1296

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

A Detailed Study of NHPP Software Reliability
Models

(Invited Paper)

Richard Lai*, Mohit Garg
Department of Computer Science and Computer Engimge
La Trobe University, Victoria, Australia

Abstract—Software reliability deals with the probability that
software will not cause the failure of a system foa specified
time under a specified condition. The probability isa
function of the inputs to and use of the system asell as a
function of the existing faults in the software. Thanputs to
the system determine whether existing faults, if an are
encountered. Software Reliability Models (SRMs) preide a
yardstick to predict future failure behavior from k nown or
assumed characteristics of the software, such asgidailure
data. Different types of SRMs are used for differenphases
of the software development life-cycle. With the icreasing
demand to deliver quality software, software develjpment
organizations need to manage quality achievement dn
assessment. While testing a piece of software, & bDften
assumed that the correction of errors does not intrduce any
new errors and the reliability of the software increases as
bugs are uncovered and then fixed. The models usedrihg
the testing phase are called Software Reliability @wth
Models (SRGM). Unfortunately, in industrial practice, it is
difficult to decide the time for software release.An
important step towards remediation of this problemlies in
the ability to manage the testing resources effiarly and
affordably. This paper presents a detailed study oéxisting

SRMs based on Non-Homogeneous Poisson Process (NHPP

which claim to improve software quality through efective
detection of software faults.

Index Terms—Software Reliability Growth Models, Non-
Homogeneous Poisson Process, Flexible Models

. INTRODUCTION

Today, science and technology require
performance hardware and high quality softwarerdep

computers increase, the possibility of a crisismfro
computer failures also increases. The impact dfires
ranges from inconvenience (e.g., malfunctions afiéo
appliances), economic damage (e.g., interruption of
banking systems), to loss of life (e.g., failurdsflmht
systems or medical software). Hence, for optimizing
software use, it becomes necessary to addressisaab
as the reliability of the software product. Using
tools/techniques/methods, software developers can
design/propose several testing programs or automate
testing tools to meet the client's technical rezpmients,
schedule and budget. These techniques can maésiére
to test and correct software, detect more bugse sawe
time and reduce expenses significantly [10]. Theelfies
of fault-free software to software developers/teste
include increased software quality, reduced testiogts,
improved release time to market and improved tgstin
productivity.

There has been much effort expended in quantifying
the reliability associated with a software systémotigh
the development of models which govern software
failures based on various underlying assumptiory. [4
These models are collectively called Software Rdltg
Models (SRMs). The main goal of these models i @
theoretical distribution to time-between-failuretalato
estimate the time-to-failure based on softwaredatd, to
estimate software system reliability and to desmn
stopping rule to determine the appropriate timesttup
testing and to release the software into the marlaate

hight4, 49]. However, the success of SRMs depends large

on selecting the model that best satisfies thechialker's

to make improvements and achieve breakthroughis. It peed.

the integrating potential of the software that hdswed

Recent research in the field of modeling software

designers to contemplate more ambitious systemseliability addresses the key issue of making thiesare
encompassing a broader and more multidisciplinaryelease decision, i.e., deciding whether or novfaware
scope, with the growth in utilization of software product can be transferred from its developmensegha

components being largely responsible for the higgrall

operational use [8, 17, 50]. It is often a tradebaftween

complexity of many system designs. However, inkstar an early release to capture the benefits of anieearl
contrast with the rapid advancement of hardwargnarket introduction, and the deferral of produdtase to
technology, proper development of software techgwlo enhance functionality or improve quality. Despitgigus
has failed miserably to keep pace in all measuregttempts by researchers, this question still stamuis

including quality, productivity, cost and perforncan

there is no stopping rule which can be appliedItt/pes

When the requirement for and dependencies ORBf data sets. Furthermore, hardly any work has bieee

*Corresponding author, E-mail: lai@cs.latrobe.edu.a

©2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1296-1306

on the unification of SRMs that can provide a dolufor
stakeholders to model and predict future failurbawéor
of a software system in a better way. Softwareabdity

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1297

engineering produces a model of a software sys&sad testing, primarily because that is when the proklem
on its failure data to provide a measurement fitwsye appeared.
reliability. Several SRMs have been developed dkier As technology has matured, root causes of incorrect
past three decades. As a general class of wellajge@ and unreliable software have been identified eairie¢he
stochastic process model in reliability engineeriNgn life-cycle. This has been due in part to the atwdlity of
Homogeneous Poisson Process (NHPP) models havesults from measurement research and/or the afiplic
been successfully used in studying hardware rdiiabi of reliability models. The use of a model also rliegg
problems. They are especially useful to descrilileréa careful definition of what a failure is. Reliabjliitmodels
processes which possess certain trends such akilisli can be run separately on each failure type andrisgve
growth and deterioration. Therefore, an applicatwfn level. Reliability models are mathematically intens
NHPP models to software reliability analysis isilgas incorporating stochastic processes, probability and
implemented. statistics in their calculations, and relying onximaum

The mathematical and statistical functions used itikelihood estimates, numerical methods (which naay
software reliability = modeling employ several may not converge) and confidence intervals to model
computational steps. The equations for the modeltheir assumptions.
themselves have parameters that are estimated usingDespite their shortcomings, such as excessive data
techniques like least squares fit or maximum liketid requirements for even modest reliability claimsficlilty
estimation. Then the models, usually equationsoimes of taking relevant non-measurable factors into anto
exponential form, must be executed. Verifying ttied etc. software reliability models offer a way to qtigy
selected model is valid for the particular data ety uncertainty that helps in assessing the reliabitifya
require iteration and study of the model functiofom software-based system, and may well provide further
these results, predictions about the number of idnta evidence in making reliability claims. According the
faults or the time of next failure can be made, andlassification scheme proposed by Xie [44] congider
confidence intervals for the predictions can bepot®ad. the probabilistic assumption of SRM, and Kapur and

