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Abstract—Software reliability deals with the probability that 
software will not cause the failure of a system for a specified 
time under a specified condition. The probability is a 
function of the inputs to and use of the system as well as a 
function of the existing faults in the software. The inputs to 
the system determine whether existing faults, if any, are 
encountered. Software Reliability Models (SRMs) provide a 
yardstick to predict future failure behavior from k nown or 
assumed characteristics of the software, such as past failure 
data. Different types of SRMs are used for different phases 
of the software development life-cycle. With the increasing 
demand to deliver quality software, software development 
organizations need to manage quality achievement and 
assessment. While testing a piece of software, it is often 
assumed that the correction of errors does not introduce any 
new errors and the reliability of the software increases as 
bugs are uncovered and then fixed. The models used during 
the testing phase are called Software Reliability Growth 
Models (SRGM). Unfortunately, in industrial practice, it is 
difficult to decide the time for software release. An 
important step towards remediation of this problem lies in 
the ability to manage the testing resources efficiently and 
affordably. This paper presents a detailed study of existing 
SRMs based on Non-Homogeneous Poisson Process (NHPP), 
which claim to improve software quality through effective 
detection of software faults. 
 
Index Terms—Software Reliability Growth Models, Non-
Homogeneous Poisson Process, Flexible Models 

I.  INTRODUCTION 

Today, science and technology require high 
performance hardware and high quality software in order 
to make improvements and achieve breakthroughs. It is 
the integrating potential of the software that has allowed 
designers to contemplate more ambitious systems, 
encompassing a broader and more multidisciplinary 
scope, with the growth in utilization of software 
components being largely responsible for the high overall 
complexity of many system designs. However, in stark 
contrast with the rapid advancement of hardware 
technology, proper development of software technology 
has failed miserably to keep pace in all measures, 
including quality, productivity, cost and performance.  

When the requirement for and dependencies on 

computers increase, the possibility of a crisis from 
computer failures also increases. The impact of failures 
ranges from inconvenience (e.g., malfunctions of home 
appliances), economic damage (e.g., interruption of 
banking systems), to loss of life (e.g., failures of flight 
systems or medical software). Hence, for optimizing 
software use, it becomes necessary to address issues such 
as the reliability of the software product. Using 
tools/techniques/methods, software developers can 
design/propose several testing programs or automate 
testing tools to meet the client's technical requirements, 
schedule and budget. These techniques can make it easier 
to test and correct software, detect more bugs, save more 
time and reduce expenses significantly [10]. The benefits 
of fault-free software to software developers/testers 
include increased software quality, reduced testing costs, 
improved release time to market and improved testing 
productivity.  

There has been much effort expended in quantifying 
the reliability associated with a software system through 
the development of models which govern software 
failures based on various underlying assumptions [44]. 
These models are collectively called Software Reliability 
Models (SRMs). The main goal of these models is to fit a 
theoretical distribution to time-between-failure data, to 
estimate the time-to-failure based on software test data, to 
estimate software system reliability and to design a 
stopping rule to determine the appropriate time to stop 
testing and to release the software into the market place 
[4, 49]. However, the success of SRMs depends largely 
on selecting the model that best satisfies the stakeholder's 
need. 

Recent research in the field of modeling software 
reliability addresses the key issue of making the software 
release decision, i.e., deciding whether or not a software 
product can be transferred from its development phase to 
operational use [8, 17, 50]. It is often a trade-off between 
an early release to capture the benefits of an earlier 
market introduction, and the deferral of product release to 
enhance functionality or improve quality. Despite various 
attempts by researchers, this question still stands and 
there is no stopping rule which can be applied to all types 
of data sets. Furthermore, hardly any work has been done 
on the unification of SRMs that can provide a solution for 
stakeholders to model and predict future failure behavior 
of a software system in a better way. Software reliability 
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engineering produces a model of a software system based 
on its failure data to provide a measurement for software 
reliability. Several SRMs have been developed over the 
past three decades. As a general class of well developed 
stochastic process model in reliability engineering, Non 
Homogeneous Poisson Process (NHPP) models have 
been successfully used in studying hardware reliability 
problems. They are especially useful to describe failure 
processes which possess certain trends such as reliability 
growth and deterioration. Therefore, an application of 
NHPP models to software reliability analysis is easily 
implemented. 

