meet the client's technical requirements,
schedule and budget. These techniques can make it easier
to test and correct software, detect more bugs, save more
time and reduce expenses significantly [10]. The benefits
of fault-free software to software developers/testers
include increased software quality, reduced testing costs,
improved release time to market and improved testing
productivity.

There has been much effort expended in quantifying
the reliability associated with a software system through
the development of models which govern software
failures based on various underlying assumptions [44].
These models are collectively called Software Reliability
Models (SRMs). The main goal of these models is to fit a
theoretical distribution to time-between-failure data, to
estimate the time-to-failure based on software test data, to
estimate software system reliability and to design a
stopping rule to determine the appropriate time to stop
testing and to release the software into the market place
[4, 49]. However, the success of SRMs depends largely
on selecting the model that best satisfies the stakeholder's
need.

Recent research in the field of modeling software
reliability addresses the key issue of making the software
release decision, i.e., deciding whether or not a software
product can be transferred from its development phase to
operational use [8, 17, 50]. It is often a trade-off between
an early release to capture the benefits of an earlier
market introduction, and the deferral of product release to
enhance functionality or improve quality. Despite various
attempts by researchers, this question still stands and
there is no stopping rule which can be applied to all types
of data sets. Furthermore, hardly any work has been done
on the unification of SRMs that can provide a solution for
stakeholders to model and predict future failure behavior
of a software system in a better way. Software reliability

*Corresponding author, E-mail: lai@cs.latrobe.edu.au

1296 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1296-1306

engineering produces a model of a software system based
on its failure data to provide a measurement for software
reliability. Several SRMs have been developed over the
past three decades. As a general class of well developed
stochastic process model in reliability engineering, Non
Homogeneous Poisson Process (NHPP) models have
been successfully used in studying hardware reliability
problems. They are especially useful to describe failure
processes which possess certain trends such as reliability
growth and deterioration. Therefore, an application of
NHPP models to software reliability analysis is easily
implemented.

The mathematical and statistical functions used in
software reliability modeling employ several
computational steps. The equations for the models
themselves have parameters that are estimated using
techniques like least squares fit or maximum likelihood
estimation. Then the models, usually equations in some
exponential form, must be executed. Verifying that the
selected model is valid for the particular data set may
require iteration and study of the model functions. From
these results, predictions about the number of remaining
faults or the time of next failure can be made, and
confidence intervals for the predictions can be computed.

A model is classified as an NHPP model if the main
assumption is that the failure process is described by
NHPP. Apart from their wide applicability in the testing
domain, the main characteristic of this type of models is
that there exists a mean value function which is defined
as the expected number of failures up to a given time. In
fact SRM is the mean value function of an NHPP. These
models are flexible in nature as they can model both
continuous and discrete stochastic processes. This paper
presents a detailed study of existing SRMs based on Non-
Homogeneous Poisson Process (NHPP), which claim to
improve software quality through effective detection of
software faults. The definitions, assumptions and
descriptions of models based on NHPP will be provided,
with the aim of showing how a large number of existing
models can be classified into different categories.

II. THE SPECTRUM OF SOFTWARE RELIABILITY MODELS

The work on software reliability models started in the
early 70's; the first model being presented in 1972.
Various models proposed in the literature tend to give
quite different predictions for the same set of failure data.
It should be noted that this kind of behavior is not unique
to software reliability modeling but is typical of models
that are used to project values in time and not merely
represent current values. Furthermore, a particular model
may give reasonable predictions on one set of failure data
and unreasonable predictions on another. Consequently,
potential users may be confused and adrift with little
guidance as to which models may be best for their
applications. Models have been developed to measure,
estimate and predict the reliability of computer software.
Software reliability has received much attention because
reliability has always had obvious effects on highly
visible aspects of software development, testing prior to
delivery and maintenance. Early efforts focused on

testing, primarily because that is when the problems
appeared.

As technology has matured, root causes of incorrect
and unreliable software have been identified earlier in the
life-cycle. This has been due in part to the availability of
results from measurement research and/or the application
of reliability models. The use of a model also requires
careful definition of what a failure is. Reliability models
can be run separately on each failure type and severity
level. Reliability models are mathematically intense,
incorporating stochastic processes, probability and
statistics in their calculations, and relying on maximum
likelihood estimates, numerical methods (which may or
may not converge) and confidence intervals to model
their assumptions.

Despite their shortcomings, such as excessive data
requirements for even modest reliability claims, difficulty
of taking relevant non-measurable factors into account
etc. software reliability models offer a way to quantify
uncertainty that helps in assessing the reliability of a
software-based system, and may well provide further
evidence in making reliability claims. According to the
classification scheme proposed by Xie [44] considering
the probabilistic assumption of SRM, and Kapur and
Garg [17] considering the dynamic aspect of the models,
the SRMs can be categorized into three categories viz.
Markov, NHPP and Bayesian models. We briefly discuss
the key features of Markov models and then study the
NHPP and Bayesian models in detail.

A. Markov models

The Markov process represents the probabilistic failure
process in Markov models. The software is represented
by countable states, each state corresponding to a failure
(fault). The main characteristic of such model is that the
software, at a given point of time, has count ably many
states and such states may be the number of remaining
faults. Given that the process is at a specific state, its
future development does not depend on its past history.
The transition between the states depends on the present
state of the software and the transition probability. The
failure intensity of the software is assumed to be a
discontinuous function which depends on the current state
of the software.