A model is classified as an NHPP model if the mainGarg [17] considering the dynamic aspect of the etgd
assumption is that the failure process is describgd the SRMs can be categorized into three categoies v
NHPP. Apart from their wide applicability in thesting Markov, NHPP and Bayesian models. We briefly discus
domain, the main characteristic of this type of gleds the key features of Markov models and then stuay th
that there exists a mean value function which ndd NHPP and Bayesian models in detail.
as the expected number of failures up to a givee.tin A Markov models
fact SRM is the mean value function of an NHPP.SEhe "~
models are flexible in nature as they can modehbot The Markov process represents the probabilistlartai
continuous and discrete stochastic processes.péier Process in Markov models. The software is represent
presents a detailed study of existing SRMs basedamm by countable states, each state correspondingatuae
Homogeneous Poisson Process (NHPP), which claim t@ault) The ma”’! Chal‘a(;tel’lstlcl of such modelhattthe
improve software quality through effective detentiof ~ Software, at a given point of time, has count abgny
software faults. The definitions, assumptions anchtates and such states may be the number of remaini
descriptions of models based on NHPP will be predid faults. Given that the process is at a specifitestds
with the aim of showing how a large number of emigt future development does not depend on its pasbriyist
models can be classified into different categories. The transition between the states depends on teept

state of the software and the transition probabilithe

Il. THE SPECTRUM OFSOFTWARERELIABILITY MopeLs ~ failure intensity of the software is assumed to de
o) discontinuous function which depends on the curseate
The work on software reliability models startedtiie of the software.
early 70's; the first model being presented in 1972 ysing this information, the Jelinski and Moranda/)
Various models proposed in the literature tend it® g model [14] is modeled as a Markov process modextNe
quite different predictions for the same set ofufa data. Schick and Wolvertan [35] modified the J-M model by
It should be noted that this kind of behavior i$ DDique Considering a time dependent failure intensity fiomc
to software reliability modeling but is typical afodels and the time between failures to follow Weibull
that are used to project values in time and notefyer (istribution. In addition, Shanthikumar [41] propdsa
represent current values. Furthermore, a particutedel Markov model with time dependent transition
may give reasonable predictions on one set ofriaifiata probabilities. Then, Goel [6] modified the J-M moty
and unreasonable predictions on another. Consdguentintroducing the concept of imperfect debugging.erat
pO.tentIal users may. be confused and adrift wittielit Littiewood [25] proposed a model based on the semi-
guidance as to which models may be best for theifarkov process to describe modular structured soéw
applications. Models have been developed to measure ., Jelinski - Moranda De-eutrophication Model

estimate and predict the reliability of computeftware. The J-M model is one of the earliest models for
So_ftw_a_re reliability has recelved_much attentlormams_e assessing software reliability by drawing inference

reliability has always had obvious effects on hghl from failure data under some simple assumptions on
visible aspects of software development, testirigr o the nature of the failure process. These assungption

delivery and maintenance. Early efforts focused on g.e-

©2012 ACADEMY PUBLISHER

1298

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

Assumptions

Reality

Faults are repaired immediately Faults are not repaired immediately. A work-aroumaly be to leave out duplicates and to accumulatditee

when discovered

No new code is introduced
testing

Faults are only reported by t
testing group

Each unit of time is equivale

Tests represent operatiol
profile

Tests represent adopti
characteristics

Faults are independe

Software is tested in isolati

Software is a blac-box

The organization does n
change

if a non-repaired fault prevents other faults frbeing found. Fault repair may introduce new fauttsnight
be the case that newly introduced faults are l&sdylto be discovered as retesting is not as thgicas the
original testing.

It is frequently the case that fixed or new codadsled during the test period. This may changehiape o
the fault detection curve.

Faults may be reported by lots of groups due talfghtestirg. If the test time of other groups is added, the
a problem of equivalency between an hour of thénggroup and an hour of other groups (types stirig
may differ). Restricting faults to those discovebstthe testing group eliminates important data.

The appropriate measure of time must relate taetsteeffort. Examples are: calendar time, executioe anc
number of test cases. However, potential problerasthe test effort is asynchronous (calendar timejne
tests create more stress on a per hour basis (edime) and tests do not have the same prolalufi
finding a fault.

It is hard to define the operational profile of @duct, reflecting how it will be ed in practice. It woul
consist of a specification of classes of input trelprobability of their occurrence. In test enmiments, tests
are continually being added to cover faults discedén the past.

The iates of adoption, describing the number and typsusfomers who adopt the product and the time \
they adopt, are often unknown.

When sections of code have not been as thorougsilgd as other code, tests may find a disprionate shar
of faults.

The software under testing might be embedded ysge®. Interfaces with for example hardware, cangex
the measurement process (test delay due to meehamichardware problems, re-testing with adjusted
mechanical or hardware parts).

There is no accounting for partitioning, redundaaog faul-tolerant architectures. These characteristics
often found in safety-critical systems.

When multiple releases of a product are develotierl prganization might significantly change, foample
the development process and the development staf. the first release, a different department migven
execute the development of the next release. It afsyy heavily influence the test approach by cotmaéng
on the changes made for corrective maintenanc@r@ventive maintenance (a new functionality).

TABLEl. MODEL ASSUMPTIONSVSREALITY

1. At the beginning of testing, there agefalts in the

software code with gbeing an unknown but fixed

number.

. = dlno ~m(®)]

(4)

2. Each fault is equally dangerous with respedhé&o

probability of its instantaneously causing a falur

According to equation (4), the failure intensity tbe

Furthermore, the hazard rate of each fault does ngPftware at time is proportional to the expected number

change over time, but remains constang.at

3. The failures are not correlated, i.e. givgrand ¢
the times between failureaty, At2,,Atg)

4. Whenever a failure has occurred, the fault thal
caused it is removed instantaneously and withoul
introducing any new fault into the software.

z(Atlti_1) = ¢[ng — M(ti-1] = $[no — (= 1] (1)

The failure intensity function is the product ofeth
inherent number of faults and the probability dgnsi
of the time until activation of a single faul(®), i.e.:

dm(t)

of faults remaining in the software; again, thedrdzrate

of n individual faults is the constant of proportiomgali
Moreover, many software reliability growth modeksnc
pe expressed in a form corresponding to equatign (4
heir difference often lies in what is assumed aliba
per-fault hazard rate and how it is interpreted.