The mathematical and statistical functions used in 
software reliability modeling employ several   
computational steps. The equations for the models 
themselves have parameters that are estimated using 
techniques like least squares fit or maximum likelihood 
estimation. Then the models, usually equations in some 
exponential form, must be executed. Verifying that the 
selected model is valid for the particular data set may 
require iteration and study of the model functions. From 
these results, predictions about the number of remaining 
faults or the time of next failure can be made, and 
confidence intervals for the predictions can be computed. 

A model is classified as an NHPP model if the main 
assumption is that the failure process is described by 
NHPP. Apart from their wide applicability in the testing 
domain, the main characteristic of this type of models is 
that there exists a mean value function which is defined 
as the expected number of failures up to a given time. In 
fact SRM is the mean value function of an NHPP. These 
models are flexible in nature as they can model both 
continuous and discrete stochastic processes. This paper 
presents a detailed study of existing SRMs based on Non-
Homogeneous Poisson Process (NHPP), which claim to 
improve software quality through effective detection of 
software faults. The definitions, assumptions and 
descriptions of models based on NHPP will be provided, 
with the aim of showing how a large number of existing 
models can be classified into different categories.  

II.   THE SPECTRUM OF SOFTWARE RELIABILITY MODELS 

The work on software reliability models started in the 
early 70's; the first model being presented in 1972. 
Various models proposed in the literature tend to give 
quite different predictions for the same set of failure data. 
It should be noted that this kind of behavior is not unique 
to software reliability modeling but is typical of models 
that are used to project values in time and not merely 
represent current values. Furthermore, a particular model 
may give reasonable predictions on one set of failure data 
and unreasonable predictions on another. Consequently, 
potential users may be confused and adrift with little 
guidance as to which models may be best for their 
applications. Models have been developed to measure, 
estimate and predict the reliability of computer software. 
Software reliability has received much attention because 
reliability has always had obvious effects on highly 
visible aspects of software development, testing prior to 
delivery and maintenance. Early efforts focused on 

testing, primarily because that is when the problems 
appeared.  

As technology has matured, root causes of incorrect 
and unreliable software have been identified earlier in the 
life-cycle. This has been due in part to the availability of 
results from measurement research and/or the application 
of reliability models. The use of a model also requires 
careful definition of what a failure is. Reliability models 
can be run separately on each failure type and severity 
level. Reliability models are mathematically intense, 
incorporating stochastic processes, probability and 
statistics in their calculations, and relying on maximum 
likelihood estimates, numerical methods (which may or 
may not converge) and confidence intervals to model 
their assumptions. 

Despite their shortcomings, such as excessive data 
requirements for even modest reliability claims, difficulty 
of taking relevant non-measurable factors into account 
etc. software reliability models offer a way to quantify 
uncertainty that helps in assessing the reliability of a 
software-based system, and may well provide further 
evidence in making reliability claims. According to the 
classification scheme proposed by Xie [44] considering 
the probabilistic assumption of SRM, and Kapur and 
Garg [17] considering the dynamic aspect of the models, 
the SRMs can be categorized into three categories viz. 
Markov, NHPP and Bayesian models. We briefly discuss 
the key features of Markov models and then study the 
NHPP and Bayesian models in detail. 

A.  Markov models 

The Markov process represents the probabilistic failure 
process in Markov models. The software is represented 
by countable states, each state corresponding to a failure 
(fault). The main characteristic of such model is that the 
software, at a given point of time, has count ably many 
states and such states may be the number of remaining 
faults. Given that the process is at a specific state, its 
future development does not depend on its past history. 
The transition between the states depends on the present 
state of the software and the transition probability. The 
failure intensity of the software is assumed to be a 
discontinuous function which depends on the current state 
of the software.  