Using this information, the Jelinski and Moranda (J-M)
model [14] is modeled as a Markov process model. Next,
Schick and Wolvertan [35] modified the J-M model by
considering a time dependent failure intensity function
and the time between failures to follow Weibull
distribution. In addition, Shanthikumar [41] proposed a
Markov model with time dependent transition
probabilities. Then, Goel [6] modified the J-M model by
introducing the concept of imperfect debugging. Later,
Littlewood [25] proposed a model based on the semi-
markov process to describe modular structured software.

• Jelinski - Moranda De-eutrophication Model -
The J-M model is one of the earliest models for
assessing software reliability by drawing inferences
from failure data under some simple assumptions on
the nature of the failure process. These assumptions
are:

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1297

© 2012 ACADEMY PUBLISHER

Assumptions Reality

Faults are repaired immediately
when discovered

Faults are not repaired immediately. A work-around may be to leave out duplicates and to accumulate test time
if a non-repaired fault prevents other faults from being found. Fault repair may introduce new faults. It might
be the case that newly introduced faults are less likely to be discovered as retesting is not as thorough as the
original testing.

No new code is introduced in
testing

It is frequently the case that fixed or new code is added during the test period. This may change the shape of
the fault detection curve.

Faults are only reported by the
testing group

Faults may be reported by lots of groups due to parallel testing. If the test time of other groups is added, there is
a problem of equivalency between an hour of the testing group and an hour of other groups (types of testing
may differ). Restricting faults to those discovered by the testing group eliminates important data.

Each unit of time is equivalent The appropriate measure of time must relate to the test effort. Examples are: calendar time, execution time and
number of test cases. However, potential problems are: the test effort is asynchronous (calendar time), some
tests create more stress on a per hour basis (execution time) and tests do not have the same probability of
finding a fault.

Tests represent operational
profile

It is hard to define the operational profile of a product, reflecting how it will be used in practice. It would
consist of a specification of classes of input and the probability of their occurrence. In test environments, tests
are continually being added to cover faults discovered in the past.

Tests represent adoption
characteristics

The rates of adoption, describing the number and type of customers who adopt the product and the time when
they adopt, are often unknown.

Faults are independent When sections of code have not been as thoroughly tested as other code, tests may find a disproportionate share
of faults.

Software is tested in isolation The software under testing might be embedded in a system. Interfaces with for example hardware, can hamper
the measurement process (test delay due to mechanical or hardware problems, re-testing with adjusted
mechanical or hardware parts).

Software is a black-box There is no accounting for partitioning, redundancy and fault-tolerant architectures. These characteristics are
often found in safety-critical systems.

The organization does not
change

When multiple releases of a product are developed, the organization might significantly change, for example
the development process and the development staff. After the first release, a different department might even
execute the development of the next release. It may also heavily influence the test approach by concentrating
on the changes made for corrective maintenance and preventive maintenance (a new functionality).

TABLE I. MODEL ASSUMPTIONS VS REALITY

1. At the beginning of testing, there are n0 faults in the
software code with n0 being an unknown but fixed
number.
2. Each fault is equally dangerous with respect to the
probability of its instantaneously causing a failure.
Furthermore, the hazard rate of each fault does not
change over time, but remains constant at φ.
3. The failures are not correlated, i.e. given n0 and φ
the times between failures (∆t1, ∆t2,, ∆tn0)
4. Whenever a failure has occurred, the fault that
caused it is removed instantaneously and without
introducing any new fault into the software.

z�Δt|t���	 = 	ϕ[n� −M�t���� = 	ϕ[n� − �i − 1	� (1)

The failure intensity function is the product of the
inherent number of faults and the probability density
of the time until activation of a single fault, na(t), i.e.:

����	
���	 = n�[1 − exp�−ϕt	� (2)

Therefore, the mean value function is

m�t	 = 	n�[1 − exp�−ϕt	� (3)

It can easily be seen from equations (2) and (3) that
the failure intensity can also be expressed as

����	
���	 = ϕ[n� −m�t	� (4)

According to equation (4), the failure intensity of the

software at time t is proportional to the expected number
of faults remaining in the software; again, the hazard rate
of n individual faults is the constant of proportionality.
Moreover, many software reliability growth models can
be expressed in a form corresponding to equation (4).
Their difference often lies in what is assumed about the
per-fault hazard rate and how it is interpreted.

B. NHPP models

As a general class of well developed stochastic process
model in reliability engineering, NHPP models have been
successfully used in studying hardware reliability
problems. These models are also termed as fault counting
models and can be either finite failure or infinite failure
models, depending on how they are specified. In these
models, the number of failures experienced so far follows
the NHPP distribution. The NHPP model class is a close
relative of the homogenous poisson model, the difference
is that here the expected number of failures is allowed to
vary with time. Hence, they are useful for both calendar
time data as well as for the execution time data.

1298 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Model Group Example

Continuous-time models

- which use machine execution time (i.e. CPU time) or
calendar time as a unit of fault detection/removal period

- Exponential model developed by Goel and Okumoto (G-O) [7]
- Delayed S-shaped model due to Yamada et al. [46]

Discrete-time models

- which use the number of test cases as a unit of fault
detection period

- Exponential model developed by Yamada [47]
- Delayed S-shaped model developed by Kapur et al. [17]

TABLE II. CONTINUOUS AND DISCRETE TIME MODELS

C. Basic assumptions of NHPP models

Some of the basic assumptions (apart from some
special ones for the specific models discussed) assumed
for NHPP models are as follows:

1. A Software system is subject to failure during
execution caused by faults remaining in the system.

2. The number of faults detected at any time is
proportional to the remaining number of faults in the
software.

3. Failure rate of the software is equally affected by
faults remaining in the software.

4. On a failure, repair efforts starts and fault causing
failure is removed with certainty.

5. All faults are mutually independent from a failure
detection point of view.

6. The proportionality of failure occurrence/fault
isolation/fault removal is constant.

7. Corresponding to the fault detection/removal
phenomenon at the manufacturer/user end, there exists an
equivalent fault detection/fault removal at the
user/manufacturer end.