B. NHPP models

As a general class of well developed stochasticgs®
model in reliability engineering, NHPP models héezn
successfully used in studying hardware reliability
problems. These models are also termed as fautttiogu
models and can be either finite failure or infinigélure
models, depending on how they are specified. Isehe

2o = Moll- exp(—¢t)] (2) models, the number of failures experienced sodémviis
the NHPP distribution. The NHPP model class isosel

Therefore, the mean value function is relative of the homogenous poisson model, the riffee
is that here the expected number of failures mwad to

m(t) = ne[1 — exp(—pv)] (3) Vary with time. Hence, they are useful for bothecalar

time data as well as for the execution time data.

It can easily be seen from equations (2) and (&) th
the failure intensity can also be expressed as

©2012 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1299

C. Basic assumptions of NHPP models Il. RELEGATION OFNHPPMODELS

Some of the basic assumptions (apart from some por hinomial type there are a fixed number of fuat
special ones for the specific models discussed)nass start, while for poisson type, the eventual numbk

for NHPP models are as follows: _ ~ faults could be discovered over an infinite amooht
1. A Software system is subject to failure duringtime, In poisson process models, there exists a
execution caused by faults remaining in the system. relationship between:

2. The number of faults detected at any time is
proportional to the remaining number of faults et
software.

3. Failure rate of the software is equally affectad
faults remaining in the software.

4. On a failure, repair efforts starts and faultisiag
failure is removed with certainty.

5. All faults are mutually independent from a fadu
detection point of view.

6. The proportionality of failure occurrence/fault
isolation/fault removal is constant.

7. Corresponding to the fault detection/removakN
phenomenon at the manufacturer/user end, theresextis
equivalent fault detection/fault removal at the
user/manufacturer end.

8. The fault detection/removal phenomenon is matlele
by NHPP.

However, in practice, some of these assumptions m
not hold their ground. Table 1 shows how assumptio
and notions fail in reality [12, 26, 42, 43].

The failure intensity function and the reliability
function
The failure intensity function and the hazard rate
Mean value function and cumulative distribution
function (CDF) of the time to failure of an
individual fault

If the mean value functiom(t) is a linear function of
time, then the process is the Homogeneous Poisson
Process (HPP), however if it is a non-linear fumctof
time, then the process is NHPP.
The earlier SRGMs, known as Exponential SRGMs,
ere developed to fit an exponential reliabilityogth
curve. Similar to the J-M model [14], several other
models that are either identical to the Exponemtiatiel
except for notational differences or are very close
approximations were developed by Musa [28],
Schneidewind [36], and Goel and Okumoto [7]. Also,
Bome Exponential models were developed to cater for
Ngifferent situations during testing [17, 45]. Asesult, we
have a large number of SRGMs each being based on a
D. Comments on using NHPP models particular set of assumptions that suit a specé&ting

Among the existing models, NHPP models have beefinvironment.
widely applied by practitioners. The applicationNtfiPP
to reliability analysis can be found in elementary Ill. MODEL GROUPS

literature on reliability. The calculation of thepected Generally, the SRGMs are classified into two groups
number of failures/faults up to a certain pointtime is The first group contains models, which use machine
very simple due to the existence of the mean valugxecution time (i.e., CPU time) or calendar timeaamit
function. The estimates of the parameters are yeasipf fault detection/removal period. Such models aked
obtained by using either the method of maximumcontinuous time models. The second group contains
likelihood estimation (MLE) or least squares estio® models which use the number of test cases as aofinit
(LSE). fault detection period. Such models are called reisc
Other important advantages of NHPP models whichime models, since the unit of software fault detec
should be highlighted are that NHPPs are closeeund period is countable. A large number of models Hasen
super position and time transformation. We canlgasi geveloped in the first group while there are fewethe
incorporate two or more existing NHPP models bysecond group. In this section, we explore a brdassoof
summing up the corresponding mean value functionf\HPP models based on Continuous and Discrete
The failure intensity of the superposed processsis just gjstributions. Table 2 categorizes commonly usedPRH

the sum of the failure intensity of the underlyingmodels which show growth in reliability.
processes.

Model Group Example

Continuous-time models

- which use machine execution time (i.e. CPU time - Exponential model developed by Goel and Okumo-O) [7]
calendar time as a unit of fault detection/remeaiod - Delayed S-shaped model due to Yamada et al. [46]

Discrete-time models

- which use the number of test cases as a unit df - Exponential model developed by Yam [47]
detection period - Delayed S-shaped model developed by Kapur etdl. [1

TABLE Il. CONTINUOUS AND DISCRETETIME MODELS

©2012 ACADEMY PUBLISHER

1300
Notation Description
a Initial fault-content of the software
Fault removal rate per remaining fault per tesecas
a, k Constants, representing initial fault content aate rof

fault removal per remaining

for a software

Expected number of failures occurring in the timival
0.4

my(t)

TABLE Ill. NOTATIONS OFEXPONENTIAL & DELAYED S-SHAPED
CONTINUOUS- TIME MODELS

A. Continuous-time models

A very large number of Continuous time models have
been developed in the literature to monitor theltfau
removal process which measure and predict thebititia
of the software systems. During the testing phadeas
been observed that the relationship between thendes
time and the corresponding number of faults remdsed
either exponential or S-shaped or a mix of two [1].