Using this information, the Jelinski and Moranda (J-M) 
model [14] is modeled as a Markov process model. Next, 
Schick and Wolvertan [35] modified the J-M model by 
considering a time dependent failure intensity function 
and the time between failures to follow Weibull 
distribution. In addition, Shanthikumar [41] proposed a 
Markov model with time dependent transition 
probabilities. Then, Goel [6] modified the J-M model by 
introducing the concept of imperfect debugging. Later, 
Littlewood [25] proposed a model based on the semi-
markov process to describe modular structured software.  

• Jelinski - Moranda De-eutrophication Model - 
The J-M model is one of the earliest models for 
assessing software reliability by drawing inferences 
from failure data under some simple assumptions on 
the nature of the failure process. These assumptions 
are: 
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Assumptions Reality 
 
Faults are repaired immediately 
when discovered 

 

Faults are not repaired immediately. A work-around may be to leave out duplicates and to accumulate test time 
if a non-repaired fault prevents other faults from being found. Fault repair may introduce new faults. It might 
be the case that newly introduced faults are less likely to be discovered as retesting is not as thorough as the 
original testing. 

No new code is introduced in 
testing 

It is frequently the case that fixed or new code is added during the test period. This may change the shape of 
the fault detection curve. 

Faults are only reported by the 
testing group 

Faults may be reported by lots of groups due to parallel testing. If the test time of other groups is added, there is 
a problem of equivalency between an hour of the testing group and an hour of other groups (types of testing 
may differ). Restricting faults to those discovered by the testing group eliminates important data. 

Each unit of time is equivalent The appropriate measure of time must relate to the test effort. Examples are: calendar time, execution time and 
number of test cases. However, potential problems are: the test effort is asynchronous (calendar time), some 
tests create more stress on a per hour basis (execution time) and tests do not have the same probability of 
finding a fault. 

Tests represent operational 
profile 

It is hard to define the operational profile of a product, reflecting how it will be used in practice. It would 
consist of a specification of classes of input and the probability of their occurrence. In test environments, tests 
are continually being added to cover faults discovered in the past. 

Tests represent adoption 
characteristics 

The rates of adoption, describing the number and type of customers who adopt the product and the time when 
they adopt, are often unknown. 

Faults are independent When sections of code have not been as thoroughly tested as other code, tests may find a disproportionate share 
of faults. 

Software is tested in isolation The software under testing might be embedded in a system. Interfaces with for example hardware, can hamper 
the measurement process (test delay due to mechanical or hardware problems, re-testing with adjusted 
mechanical or hardware parts). 

Software is a black-box There is no accounting for partitioning, redundancy and fault-tolerant architectures. These characteristics are 
often found in safety-critical systems. 

The organization does not 
change 

When multiple releases of a product are developed, the organization might significantly change, for example 
the development process and the development staff. After the first release, a different department might even 
execute the development of the next release. It may also heavily influence the test approach by concentrating 
on the changes made for corrective maintenance and preventive maintenance (a new functionality). 

TABLE I. MODEL ASSUMPTIONS VS REALITY  

 
1. At the beginning of testing, there are n0 faults in the 
software code with n0 being an unknown but fixed 
number. 
2. Each fault is equally dangerous with respect to the 
probability of its instantaneously causing a failure. 
Furthermore, the hazard rate of each fault does not 
change over time, but remains constant at φ. 
3. The failures are not correlated, i.e. given n0 and φ 
the times between failures (∆t1, ∆t2, ...., ∆tn0) 
4. Whenever a failure has occurred, the fault that 
caused it is removed instantaneously and without 
introducing any new fault into the software. 
 
z�Δt|t���	 = 	ϕ[n� −M�t���� = 	ϕ[n� − �i − 1	� (1) 
 
The failure intensity function is the product of the 
inherent number of faults and the probability density 
of the time until activation of a single fault, na(t), i.e.: 
 
����	
���	 = n�[1 − exp�−ϕt	�                                     (2) 

 
Therefore, the mean value function is 
 
m�t	 = 	n�[1 − exp�−ϕt	�                                   (3) 

 
It can easily be seen from equations (2) and (3) that 
the failure intensity can also be expressed as 

 
����	
���	 = ϕ[n� −m�t	�                                              (4) 

 
According to equation (4), the failure intensity of the 

software at time t is proportional to the expected number 
of faults remaining in the software; again, the hazard rate 
of n individual faults is the constant of proportionality. 
Moreover, many software reliability growth models can 
be expressed in a form corresponding to equation (4). 
Their difference often lies in what is assumed about the 
per-fault hazard rate and how it is interpreted. 