8. The fault detection/removal phenomenon is modeled
by NHPP.

However, in practice, some of these assumptions may
not hold their ground. Table 1 shows how assumptions
and notions fail in reality [12, 26, 42, 43].

D. Comments on using NHPP models

Among the existing models, NHPP models have been
widely applied by practitioners. The application of NHPP
to reliability analysis can be found in elementary
literature on reliability. The calculation of the expected
number of failures/faults up to a certain point in time is
very simple due to the existence of the mean value
function. The estimates of the parameters are easily
obtained by using either the method of maximum
likelihood estimation (MLE) or least squares estimation
(LSE).

Other important advantages of NHPP models which
should be highlighted are that NHPPs are closed under
super position and time transformation. We can easily
incorporate two or more existing NHPP models by
summing up the corresponding mean value functions.
The failure intensity of the superposed process is also just
the sum of the failure intensity of the underlying
processes.

II. RELEGATION OF NHPP MODELS

For binomial type there are a fixed number of faults at
start, while for poisson type, the eventual number of
faults could be discovered over an infinite amount of
time. In poisson process models, there exists a
relationship between:

• The failure intensity function and the reliability
function

• The failure intensity function and the hazard rate
• Mean value function and cumulative distribution

function (CDF) of the time to failure of an
individual fault

If the mean value function m(t) is a linear function of
time, then the process is the Homogeneous Poisson
Process (HPP), however if it is a non-linear function of
time, then the process is NHPP.

The earlier SRGMs, known as Exponential SRGMs,
were developed to fit an exponential reliability growth
curve. Similar to the J-M model [14], several other
models that are either identical to the Exponential model
except for notational differences or are very close
approximations were developed by Musa [28],
Schneidewind [36], and Goel and Okumoto [7]. Also,
some Exponential models were developed to cater for
different situations during testing [17, 45]. As a result, we
have a large number of SRGMs each being based on a
particular set of assumptions that suit a specific testing
environment.

III. MODEL GROUPS

Generally, the SRGMs are classified into two groups.
The first group contains models, which use machine
execution time (i.e., CPU time) or calendar time as a unit
of fault detection/removal period. Such models are called
Continuous time models. The second group contains
models which use the number of test cases as a unit of
fault detection period. Such models are called discrete
time models, since the unit of software fault detection
period is countable. A large number of models have been
developed in the first group while there are fewer in the
second group. In this section, we explore a broad class of
NHPP models based on Continuous and Discrete
distributions. Table 2 categorizes commonly used NHPP
models which show growth in reliability.

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1299

© 2012 ACADEMY PUBLISHER

Notation Description

a

Initial fault-content of the software

b Fault removal rate per remaining fault per test case

a, b Constants, representing initial fault content and rate of
fault removal per remaining
for a software

mf(t) Expected number of failures occurring in the time interval
(0, t]

TABLE III. NOTATIONS OF EXPONENTIAL & DELAYED S-SHAPED
CONTINUOUS-TIME MODELS

A. Continuous-time models

A very large number of Continuous time models have
been developed in the literature to monitor the fault
removal process which measure and predict the reliability
of the software systems. During the testing phase, it has
been observed that the relationship between the testing
time and the corresponding number of faults removed is
either exponential or S-shaped or a mix of two [1].

Let [N(t), t≥ 0] denote a discrete counting process
representing the cumulative number of failures
experienced (fault removed) up to time, t, i.e. N(t) is said
to be an NHPP with intensity function λ(t), and it satisfies
the following conditions:

1. There are no failures experienced at time t = 0,
i.e. N(t = 0) = 0 with probability 1.

2. The process has independent increment, i.e., the
number of failures experienced in (t, t + ∆t], i.e.,
N(t + ∆t) − N(t), is independent of the history.
Note this assumption implies the Markov
property that the N(t + ∆t) of the process
depends only on the present state N(t) and is
independent of its past state N(x), for x < t.

3. The probability that a failure will occur during
(t, t+∆t] is λ(t)∆t+0(∆t), i.e., Pr[N(t+∆t)− N(t) =
1] = λ(t) + 0(∆t). Note that the function 0(∆t) is
defined as:

lim∆�→∞ ���∆�∆� = 0 (5)

In practice, it implies that the second or higher
order effects of ∆t are negligible.

4. The probability that more than one failure will
occur during (t, t + ∆t) is 0(∆t), i.e. Pr[N(t +∆t)
− N(t) > 1] = 0(∆t).

Based on the above NHPP assumptions, it can be
shown that the probability that N(t) is a given
integer k, is expressed by:

Pr[$�%	 = &� = ['��	�(
)! exp+−,�%	- , &	 ≥ 0 (6)

The function m(t) is a very useful descriptive
measure of failure behavior. The function λ(t)
which is called the instantaneous failure
intensity is defined as:

0�%	 = 	 lim1�→� �23	[4
��51�	�4��	6��

7� (7)

given λ(t), the mean value function M(t) =
∑(N(t)] satisfies

,�%	 = 	8 0�9	:;�
� (8)

Inversely, knowing m(t), the failure intensity
function λ(t) can be obtained as:

0�%	 = 	 <'��	
<� (9)

Generally, by using a different non-decreasing
function m(t), we obtain different NHPP models.
Define the number of remaining software
failures at time t by N(t) and we have that:

$=�%	 = 	$�∞	 − 	$�%	 (10)

where, N() is the number of faults which can
be detected by infinite time of testing. It follows
from the standard theory of NHPP that
distribution of $=�%	 is poisson with parameter
[m() − m(t)], that is:

Pr[$=�%	 = &�
= [m�∞	– 	m�t	�)

&! exp+−,�∞	 − ,�%	-
	&	 ≥ 0 (11)

The reliability function at time t0 is exponential,
given by:

R�t|t�	 	= 	exp	+−m�t	 +	 t�	 	− 	m�t�	- (12)

The above conditional reliability function is
called a software reliability function based upon
an NHPP for a Continuous SRGM.