Let [N(t), t> O] denote a discrete counting process
representing the cumulative number of failures
experienced (fault removed) up to tinhei.e. N(t) is said
to be an NHPP with intensity functidt), and it satisfies
the following conditions:

1. There are no failures experienced at time0,
i.e. N(t = 0) = 0 with probability 1.

2. The process has independent increment, i.e., the
number of failures experienced in (t, i\, i.e.,
N(t + At) — N(t), is independent of the history.
Note this assumption implies the Markov
property that the N(t +At) of the process
depends only on the present state N(t) and is
independent of its past state N(x), for x <'t.

3. The probability that a failure will occur during
(t, t+At] is A(t)At+O(AL), i.e., Pr[N(tAt)— N(t) =
1] = M(t) + O(At). Note that the function af) is
defined as:

limps_o (%) =0

®)
In practice, it implies that the second or higher
order effects offt are negligible.

4. The probability that more than one failure will
occur during (t, t 4At) is O(At), i.e. Pr[N(t HAt)
= N(t) > 1] = Ot).

Based on the above NHPP assumptions, it can be
shown that the probability thad(t) is a given
integerk, is expressed by:

k
PdN@):k]:mﬁnemﬂ—m&ﬂj:ZO(&
The function m(t) is a very useful descriptive
measure of failure behavior. The functiaft)
which is called the instantaneous failure
intensity is defined as:

©2012 ACADEMY PUBLISHER

dm(t) _

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

@)

T Pr[N(t+At)—N(t)>0]
A(E) = limp (ST
given A(t), the mean value function M(t) =
> (N(t)] satisfies

m(t) = [, A(S)ds 8)
Inversely, knowing m(t), the failure intensity
functionA(t) can be obtained as:

dm(t)
dt

) = 9)
Generally, by using a different non-decreasing
function m(t), we obtain different NHPP models.
Define the number of remaining software
failures at time t by N(t) and we have that:
N(@) = N(®) = N(t) (10)
where, N¢z) is the number of faults which can
be detected by infinite time of testing. It follows
from the standard theory of NHPP that
distribution ofN(t) is poisson with parameter
[m(=2) — m(t)], that is:

Pr[N(t) = k]
o) k
= O OL o me) —~m©)
k=0 ' (11)

The reliability function at timeytis exponential,
given by:

R(tlty) = exp{-—m(t + to) — m(te)} (12)
The above conditional reliability function is

called a software reliability function based upon
an NHPP for a Continuous SRGM.

. Continuous-time exponential models G-O
model [7] captures many software reliability issues
without being overly complicated. It is similar toe
J-M model except that failure rate decreases
continuously in time. This is a parsimonious model
whose parameters have a physical interpretatioth, an
can be used to predict various quantitative measure
for software performance assessment.

According to basic assumption 8, w)(follows a
poisson distribution with expected value N. Therefo

N is the expected number of initial software fawats
compared to the fixed but unknown actual number of
initial software faults giin the J-M model.

Basic assumption 2 states that the failure intgreit
time t is given by:

@[N — m(t)] (13)

dac

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

As in the J-M model, the failure intensity is theguct
of the constant hazard rate of an individual faurd

1301

Kapur [17] proposed a discrete time model basethen
concept that the testing phase has two differemtgsses

the number of expected faults remaining in thenamely, fault isolation and fault removal. Kapur adt

software.

[19] further proposed a discrete time model basedhe

Following differential equation results from basic assumption that the software consists of n diffetgpes

assumption 3:

of faults and each type of fault requires a differe

strategy to remove the cause of the failure du¢héd

m(t) = b(a —m(t))

(14) fault. Kapur et al. [18] also proposed a discréteet

model with a discrete Rayleigh testing effort curve

Solving the first order linear differential equati¢l14)

In addition to basic assumptions 1, 3 and 8, Kagiur

with the initial condition m(t = 0) = 0 gives the al. [17-19] assumes the following for Discrete time

following mean value function for NHPP:
m(t) = a(1 — exp(-ht)) (15)

The mean value function given in equation (15) is
exponential in nature and does not provide a gddd f

models:

1. Each time a failure occurs, an immediate (delaye
effort takes place to decide the cause of the riaiin
order to remove it.

2. The debugging process is perfect - To obtain a

realistic estimate of the residual number of fawdtsd the

the S-shaped growth curves that generally occur ireliability, it is necessary to amend the assunmptid

software reliability. But the model is popular deits
simplicity.

instantaneous and perfect debugging. A number of
researchers have recognized this shortcoming, and h

attempted to incorporate explicit debugging intonscof

. Continuous-time delayed S-shaped mod€&he

the software reliability models. Dalal [4] assuntiest the

model proposed by Yamada et al. [46] is a descandagoftware debugging follows a constant debugging, rat
of the G-O model [7], the data requirements beingnd incorporates debugging into an exponential rorde
similar and the assumptions being similar with onestatistics software reliability model. Schneidewif#],
exception. Yamada et al. reasoned that due toitearn [39], [38] incorporates a constant debugging rate the
and skill improvements of the programmers duringSchneidewind software reliability model [37]. Gokhat
the debugging phase of the development cycle, thal. [8] incorporates explicit repair into SRGM ugia
error detection curve is often not exponential butumerical solution. Imperfect debugging also aHeitte

rather S-shaped.

residual number of faults, and in fact at times bana

major cause of field failures and customer diskatton.

dmf(t)
dt

= b{a — my(t)} (16)

dm(t) _
ac

b{my(t) — m(t)} (17)

Imperfect debugging has also been considered bsr oth
researchers [7], [9-10].

During the software testing phase, software systems

are executed with a sample of test cases to détect

remove software faults which cause software fadure

Solving equation (16) and (17) with initial conditis

discrete counting process [N(n),>n0] is said to be an

mf (t = 0) = 0 and m(t = 0) = 0, we obtain the meanlNHPP with mean value function m(n), if it satisfide

value function as:
m(t) = a(1 - (1 + bt) exp (-ht)) (18)

alternatively the model can also be formulated e-on
stage process directly as follows:

dam(t) _

o = b@®(a-m() (19)

bt

Where b(t) =

1+bt
It is observed that b(t» b as t—%. This model was

specifically developed to account for lag in thdufa
observation and its subsequent removal. This kihd o
derivation is peculiar to software reliability only

B. Discrete-time models

following conditions.