B.  NHPP models 

As a general class of well developed stochastic process 
model in reliability engineering, NHPP models have been 
successfully used in studying hardware reliability 
problems. These models are also termed as fault counting 
models and can be either finite failure or infinite failure 
models, depending on how they are specified. In these 
models, the number of failures experienced so far follows 
the NHPP distribution. The NHPP model class is a close 
relative of the homogenous poisson model, the difference 
is that here the expected number of failures is allowed to 
vary with time. Hence, they are useful for both calendar 
time data as well as for the execution time data. 
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Model Group Example 
 
Continuous-time models 

 

- which use machine execution time (i.e. CPU time) or 
calendar time as a unit of fault detection/removal period 

- Exponential model developed by Goel and Okumoto (G-O) [7] 
- Delayed S-shaped model due to Yamada et al. [46] 

Discrete-time models  

- which use the number of test cases as a unit of fault 
detection period 

- Exponential model developed by Yamada [47] 
- Delayed S-shaped model developed by Kapur et al. [17] 

TABLE II. CONTINUOUS AND DISCRETE TIME MODELS 

 

C.  Basic assumptions of NHPP models 

Some of the basic assumptions (apart from some 
special ones for the specific models discussed) assumed 
for NHPP models are as follows: 

1. A Software system is subject to failure during 
execution caused by faults remaining in the system. 

2. The number of faults detected at any time is 
proportional to the remaining number of faults in the 
software. 

3. Failure rate of the software is equally affected by 
faults remaining in the software. 

4. On a failure, repair efforts starts and fault causing 
failure is removed with certainty. 

5. All faults are mutually independent from a failure 
detection point of view. 

6. The proportionality of failure occurrence/fault 
isolation/fault removal is constant. 

7. Corresponding to the fault detection/removal 
phenomenon at the manufacturer/user end, there exists an 
equivalent fault detection/fault removal at the 
user/manufacturer end. 

8. The fault detection/removal phenomenon is modeled 
by NHPP. 

However, in practice, some of these assumptions may 
not hold their ground. Table 1 shows how assumptions 
and notions fail in reality [12, 26, 42, 43]. 

D.  Comments on using  NHPP models 

Among the existing models, NHPP models have been 
widely applied by practitioners. The application of NHPP 
to reliability analysis can be found in elementary 
literature on reliability. The calculation of the expected 
number of failures/faults up to a certain point in time is 
very simple due to the existence of the mean value 
function. The estimates of the parameters are easily 
obtained by using either the method of maximum 
likelihood estimation (MLE) or least squares estimation 
(LSE).  

Other important advantages of NHPP models which 
should be highlighted are that NHPPs are closed under 
super position and time transformation. We can easily 
incorporate two or more existing NHPP models by 
summing up the corresponding mean value functions. 
The failure intensity of the superposed process is also just 
the sum of the failure intensity of the underlying 
processes. 

II.   RELEGATION OF NHPP MODELS 

For binomial type there are a fixed number of faults at 
start, while for poisson type,   the eventual number of 
faults could be discovered over an infinite amount of 
time. In poisson process models, there exists a 
relationship between: 

• The failure intensity function and the reliability 
function 

• The failure intensity function and the hazard rate 
• Mean value function and cumulative distribution 

function (CDF) of the time to failure of an 
individual fault 

If the mean value function m(t) is a linear function of 
time, then the process is the Homogeneous Poisson 
Process (HPP), however if it is a non-linear function of 
time, then the process is NHPP. 