• Continuous-time exponential models - G-O
model [7] captures many software reliability issues
without being overly complicated. It is similar to the
J-M model except that failure rate decreases
continuously in time. This is a parsimonious model
whose parameters have a physical interpretation, and
can be used to predict various quantitative measures
for software performance assessment.

According to basic assumption 8, m() follows a
poisson distribution with expected value N. Therefore,
N is the expected number of initial software faults as
compared to the fixed but unknown actual number of
initial software faults n0 in the J-M model.

Basic assumption 2 states that the failure intensity at
time t is given by:

<'��	
<� = 	∅[$ − ,�%	� (13)

1300 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

As in the J-M model, the failure intensity is the product
of the constant hazard rate of an individual fault and
the number of expected faults remaining in the
software.
Following differential equation results from basic
assumption 3:

,�%	 = 	C�D − ,�%		 (14)

Solving the first order linear differential equation (14)
with the initial condition m(t = 0) = 0 gives the
following mean value function for NHPP:

m(t) = a(1 − exp(−bt)) (15)

The mean value function given in equation (15) is
exponential in nature and does not provide a good fit to
the S-shaped growth curves that generally occur in
software reliability. But the model is popular due to its
simplicity.

• Continuous-time delayed S-shaped model - The
model proposed by Yamada et al. [46] is a descendant
of the G-O model [7], the data requirements being
similar and the assumptions being similar with one
exception. Yamada et al. reasoned that due to learning
and skill improvements of the programmers during
the debugging phase of the development cycle, the
error detection curve is often not exponential but
rather S-shaped.

<'E��	

<� = C+D −,F�%	} (16)

<'��	
<� = C+,F�%	 − ,�%	- (17)

Solving equation (16) and (17) with initial conditions
mf (t = 0) = 0 and m(t = 0) = 0, we obtain the mean
value function as:

m(t) = a(1 − (1 + bt) exp (−bt)) (18)

alternatively the model can also be formulated a one-
stage process directly as follows:

<'��	
<� = C�%	�D − ,�%	 (19)

Where b(t) =
GH�
�5G�

It is observed that b(t) → b as t → . This model was
specifically developed to account for lag in the failure
observation and its subsequent removal. This kind of
derivation is peculiar to software reliability only.

B. Discrete-time models

Yamada and Osaki [47] proposed two classes of
Discrete Time Models. One class describes an error
detection process in which the expected number of errors
detected per test case is geometrically decreasing while
the other class is proportional to the current error content.

Kapur [17] proposed a discrete time model based on the
concept that the testing phase has two different processes
namely, fault isolation and fault removal. Kapur et al.
[19] further proposed a discrete time model based on the
assumption that the software consists of n different types
of faults and each type of fault requires a different
strategy to remove the cause of the failure due to that
fault. Kapur et al. [18] also proposed a discrete time
model with a discrete Rayleigh testing effort curve.

In addition to basic assumptions 1, 3 and 8, Kapur et
al. [17-19] assumes the following for Discrete time
models:

1. Each time a failure occurs, an immediate (delayed)
effort takes place to decide the cause of the failure in
order to remove it.
2. The debugging process is perfect - To obtain a

realistic estimate of the residual number of faults, and the
reliability, it is necessary to amend the assumption of
instantaneous and perfect debugging. A number of
researchers have recognized this shortcoming, and have
attempted to incorporate explicit debugging into some of
the software reliability models. Dalal [4] assumes that the
software debugging follows a constant debugging rate,
and incorporates debugging into an exponential order
statistics software reliability model. Schneidewind [40],
[39], [38] incorporates a constant debugging rate into the
Schneidewind software reliability model [37]. Gokhale et
al. [8] incorporates explicit repair into SRGM using a
numerical solution. Imperfect debugging also affects the
residual number of faults, and in fact at times can be a
major cause of field failures and customer dissatisfaction.
Imperfect debugging has also been considered by other
researchers [7], [9-10].

During the software testing phase, software systems
are executed with a sample of test cases to detect /
remove software faults which cause software failures. A
discrete counting process [N(n), n ≥ 0] is said to be an
NHPP with mean value function m(n), if it satisfies the
following conditions.

1. There are no failures experienced at n = 0, i.e. N(n =
0) = 0.
2. The counting process has independent increments,
that is, for any collection of the numbers of test cases
n1, n2, ..., nk, where (0 < n1,< n2 < ... < nk).
The k random variable N(n1),N(n2),−N(n1),
...,N(nk)−N(nk−1) are statistically independent.
For any number of test cases ni and nj , where (0 ≤ ni ≤
nj), we have:

PrI$JKLM − $�KN	 = OP =
	['JQRM�'�QS	�T

U! exp	+−,JKLM − ,�KN		-	, O ≥ 0 (20)

The mean value function m(n) which is bounded above
and is non-decreasing in n represents the expected
accumulative number of faults detected by n test cases.
Then the NHPP model with m(n) is formulated by:

Pr[$�K	 = O� = 	 ['�Q	�T
U! exp	+−,�K	-	, O ≥ 0 (21)