1. There are no failures experienced at n = ON(a.=
0)=0.

2. The counting process has independent increments,
that is, for any collection of the numbers of teases

Ny, My, ..., N, where (0O <p<mp<...<nR).

The k random variable N{HN(ny),—N(n),
....,N(n)—N(n,-,) are statistically independent.

For any number of test casgsand n, where (0 n, <

n;), we have:

Pr[N(n]-) —N(n;) = x] =

[m(n]-)——m(ni)]x exp{—m(nj) -m(n))},x=0

x!

(20)

The mean value function m(n) which is bounded above
and is non-decreasing in n represents the expected

Yamada and Osaki [47] proposed two classes of accumulative number of faults detected by n tesesa
Discrete Time Models. One class describes an error Then the NHPP model with m(n) is formulated by:

detection process in which the expected numberrofs
detected per test case is geometrically decreashilp
the other class is proportional to the currentrecomtent.

©2012 ACADEMY PUBLISHER

[mm)]*

Pr[N(n) = x] = Texp{—m(n)},x =0 (21)

1302 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

Notation _ Description Solving the above difference equation using the

probability generality function (PGF) with initial

a Initial fault-content of the software condition m(n = 0) = 0, one can obtain the closmanf
b Fault removal rate per remaining fault per tesecas solution as:
m(n The expected mean number of faults removal by the n
(] test casrze Y m(n) = a(l—-(1-b)") (28)
my(n) The expected mean number of faults caused by"thlesm
case The above mean value function is exponential in
nature and does not provide a good fit to the $etha
TABLE IV. NOTATIONS OFEXPONENTIAL & DELAYED S-SHAPED growth curves that genera"y occur in software
DISCRETE TIME MODELS reliability. Next, we briefly discuss below an Sagled
As a useful software reliability growth index, tfaault model.
detection rate per fault (per test case) aftemthéest
case is given by: . Discrete-time delayed S-shaped modéh the
model developed by Kapur et al. [17], the testing
q(n) = mHD-m@I L 5 (22) phase is assumed to have two different processes
[m(eo)—m(n)] namely, fault isolation and fault removal processes

Accordingly, we have two difference equations:
where m() represents the expected number of faults gy d

to be eventually detected.
Let N (n) denote the number of faults remaining in the
system after the'htest case is given as:

mg(n+ 1) —mg(n) = b(a —me(n)) (29)

m(n + 1) —m() = b(ms(n) — m(n)) (30)
N(n) = N(e) = N(n) (23) Solving the above difference equation (29) and (30)
using PGF with initial conditions n{n = 0) = 0 and
m(n = 0) = O respectively, one can obtain the dose
form solution as:

The expected value @&f(n) is given by:

h(n) = m() —m(n) (24)
— _ _ n

which is equivalent to the variance (n). m() = afl = (1 +bn)(1 = b)"] (31)

Suppose that gnfaults have been detected by n test

cases. The conditional distribution &{n), given that

N(n) = ny, is given by:

Alternatively the model can also be formulated a-on
stage process directly as follows:

b2n(n+1)

PHVG) = yING = ng} = EPexpl-p) (25) MO FD T mm =T Mammm) o (32)
Zn n .

which means a poisson distribution with megm), It is observed that% — b and m-»oo. This

independent of 1 model was specifically developed to account foritag

the failure observation and its subsequent removal.
Now, the probability of no faults detected betwélea

n" and (n + HYf test cases, given thay faults have IV. EXTENSIONS OFNHPPMODELS

been detected hiytest case, is given by:)) o
Some NHPP models depict exponential reliability

growth whereas others show S-Shaped growth, depgndi
on the nature of growth phenomenon during tesfiingy
are broadly classified into two categories. If grewth is
The above conditional reliability function, callebde yniform, generally Exponential models have beerduse
software reliability function, is based on an NH®P and for non-uniform growth, S-shaped models hawnbe
a Discrete SRGM and is independent of n developed. As S-shapedness in reliability can ez

. Discrete-time exponential modeBased on the to different reasons, many models exist in theditare,
previously mentioned assumptions for Discreteat times leading to confusion in model selectiamfrthe
models, Yamada and Osaki [47] showed that thenodels available.

expected cumulative number of faults removed Initially, Goel and Okumoto [7] proposed the time
between the % and the (n+1) test cases is dependent failure rate model based on NHPP. LGiae)
proportional to the number of faults remaining afte modified his original model [6] by introducing ttest
the execution of the "htest run, and satisfies the quality parameter. This is a continuous approxiorato

R (%) =exp[-{m(n+h) —m®)}],n,h 20 (26)

following difference equation: the original Exponential model and is describedeims
of an NHPP process with a failure intensity functibat
m(n + 1) —m(n) = b(a — m(n)) (27) is exponentially decaying. For all practical purpssthe

©2012 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1303

Model Type Example

Flexible models

- Models which can capture variability in either empatial and - Model for module structured softwi
S_Shaped curves - Two types of fault models
- To model the failure phenomenon of software dudpgration

Enhanced NHPF models

- A model which incorporates explicitly the time-very test- - Log-logistic mode
coverage function in its analytical formulationdgprovides for
defective fault detection and test coverage duttiegtesting and
operational phases.