The earlier SRGMs, known as Exponential SRGMs, 
were developed to fit an exponential reliability growth 
curve. Similar to the J-M model [14], several other 
models that are either identical to the Exponential model 
except for notational differences or are very close 
approximations were developed by Musa [28], 
Schneidewind [36], and Goel and Okumoto [7]. Also, 
some Exponential models were developed to cater for 
different situations during testing [17, 45]. As a result, we 
have a large number of SRGMs each being based on a 
particular set of assumptions that suit a specific testing 
environment. 

III.   MODEL GROUPS 

Generally, the SRGMs are classified into two groups. 
The first group contains models, which use machine 
execution time (i.e., CPU time) or calendar time as a unit 
of fault detection/removal period. Such models are called 
Continuous time models. The second group contains 
models which use the number of test cases as a unit of 
fault detection period. Such models are called discrete 
time models, since the unit of software fault detection 
period is countable. A large number of models have been 
developed in the first group while there are fewer in the 
second group. In this section, we explore a broad class of 
NHPP models based on Continuous and Discrete 
distributions. Table 2 categorizes commonly used NHPP 
models which show growth in reliability. 
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Notation Description 
 
a 

 
Initial fault-content of the software 

b Fault removal rate per remaining fault per test case 

a, b Constants, representing initial fault content and rate of 
fault removal per remaining 
for a software 

mf(t) Expected number of failures occurring in the time interval 
(0, t] 

TABLE III. NOTATIONS OF EXPONENTIAL &  DELAYED S-SHAPED 
CONTINUOUS-TIME MODELS 

A.  Continuous-time models 

A very large number of Continuous time models have 
been developed in the literature to monitor the fault 
removal process which measure and predict the reliability 
of the software systems. During the testing phase, it has 
been observed that the relationship between the testing 
time and the corresponding number of faults removed is 
either exponential or S-shaped or a mix of two [1].  

Let [N(t), t≥ 0] denote a discrete counting process 
representing the cumulative number of failures 
experienced (fault removed) up to time, t, i.e. N(t) is said 
to be an NHPP with intensity function λ(t), and it satisfies 
the following conditions: 

1. There are no failures experienced at time t = 0, 
i.e. N(t = 0) = 0 with probability 1. 

2. The process has independent increment, i.e., the 
number of failures experienced in (t, t + ∆t], i.e., 
N(t + ∆t) − N(t), is independent of the history. 
Note this assumption implies the Markov 
property that the N(t + ∆t) of the process 
depends only on the present state N(t) and is 
independent of its past state N(x), for x < t. 

3. The probability that a failure will occur during 
(t, t+∆t] is λ(t)∆t+0(∆t), i.e., Pr[N(t+∆t)− N(t) = 
1] = λ(t) + 0(∆t). Note that the function 0(∆t) is 
defined as: 

 

lim∆�→∞ ���∆�∆�  = 0                                           (5) 

 
In practice, it implies that the second or higher 
order effects of ∆t are negligible. 

4. The probability that more than one failure will 
occur during (t, t + ∆t) is 0(∆t), i.e. Pr[N(t +∆t) 
− N(t) > 1] = 0(∆t). 
 
Based on the above NHPP assumptions, it can be 
shown that the probability that N(t) is a given 
integer k, is expressed by: 

 

Pr[$�%	 = &� = ['��	�(
)! exp+−,�%	- , &	 ≥ 0  (6) 

 
The function m(t) is a very useful descriptive 
measure of failure behavior. The function λ(t) 
which is called the instantaneous failure 
intensity is defined as: 
 

0�%	 = 	 lim1�→� �23	[4
��51�	�4��	6��

7�              (7) 

 
given λ(t), the mean value function M(t) = 
∑(N(t)] satisfies 
 

,�%	 = 	8 0�9	:;�
�                                            (8) 

 
Inversely, knowing m(t), the failure intensity 
function λ(t) can be obtained as: 
 

0�%	 = 	 <'��	
<�                                                     (9) 