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1301

© 2012 ACADEMY PUBLISHER

Notation Description

a

Initial fault-content of the software

b Fault removal rate per remaining fault per test case

m(n) The expected mean number of faults removal by the nth
test case

mf(n) The expected mean number of faults caused by the nth test
case

TABLE IV. NOTATIONS OF EXPONENTIAL & DELAYED S-SHAPED
DISCRETE-TIME MODELS

As a useful software reliability growth index, the fault
detection rate per fault (per test case) after the nth test
case is given by:

V�K	 = 	 ['�Q5�	�'�Q	�
['�W	�'�Q	� 	 , K ≥ 0 (22)

where m() represents the expected number of faults
to be eventually detected.
Let $= (n) denote the number of faults remaining in the
system after the nth test case is given as:

$=�K	 = $�∞	 − $�K	 (23)

The expected value of $=(n) is given by:

ℎ�K	 = ,�∞	 − ,�K	 (24)

which is equivalent to the variance of $=(n).
Suppose that nd faults have been detected by n test
cases. The conditional distribution of $=(n), given that
N(n) = nd, is given by:

Pr+$=�K	 = Y|$�K	 = K<- = 	 +Z�Q	-

[

\! exp	[−+Σ�K	-� (25)

which means a poisson distribution with mean ∑(n),
independent of nd.

Now, the probability of no faults detected between the
nth and (n + h)th test cases, given that nd faults have
been detected by r test case, is given by:

^ �_Q = exp[−+,�K + ℎ	 − ,�K	-� , K, ℎ	 ≥ 0 (26)

The above conditional reliability function, called the
software reliability function, is based on an NHPP for
a Discrete SRGM and is independent of nd.
• Discrete-time exponential model - Based on the
previously mentioned assumptions for Discrete
models, Yamada and Osaki [47] showed that the
expected cumulative number of faults removed
between the nth and the (n+1)th test cases is
proportional to the number of faults remaining after
the execution of the nth test run, and satisfies the
following difference equation:

,�K + 1	 − ,�K	 = C�D − ,�K		 (27)

Solving the above difference equation using the
probability generality function (PGF) with initial
condition m(n = 0) = 0, one can obtain the closed form
solution as:

,�K	 = D�1 − �1 − C	Q	 (28)

The above mean value function is exponential in
nature and does not provide a good fit to the S-shaped
growth curves that generally occur in software
reliability. Next, we briefly discuss below an S-shaped
model.

• Discrete-time delayed S-shaped model - In the
model developed by Kapur et al. [17], the testing
phase is assumed to have two different processes
namely, fault isolation and fault removal processes.
Accordingly, we have two difference equations:

,F�K + 1	 − ,F�K	 = C�D − ,F�K		 (29)

,�K + 1	 − ,�K	 = C�,F�K	 − ,�K		 (30)

Solving the above difference equation (29) and (30)
using PGF with initial conditions mf (n = 0) = 0 and
m(n = 0) = 0 respectively, one can obtain the closed
form solution as:

,�K	 = D[1 − �1 + CK	�1 − C	Q� (31)

Alternatively the model can also be formulated a one-
stage process directly as follows:

,�K + 1	 − 	,�K	 = 	 G
HQ�Q5�	
�5GQ �D − ,�K		 (32)

It is observed that,
GHQ�Q5�	

�5GQ → b and n→	∞. This

model was specifically developed to account for lag in
the failure observation and its subsequent removal.

IV. EXTENSIONS OF NHPP MODELS

Some NHPP models depict exponential reliability
growth whereas others show S-Shaped growth, depending
on the nature of growth phenomenon during testing. They
are broadly classified into two categories. If the growth is
uniform, generally Exponential models have been used
and for non-uniform growth, S-shaped models have been
developed. As S-shapedness in reliability can be ascribed
to different reasons, many models exist in the literature,
at times leading to confusion in model selection from the
models available.

Initially, Goel and Okumoto [7] proposed the time
dependent failure rate model based on NHPP. Later, Goel
modified his original model [6] by introducing the test
quality parameter. This is a continuous approximation to
the original Exponential model and is described in terms
of an NHPP process with a failure intensity function that
is exponentially decaying. For all practical purposes, the

1302 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Model Type Example

Flexible models

- Models which can capture variability in either exponential and
S-shaped curves

- Model for module structured software
- Two types of fault models
- To model the failure phenomenon of software during operation

Enhanced NHPP models

- A model which incorporates explicitly the time-varying test-
coverage function in its analytical formulation, and provides for
defective fault detection and test coverage during the testing and
operational phases.

- Log-logistic model

Time-dependent transition probability models

- Models which can be used for both calendar time data as well as
for the execution time data

- Basic execution model
- Logarithmic model

TABLE V. EXTENSIONS OF NHPP MODELS

G-O and the other models are indistinguishable from the
Exponential model. The Exponential model can be
further generalized [13] to simplify the modeling process
by having a single set of equations to represent a number
of important models having the Exponential hazard rate
function. The overall idea is that the failure occurrence
rate is proportional to the number of faults remaining and
the failure rate remains constant between failures while it
is reduced by the same amount when a fault is removed.

In other cases, where there was a need to fit the
reliability growth by an S-shaped curve, some available
hardware reliability models depicting a similar curve
were used [31]. In the literature, S-shapedness has been
attributed to different reasons. Ohba and Yamada [33],
and Yamada et al. [46] ascribed to it the mutual
dependency between software faults whereas latter
SRGMs were developed taking various causes of the S-
shapedness into account, such as the models developed
by Ohba [32], Yamada et al. [46], Kapur et al. [17],
Kareer et al. [20], Bittanti et al. [3], Kapur and Garg [16],
and Pham [34].