Time-dependent transition probability models

- Models which can be used for both calendar tima datwell as - Basic_exeqution moc
for the execution time data - Logarithmic model

TABLE V. EXTENSIONS OFNHPPMODELS

G-O and the other models are indistinguishable ftben S-shaped model which describes software with typesy
Exponential model. The Exponential model can beof faults. Later in the testing phase, Kapur [15Grébed it
further generalized [13] to simplify the modelinpppess to the presence of different types of faults intwafe
by having a single set of equations to representiraber systems.
of important models having the Exponential hazaig r The above SRGMs have been proposed for the testing
function. The overall idea is that the failure otence phase and it is generally assumed that the opagdtio
rate is proportional to the number of faults rerragrand profile is similar to the testing phase, which mat be
the failure rate remains constant between failwigide it the case in practice. Very few attempts have beshento
is reduced by the same amount when a fault is rethov model the failure phenomenon of commercial software

In other cases, where there was a need to fit thduring its operational use. One of the reasonshisrcan
reliability growth by an S-shaped curve, some amld be attributed to the inability of software enginegrto
hardware reliability models depicting a similar weir measure the growth during the usage of softwardevihi
were used [31]. In the literature, S-shapednessbbaa is in the market. This is unlike the testing phadere
attributed to different reasons. Ohba and Yamad, [3 testing effort follows a definite pattern. Kennefl]
and Yamada et al. [46] ascribed to it the mutuaproposed a model to estimate the number of faults
dependency between software faults whereas latteemaining in the software during its operationat.ude
SRGMs were developed taking various causes of the $ias assumed a power function to represent the uatge
shapedness into account, such as the models dedelopof the software, though he argues that the ratehith
by Ohba [32], Yamada et al. [46], Kapur et al. [17] commercial software is used is dependent upon the
Kareer et al. [20], Bittanti et al. [3], Kapur a@éhrg [16], number of its users. Kenney's model however fals t
and Pham [34]. capture the growth in the number of users of tlisvsoe.
A. Flexible modeling approach Also, it is important that the SRGM should expligit

' N _ take into account faults of different severity. Bua

In addition to the mOd_els discussed abOVe, othePRH mode”ng approach was ear"er adopted by Kapurl.et a
models termed as flexible growth models have bee[lg]_ This approach can capture variability in rewth
developed in the past which can capture variability cyrves depending on the environment in which kg

exponential and S-shaped curves. In this sectiom, Wjsed and at the same time, it has the capabilitedace
present a brief overview of some of these models. either exponentia| or S_shaped grovvth curves.

Ohba proposed a Hyper-Exponential model [31] to
describe the fault detection process in modulectirad B- Enhanced NHPP models
software; Khoshgoftaar [22] proposed the K-stage The Enhanced NHPP model developed by Gokhale
Erhangian model; Xie and Zhao [45] proposed a smpland Trivedi [11] states that the rate at which tare
model with graphical interpretation; Kapur and GHIr§] detected is proportional to the product of the edterhich
modified the G-O model by introducing the concept o potential fault sites are covered and the expectedber
imperfect debugging; Zeephongsekul [49] proposed af remaining faults. This model allows for time-
model describing use when a primary fault introduae dependent failure occurrence rate per fault, e rate at
secondary fault in real life software developmentwhich an individual fault will surface can vary Wit
projects. Non-uniform testing is more popular aetide testing time.
the S-shaped growth curve has been observed in manyThe NHPP models have constant, increasing or
software development projects. decreasing failure occurrence rates per fault. &hes
Kareer et al. [20] and Yamada [48] proposed twasyp models were inadequate to capture the failure psE®
of fault models where each fault type is modelec&bys- underlying some of the failure data sets, whichilgklan
shaped curve; Kimura et al. [23] proposed an expiiale increasing/decreasing nature of the failure occueeaate

©2012 ACADEMY PUBLISHER

1304

per fault. The Log-logistic model was proposedaptare
the increasing/decreasing nature of the failuraioence
rate per fault captured by the hazard of the Lagiskic
distribution [24]. The mean value function m(t) tinis
case is given by:

@Ak
1+(At)k

m(t) = a (33)

wherel andk are constants.

C. Log-normal models

In his proposed model, Mullen [27] showed that the
distribution of failure rates for faults in softveasystems
tends to be lognormal. Since the distribution oérdv
rates tends to be lognormal and faults are justnalam
subset or sample of the events, the distributiorthef
failure rates of the faults also tends to be lograir

The probability density function (pdf) of the lognaal
distribution is given by:

_(ne-p?

dL(x) = xg;exp 202

= dx(x > 0)

(34)

where, x is the variatey is the mean value of the log
of the variate, and? is the variance of the log of the
variate. The mean value of the variate is exp/2).
The median value of the variate is g¥p(The mode of
the variate is exp(— ¢%) and its variance is exp{2+
odexp? - 1). If x is distributed as k(¢°) then 1/x is
distributed as L(, o).

The cumulative distribution function (cdf) for the
lognormal in the form of the tabulated integral tbe
standard normal density function is given as:

(n(x)-p) z2

1 @ 2 ® (G-
Ly dLOluo) = =) 7 exp rdz= EBD - (35)

The ability of the lognormal to fit the empiricalifure
rate distributions is shown to be superior to thathe
gamma distribution (the basis of the Gamma/EOS Ifami
of reliability growth models) [2] or a Power-law ohel.

D. Time-dependent transition probability models

Some NHPP models are capable of coping with thge

case of non-homogeneous testing and hence they &l) .) X
9 g y describe failure processes which possess certairdgy

such as reliability growth and deterioration, timiaking
the application of NHPP models to software religpil
&malysis easily implemented.

useful for both calendar time data as well as ka&cetion
time data [44]. These models are termed Time-dep#nd
transition probability models. In these models, fiikure
intensity decreases exponentially with the expecte
number of failures experienced. Musa [28] and Masad
Okumoto [30] proposed the basic execution time rhod

based on the concept of failure observation and tf;E

corresponding fault removal
poisson model respectively.
. Basic execution modetsThis model is perhaps
the most popular of the software reliability models
[5]. The time between failures is expressed in teofn
computational processing units (CPU) rather than th

phenomenon and lo

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

contains a feature for converting from calendaretim
to processing time or vice versa.