A. Flexible modeling approach

In addition to the models discussed above, other NHPP
models termed as flexible growth models have been
developed in the past which can capture variability in
exponential and S-shaped curves. In this section, we
present a brief overview of some of these models.

Ohba proposed a Hyper-Exponential model [31] to
describe the fault detection process in module structured
software; Khoshgoftaar [22] proposed the K-stage
Erhangian model; Xie and Zhao [45] proposed a simple
model with graphical interpretation; Kapur and Garg [15]
modified the G-O model by introducing the concept of
imperfect debugging; Zeephongsekul [49] proposed a
model describing use when a primary fault introduces a
secondary fault in real life software development
projects. Non-uniform testing is more popular and hence
the S-shaped growth curve has been observed in many
software development projects.

Kareer et al. [20] and Yamada [48] proposed two types
of fault models where each fault type is modeled by an S-
shaped curve; Kimura et al. [23] proposed an exponential

S-shaped model which describes software with two types
of faults. Later in the testing phase, Kapur [17] ascribed it
to the presence of different types of faults in software
systems.

The above SRGMs have been proposed for the testing
phase and it is generally assumed that the operational
profile is similar to the testing phase, which may not be
the case in practice. Very few attempts have been made to
model the failure phenomenon of commercial software
during its operational use. One of the reasons for this can
be attributed to the inability of software engineering to
measure the growth during the usage of software while it
is in the market. This is unlike the testing phase where
testing effort follows a definite pattern. Kenney [21]
proposed a model to estimate the number of faults
remaining in the software during its operational use. He
has assumed a power function to represent the usage rate
of the software, though he argues that the rate at which
commercial software is used is dependent upon the
number of its users. Kenney's model however fails to
capture the growth in the number of users of the software.

Also, it is important that the SRGM should explicitly
take into account faults of different severity. Such a
modeling approach was earlier adopted by Kapur et al.
[19]. This approach can capture variability in the growth
curves depending on the environment in which it is being
used and at the same time, it has the capability to reduce
either exponential or S-shaped growth curves.

B. Enhanced NHPP models

The Enhanced NHPP model developed by Gokhale
and Trivedi [11] states that the rate at which faults are
detected is proportional to the product of the rate at which
potential fault sites are covered and the expected number
of remaining faults. This model allows for time-
dependent failure occurrence rate per fault, i.e., the rate at
which an individual fault will surface can vary with
testing time.

The NHPP models have constant, increasing or
decreasing failure occurrence rates per fault. These
models were inadequate to capture the failure processes
underlying some of the failure data sets, which exhibit an
increasing/decreasing nature of the failure occurrence rate

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1303

© 2012 ACADEMY PUBLISHER

per fault. The Log-logistic model was proposed to capture
the increasing/decreasing nature of the failure occurrence
rate per fault captured by the hazard of the Log-logistic
distribution [24]. The mean value function m(t) in this
case is given by:

,�%	 = 	D �`�	(
�5�`�	((33)

where λ and k are constants.

C. Log-normal models

In his proposed model, Mullen [27] showed that the
distribution of failure rates for faults in software systems
tends to be lognormal. Since the distribution of event
rates tends to be lognormal and faults are just a random
subset or sample of the events, the distribution of the
failure rates of the faults also tends to be lognormal.

The probability density function (pdf) of the lognormal
distribution is given by:

:a�O	 = �
Ub√de fOg

��hi�T	jk	H
HlH :O�O > 0	 (34)

where, x is the variate, µ is the mean value of the log

of the variate, and n2 is the variance of the log of the
variate. The mean value of the variate is exp(µ+n2/2).
The median value of the variate is exp(µ). The mode of
the variate is exp(µ − n2) and its variance is exp(2µ +
n2)exp(n2 − 1). If x is distributed as L(µ, n2) then 1/x is
distributed as L(−µ, n2).

The cumulative distribution function (cdf) for the
lognormal in the form of the tabulated integral of the
standard normal density function is given as:

8 :a�Y|o, n	U
� = 	 �

√de 8 fOg�pH
H :q = 	r��st�U	�u	

b

�hi�T	jk	
l

�W (35)

The ability of the lognormal to fit the empirical failure

rate distributions is shown to be superior to that of the
gamma distribution (the basis of the Gamma/EOS family
of reliability growth models) [2] or a Power-law model.

D. Time-dependent transition probability models

Some NHPP models are capable of coping with the
case of non-homogeneous testing and hence they are
useful for both calendar time data as well as for execution
time data [44]. These models are termed Time-dependent
transition probability models. In these models, the failure
intensity decreases exponentially with the expected
number of failures experienced. Musa [28] and Musa and
Okumoto [30] proposed the basic execution time model
based on the concept of failure observation and the
corresponding fault removal phenomenon and log
poisson model respectively.

• Basic execution models - This model is perhaps
the most popular of the software reliability models
[5]. The time between failures is expressed in terms of
computational processing units (CPU) rather than the
amount of calendar time that has elapsed. The model

contains a feature for converting from calendar time
to processing time or vice versa.
The mean value function is such that the expected
number of failures is proportional to the expected
number of undetected faults at that time i.e., the
cumulative number of failures follows a poisson
process.

,�%	 = 	C��1 − fOg�Gv�	 (36)

where, b0, b1 > 0
Musa himself [29] recommends the use of this model
(as contrasted to Musa’s logarithmic poisson model)
when the following conditions are met:
a) Early reliability is predicted before program
execution is initiated and failure data observed
b) The program is substantially changing over time as
the failure data are observed
This model can also be used if one is interested in
seeing the impact of a new software engineering
technology on the development process.
• Logarithmic poisson models - This model [30] is
similar to the G-O model except that it attempts to
consider that later fixes have a smaller effect on a
program's reliability than earlier ones. The model is
also called Musa-Okumoto logarithmic Poisson model
because the expected number of failures over time is a
logarithmic function. Thus, the model is an infinite
failure model.
The basic assumption of the model, beyond the
assumption that the cumulative number of failures
follows a poisson process, is that failure intensity
decreases exponentially with the expected number of
failures experienced:

,�%	 = C�wK�C�% + 1	 (37)

V. CONCLUSIONS

Reliability models are a powerful tool for predicting,
controlling and assessing software reliability. As a
general class of well developed stochastic process
modeling in reliability engineering, NHPP models have
been successfully used in studying hardware and software
reliability problems. They are especially useful to
describe failure processes which possess certain trends,
such as reliability growth and deterioration, thus making
the application of NHPP models to software reliability
analysis easily implemented.

In this paper, we first studied the initial model (J-M)
based on Markov process to provide a measurement for
software reliability. These models were later grouped into
NHPP and Bayesian models. We described the modeling
process for both Continuous and Discrete time models
based on NHPP. These models can also be classified
according to their asymptotic representation as either
concave or S-shaped. We explored a few commonly used
extensions of NHPP models. Then, we studied the
flexible modeling approach in which the models can be
customized as per the need. Finally, we discussed
Enhanced NHPP models and models based on time-

1304 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

dependent transition probability to model both execution
and calendar time. The existing NHHP SRGMs can help
remove faults by accelerating the testing effort intensity,
and the proper allocation and management of the testing
resources.

A software release decision is often a trade-off
between early release to capture the benefits of an earlier
market introduction, and the deferral of product release to
enhance functionality, or improve quality. In practice,
software manufacturers are challenged to find answers to
questions such as how much testing is needed?; how to
manage the testing resources effectively and efficiently?;
when should a product be released?; what is the market
window?; what are the expectations of customers and
end-users? etc. The decision making process to release a
product will normally involve different stakeholders who
will not necessarily have the same preferences for the
decision outcome. A decision is only considered
successful if there is congruence between the expected
reliability level and the actual outcome, which sets
requirements for decision implementation. NHHP
SRGMs can help software practitioners decide if the
reliability of a software product has reached a given
threshold and to decide when the software system is
ready for release.

REFERENCES

[1] Ch. A. Asad, M. I. Ullah, and M. J. Rehman. An Approach
for Software Reliability Model Selection. International
Computer Software and Applications Conference,
(COMPSAC), pages 534–539, 2004.

[2] P. G. Bishop and R. E. Bloomfield. Using a log-normal
failure rate distribution for worst case bound reliability
prediction.

[3] S. Bittanti, P. Blozern, E. Pedrotti, M. Pozzi, and A.
Scattolini. Forecasting Software Reliability. In G. Goss and
J. Hartmanis, editors, A Flexible Modeling Approach in
Software Reliability Growth, pages 101–140. Springer-
Verlag, 1988.

[4] S. R. Dalal and C. L. Mallows. Some graphical aids for
deciding when to stop testing software. IEEE Trans. on
Software Engineering, 8(2):169–175, 1990.

[5] W. Farr. Software Reliability Modeling Survey. In M. R.
Lyu, editor, Handbook of Software Reliability
Engineering, pages 71–118. McGraw-Hill, Inc., 1996.

[6] A. L. Goel. Software Reliability Models: Assumptions,
Limitations and Applicability. IEEE Transactions on
Software Engineering, pages 1411–1423, 1985.

[7] A. L. Goel and K. Okumoto. Time-Dependent Error
Detection Rate Model for Software Reliability and other
Performance Measures. IEEE Transactions on Reliability,
R-28(3):206–211, 1979.

[8] S. Gokhale, M. R. Lyu, and K. S. Trivedi. Analysis of
software fault removal policies using a non homogeneous
continuous time markov chain. Software Quality Journal,
pages 211–230, 2004.

[9] S. Gokhale, P. N. Marinos, K. S. Trivedi, and M. R. Lyu.
Effect of repair policies on software reliability. Proc. of
Computer Assurance (COMPASS), pages 105–116, 1997.

[10] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi. Incorporating
fault debugging activities into software reliability models:

a simulation approach. IEEE Transactions on Reliability,
55(2):281–292, 2006.

[11] S. S. Gokhale and K. S. Trivedi. A Time/Structure Based
Software Reliability Model. Annals of Software
Engineering, 8:85–121, 1999.

[12] D. Hamlet. Are We Testing for True Reliability? IEEE
Software, 9(4):21–27, 1992.

[13] American Institute of Aeronautics and Astronautics.
Recommended Practice for Software Reliability. In
ANSI/AIAA Report 0131992. AIAA, 1992.

[14] Z. Jelinski and P. B. Moranda. Software Reliability
Research. In Statistical Computer Performance Evaluation
(Ed.) W. Freiberger, pages 465–484, 1972.

[15] P. K. Kapur and R. B. Garg. Optimal Software Release
Policies for Software Growth Model Under Imperfect
Debugging. Researche Operationelle/Operations Research
(RAIRO), 24:295–305, 1990.

[16] P. K. Kapur and R. B. Garg. A Software Reliability
Growth Model for Error Removal Phenomenon. Software
Engineering Journal, 7:291–294, 1992.

[17] P. K. Kapur, R. B. Garg, and S. Kumar. Contributions to
Hardware and Software Reliability. World Scientific,
Singapore, 1999.

[18] P. K. Kapur, M. Xie, R. B. Garg, and A. K. Jha. A Discrete
Software Reliability Growth Model with Testing Effort. 1st
International Conference on Software Testing, Reliability
and Quality Assurance, 1994.