The mean value function is such that the expected
number of failures is proportional to the expected
number of undetected faults at that time i.e., the
cumulative number of failures follows a poisson
process.

m(t) = bo(1 — exp™") (36)
where, I3, b, > 0

Musa himself [29] recommends the use of this model
(as contrasted to Musa’s logarithmic poisson model)
when the following conditions are met:

a) Early reliability is predicted before program
execution is initiated and failure data observed

b) The program is substantially changing over tame
the failure data are observed

This model can also be used if one is interested in
seeing the impact of a new software engineering
technology on the development process.

. Logarithmic poisson modelsThis model [30] is
similar to the G-O model except that it attempts to
consider that later fixes have a smaller effectaon
program's reliability than earlier ones. The moudel
also called Musa-Okumoto logarithmic Poisson model
because the expected number of failures over tnae i
logarithmic function. Thus, the model is an infanit
failure model.

The basic assumption of the model, beyond the
assumption that the cumulative number of failures
follows a poisson process, is that failure intgnsit
decreases exponentially with the expected number of
failures experienced:

m(t) = boIn(byt + 1) (37)

V. CONCLUSIONS

Reliability models are a powerful tool for predigi

controlling and assessing software reliability. As
general class of well developed stochastic process
modeling in reliability engineering, NHPP modelsvba

en successfully used in studying hardware artdiaod
iability problems. They are especially useful to

In this paper, we first studied the initial moddtNi)

éoased on Markov process to provide a measurement fo
oftware reliability. These models were later gedinto

HPP and Bayesian models. We described the modeling
rocess for both Continuous and Discrete time nsdel
based on NHPP. These models can also be classified
according to their asymptotic representation abeeit
concave or S-shaped. We explored a few commonlg use
extensions of NHPP models. Then, we studied the
fl?xible modeling approach in which the models ¢en

amount of calendar time that has elapsed. The mOdEustomized as per the need. Finally, we discussed

Enhanced NHPP models and models based on time-

©2012 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1305

dependent transition probability to model both exien a simulation approach. IEEE Transactions on Reitgbil
and calendar time. The existing NHHP SRGMs can help 55(2):281-292, 2006.
remove faults by accelerating the testing effoténmsity, [11] S. S. Gokhale and K. S. Trivedi. A Time/Structures&h

and the proper allocation and management of thges Software Reliability Model. Annals of Software
resources. Engineering, 8:85-121, 1999.

A software release decision is often a trade-offl2] D. Hamlet. Are We Testing for True Reliability? IEEE
between early release to capture the benefits efaalier Software, 9(4):21-27, 1992.
market introduction, and the deferral of produtéa@se to [13] American Institute of Aeronautics and Astronautics.
enhance functionality, or improve quality. In piaet Recommended Practice for Software Reliability. In
software manufacturers are challenged to find arsve ANS"A'AA Report 0131992. AIAA, 1992. o
questions such as how much testing is needed?;thow [14] Z. Jelinski and P. B. Moranda. Software Reliability
manage the testing resources effectively and effity?; Research. In Statistical Computer Performance Etialua

when should a product be released?; what is thé&enar (Ed.) W. Freiberger, pages 465_48‘_" 1972.

window?; what are the expectations of customers and®] P- K. Kapur and R. B. Garg. Optimal Software Release
end-users? etc. The decision making process tasele Policies for Software Growth Model Under Imperfect
product will normally involve different stakeholdewho Debugging. Researche Operationelle/Operations Résearc

. . (RAIRO), 24:295-305, 1990.
will not necessarily have the same preferencesther

- o - . 16] P. K. Kapur and R. B. Garg. A Software Reliability
decision outcome. A decision is only ConSIdereo{ Growth Model for Error Removal Phenomenon. Software

successful if there is congruence between the éxgec Engineering Journal, 7:291-294, 1992.

reliability level and the actual outcome, which sset [17] P. K. Kapur, R. B. Garg, and S. Kumar. Contributions t
requirements for decision Imp_lgmentatlon._ N_HHP Hardware and Software Reliability. World Scientific,
SRGMs can help software practitioners decide if the gjngapore, 1999.

reliability of a software product has reached aegiv [18] P. K. Kapur, M. Xie, R. B. Garg, and A. K. Jha. A Qiste
threshold and to decide when the software system IS ~ goftware Reliability Growth Model with Testing Effost

ready for release. International Conference on Software Testing, Rdltg
and Quality Assurance, 1994.
REFERENCES [19] P. K. Kapur, S. Younes, and S. Agarwala. A General

[1] Ch. A Asad, M. I. Ullah, and M. J. Rehman. An Appioa Discrete Software Reliability Growth Model. Interiwatal
for Software Reliability Model Selection. Internatid Journal of Modelling and Simulation, 18(1):60-6398.
Computer Software and Applications Conference,[20] N. Kareer, P. K. Kapur, and P.S. Grover. An S-sbape
(COMPSAC), pages 534-539, 2004. Software Reliability Growth Model With TwoTypes of

[2] P. G. Bishop and R. E. Bloomfield. Using a log-normal Errors. Microelectronics Reliability, 30:1085-109@90.

failure rate distribution for worst case bound abiity ~ [21] G. Q. Kenney. Estimating Defects in Commercial Safev
prediction. During Operational Use. IEEE Transactions on Rdligbi

[3] S. Bittanti, P. Blozern, E. Pedrotti, M. Pozzi, and A 42(1):107-115, 1993.)
Scattolini. Forecasting Software Reliability. InGoss and ~ [22] T. M. Khoshgoftaar. Non-Homogeneous Poisson Process

J. Hartmanis, editors, A Flexible Modeling Approaich for Software Reliability. COMPSTAT, pages 13-14, 1988

Software Reliability Growth, pages 101-140. Springer [23] M. Kimura, S. Yamada, and S. Osaki. Software Rdltgbi

Verlag, 1988. Assessment for an Exponential S-shaped Reliability
[4] S. R. Dalal and C. L. Mallows. Some graphical aids fo Growth Phenomenon. Computers and Mathematics with

deciding when to stop testing software. IEEE Trams. Applications, 24:71-78, 1992.

Software Engineering, 8(2):169-175, 1990. [24] L. M. Leemis. Reliability-Probabilistic Models and
[5] W. Farr. Software Reliability Modeling Survey. In. NR. Statistical Methods. Prentice-Hall, 1995.

Lyu, editor, Handbook of Software Reliability [25] B. Littlewood. Forecasting Software Reliability. In. G

Engineering, pages 71-118. McGraw-Hill, Inc., 1996. Goss and J. Hartmanis, editors, Software Reliability
[6] A. L. Goel. Software Reliability Models: Assumptigns Modeling and Identification, chapter 5, pages 14B-2

Limitations and Applicability. IEEE Transactions on Springer-Verlag, 1987.

Software Engineering, pages 1411-1423, 1985. [26] H. Hecht M. Hecht, D. Tang and R. W. Brill. Quaniitat
[7] A. L. Goel and K. Okumoto. Time-Dependent Error Reliability and Availability Assessment for Critical

Detection Rate Model for Software Reliability and eth Systems Including Software. 12th Annual Conferenge o

Performance Measures. IEEE Transactions on Retigbili Computer Assurance, pages 147-158, 1997.

R-28(3):206-211, 1979. [27] R. Mullen. The Lognormal Distribution of Software
[8] S. Gokhale, M. R. Lyu, and K. S. Trivedi. Analysi§ o Failure Rates: Origin and Evidence. The Ninth

software fault removal policies using a non homegers International ~ Symposium on Software Reliability

continuous time markov chain. Software Quality daiir Engineering (ISSRE), pages 124-133, 1998.

pages 211-230, 2004. [28] J. D. Musa. A Theory of Software Reliability and its
[9] S. Gokhale, P. N. Marinos, K. S. Trivedi, and M.LRu. Applications. IEEE Transactions on Software Engiimeg

Effect of repair policies on software reliabilitroc. of 1(3):312-327, 1975.

Computer Assurance (COMPASS), pages 105-116, 1997][29] J. D. Musa, A. lannino, and K. Okumoto. Software
[10] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi. Incamting Reliability: ~ Measurement, Prediction, Application.

fault debugging activities into software reliahjlimodels: McGraw-Hill, Inc., USA, 1987.

©2012 ACADEMY PUBLISHER

1306 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

[30] J. D. Musa and K. Okumoto. A Logarithmic Poisson High Assurance Systems Engineering (HASE), pagés 13

Execution Time Model for Software Reliability 148, 2004.
Measurement. International Conference on Softwarg41] . G. Shanthikumar. Software Reliability Models: A
Engineering, (ICSE), pages 230-238, 1984. Review. Microelectronics Reliability, 23:903—-949, 398

[31] M. Ohba. Software Reliability ~Analysis Models. [42] 3. A. Whittaker. What Is Software Testing? And Whyit
Nontropical Issue, pages vol. 28, Number 4, pp 4984. So Hard? IEEE Software, pages 70-79, 2000.

[32] M. Ohba. Inflection S-shaped Software Reliabilityo®th [43] A. Wood. Software Reliability Growth Models:
Model. In S. Osaki and Y. Hotoyama, editors, Leetur Assumptions Vs. Reality. International Symposium on
Notes |n.Econom|cs and Mathematical System, paQés 1 Software Reliability Engineering (ISSRE), pages 136;1
140. Springer-Verlag, 1988. 1997.

[33] M. Ohba and S. Yamada. S-shaped Software Reliability44] M. Xie. Software Reliability Modeling. World Sciefit,
Growth Model. 4th International Conference on Religbi Singapore, 1991.

and Maintainability, pages 430-436, 1984. [45] M. Xie and M. Zhao. On Some Reliability Growth Moslel

[34] H. Pham. Handbook of Reliability Engineering. Sgen With Simple Graphical Interpretations. Microelectics
Verlag London limited, USA, 2003. Reliability, 33(2):149-167, 1993.

[35] G. J. Schick and R. W. Wolverton. An Analysis of [46] S. Yamada, M. Ohba, and S. Osaki. S-shaped Refjabili
Competing Software Reliability Models. IEEE Trans- ~ Growth Modeling for Software Error Detection. IEEE
actions on Software Engineering, 4(2):104-120, 1978 Transactions on Reliability, R-32:475-478, 1983.

[36] N. F. Schneidewind. Analysis of Error Processes in47]s. vamada and S. Osaki. Discrete Software Religbilit
Computer Software. Sigplan Notices, 10:337-346, 1975 Growth Models. Applied Stochastic Models and Data

[37] N. F. Schneidewind. Software reliability model with Analysis, 1:65-77, 1985.
optimal selection of failure data. IEEE Trans. GrftBare 48] S. Yamada, S. Osaki, and H. Narihisa. Software Biitia

Engineering, 19(11):1095-1014, 1993. Growth Models With Two Types of Errors. Researche
[38] N. F. Schneidewind. Modeling the fault correctiongess. Operationelle/Operations Research (RAIRO), 19:87-104,
Proc. of Intl. Symposium on Software Reliability 1985.
Engineering (ISSRE), pages 185-191, 2001. [49] P. Zeephongsekul, C. Xia, and S. Kumar. A Software
[39] N. F. Schneidewind. An integrated failure detectamd Reliability Growth Model Primary Errors Generating
fault correction model. Proc. of Intl. Conference on Secondary Errors under Imperfect Debugging. IEEE
Software Maintenance, pages 238-241, 2002. Transactions on Reliability, R-43(3):408—-413, 1994.
[40] N. F. Schneidewind. Assessing reliability risk wsifault ~ [50] D. R. Jeske and X. Zhang. Some Successful Approdohes
correction profiles. Proc. of Eighth Intl. Sympasiuon Software Reliability Modeling in Industry. The Joafrof

Systems and Software, 74:85-99, 2005.

©2012 ACADEMY PUBLISHER