[19] P. K. Kapur, S. Younes, and S. Agarwala. A General
Discrete Software Reliability Growth Model. International
Journal of Modelling and Simulation, 18(1):60–65, 1998.

[20] N. Kareer, P. K. Kapur, and P.S. Grover. An S-shaped
Software Reliability Growth Model With TwoTypes of
Errors. Microelectronics Reliability, 30:1085–1090, 1990.

[21] G. Q. Kenney. Estimating Defects in Commercial Software
During Operational Use. IEEE Transactions on Reliability,
42(1):107–115, 1993.

[22] T. M. Khoshgoftaar. Non-Homogeneous Poisson Process
for Software Reliability. COMPSTAT, pages 13–14, 1988.

[23] M. Kimura, S. Yamada, and S. Osaki. Software Reliability
Assessment for an Exponential S-shaped Reliability
Growth Phenomenon. Computers and Mathematics with
Applications, 24:71–78, 1992.

[24] L. M. Leemis. Reliability-Probabilistic Models and
Statistical Methods. Prentice-Hall, 1995.

[25] B. Littlewood. Forecasting Software Reliability. In G.
Goss and J. Hartmanis, editors, Software Reliability
Modeling and Identification, chapter 5, pages 141–209.
Springer-Verlag, 1987.

[26] H. Hecht M. Hecht, D. Tang and R. W. Brill. Quantitative
Reliability and Availability Assessment for Critical
Systems Including Software. 12th Annual Conference on
Computer Assurance, pages 147–158, 1997.

[27] R. Mullen. The Lognormal Distribution of Software
Failure Rates: Origin and Evidence. The Ninth
International Symposium on Software Reliability
Engineering (ISSRE), pages 124–133, 1998.

[28] J. D. Musa. A Theory of Software Reliability and its
Applications. IEEE Transactions on Software Engineering,
1(3):312–327, 1975.

[29] J. D. Musa, A. Iannino, and K. Okumoto. Software
Reliability: Measurement, Prediction, Application.
McGraw-Hill, Inc., USA, 1987.

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1305

© 2012 ACADEMY PUBLISHER

[30] J. D. Musa and K. Okumoto. A Logarithmic Poisson
Execution Time Model for Software Reliability
Measurement. International Conference on Software
Engineering, (ICSE), pages 230–238, 1984.

[31] M. Ohba. Software Reliability Analysis Models.
Nontropical Issue, pages vol. 28, Number 4, pp 428, 1984.

[32] M. Ohba. Inflection S-shaped Software Reliability Growth
Model. In S. Osaki and Y. Hotoyama, editors, Lecture
Notes in Economics and Mathematical System, pages 101–
140. Springer-Verlag, 1988.

[33] M. Ohba and S. Yamada. S-shaped Software Reliability
Growth Model. 4th International Conference on Reliability
and Maintainability, pages 430–436, 1984.

[34] H. Pham. Handbook of Reliability Engineering. Springer-
Verlag London limited, USA, 2003.

[35] G. J. Schick and R. W. Wolverton. An Analysis of
Competing Software Reliability Models. IEEE Trans-
actions on Software Engineering, 4(2):104–120, 1978.

[36] N. F. Schneidewind. Analysis of Error Processes in
Computer Software. Sigplan Notices, 10:337–346, 1975.

[37] N. F. Schneidewind. Software reliability model with
optimal selection of failure data. IEEE Trans. On Software
Engineering, 19(11):1095–1014, 1993.

[38] N. F. Schneidewind. Modeling the fault correction process.
Proc. of Intl. Symposium on Software Reliability
Engineering (ISSRE), pages 185–191, 2001.

[39] N. F. Schneidewind. An integrated failure detection and
fault correction model. Proc. of Intl. Conference on
Software Maintenance, pages 238–241, 2002.

[40] N. F. Schneidewind. Assessing reliability risk using fault
correction profiles. Proc. of Eighth Intl. Symposium on

High Assurance Systems Engineering (HASE), pages 139–
148, 2004.

[41] J. G. Shanthikumar. Software Reliability Models: A
Review. Microelectronics Reliability, 23:903–949, 1983.

[42] J. A. Whittaker. What Is Software Testing? And Why Is It
So Hard? IEEE Software, pages 70–79, 2000.

[43] A. Wood. Software Reliability Growth Models:
Assumptions Vs. Reality. International Symposium on
Software Reliability Engineering (ISSRE), pages 136–143,
1997.

[44] M. Xie. Software Reliability Modeling. World Scientific,
Singapore, 1991.

[45] M. Xie and M. Zhao. On Some Reliability Growth Models
With Simple Graphical Interpretations. Microelectronics
Reliability, 33(2):149–167, 1993.

[46] S. Yamada, M. Ohba, and S. Osaki. S-shaped Reliability
Growth Modeling for Software Error Detection. IEEE
Transactions on Reliability, R-32:475–478, 1983.

[47] S. Yamada and S. Osaki. Discrete Software Reliability
Growth Models. Applied Stochastic Models and Data
Analysis, 1:65–77, 1985.

[48] S. Yamada, S. Osaki, and H. Narihisa. Software Reliability
Growth Models With Two Types of Errors. Researche
Operationelle/Operations Research (RAIRO), 19:87–104,
1985.

[49] P. Zeephongsekul, C. Xia, and S. Kumar. A Software
Reliability Growth Model Primary Errors Generating
Secondary Errors under Imperfect Debugging. IEEE
Transactions on Reliability, R-43(3):408–413, 1994.

[50] D. R. Jeske and X. Zhang. Some Successful Approaches to
Software Reliability Modeling in Industry. The Journal of
Systems and Software, 74:85–99, 2005.

1306 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