 
Generally, by using a different non-decreasing 
function m(t), we obtain different NHPP models. 
Define the number of remaining software 
failures at time t by N(t) and we have that: 
 
$=�%	 = 	$�∞	 − 	$�%	                                  (10) 
 
where, N( ) is the number of faults which can 
be detected by infinite time of testing. It follows 
from the standard theory of NHPP that 
distribution of $=�%	 is poisson with parameter 
[m( ) − m(t)], that is: 
 

Pr[$=�%	 = &�
= [m�∞	– 	m�t	�)

&! exp+−,�∞	 − ,�%	- 
	&	 ≥ 0                                                            (11) 
 
The reliability function at time t0 is exponential, 
given by: 
 
R�t|t�	 	= 	exp	+−m�t	 +	 t�	 	− 	m�t�	-      (12) 
 
The above conditional reliability function is 
called a software reliability function based upon 
an NHPP for a Continuous SRGM. 

• Continuous-time exponential models - G-O 
model [7] captures many software reliability issues 
without being overly complicated. It is similar to the 
J-M model except that failure rate decreases 
continuously in time. This is a parsimonious model 
whose parameters have a physical interpretation, and 
can be used to predict various quantitative measures 
for software performance assessment. 

According to basic assumption 8, m() follows a 
poisson distribution with expected value N. Therefore, 
N is the expected number of initial software faults as 
compared to the fixed but unknown actual number of 
initial software faults n0 in the J-M model. 

Basic assumption 2 states that the failure intensity at 
time t is given by: 
 
<'��	
<� = 	∅[$ − ,�%	�                                              (13) 
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As in the J-M model, the failure intensity is the product 
of the constant hazard rate of an individual fault and 
the number of expected faults remaining in the 
software. 
Following differential equation results from basic 
assumption 3: 
 
,�%	 = 	C�D − ,�%		                                             (14) 
 
Solving the first order linear differential equation (14) 
with the initial condition m(t = 0) = 0 gives the 
following mean value function for NHPP: 
 
m(t) = a(1 − exp(−bt))                                            (15) 
 
The mean value function given in equation (15) is 
exponential in nature and does not provide a good fit to 
the S-shaped growth curves that generally occur in 
software reliability. But the model is popular due to its 
simplicity. 
 
• Continuous-time delayed S-shaped model - The 
model proposed by Yamada et al. [46] is a descendant 
of the G-O model [7], the data requirements being 
similar and the assumptions being similar with one 
exception. Yamada et al. reasoned that due to learning 
and skill improvements of the programmers during 
the debugging phase of the development cycle, the 
error detection curve is often not exponential but 
rather S-shaped. 
 
<'E��	

<� = C+D −,F�%	}                                         (16) 

 
<'��	
<� = C+,F�%	 − ,�%	-                                    (17) 

 
Solving equation (16) and (17) with initial conditions 
mf (t = 0) = 0 and m(t = 0) = 0, we obtain the mean 
value function as: 
 
m(t) = a(1 − (1 + bt) exp (−bt))                               (18) 
 
alternatively the model can also be formulated a one-
stage process directly as follows: 
 
<'��	
<� = C�%	�D − ,�%	                                         (19)                             

 

Where b(t) = 
GH�
�5G� 

It is observed that b(t) → b as t → . This model was 
specifically developed to account for lag in the failure 
observation and its subsequent removal. This kind of 
derivation is peculiar to software reliability only. 

B.  Discrete-time models 

Yamada and Osaki [47] proposed two classes of 
Discrete Time Models. One class describes an error 
detection process in which the expected number of errors 
detected per test case is geometrically decreasing while 
the other class is proportional to the current error content. 

Kapur [17] proposed a discrete time model based on the 
concept that the testing phase has two different processes 
namely, fault isolation and fault removal. Kapur et al. 
[19] further proposed a discrete time model based on the 
assumption that the software consists of n different types 
of faults and each type of fault requires a different 
strategy to remove the cause of the failure due to that 
fault. Kapur et al. [18] also proposed a discrete time 
model with a discrete Rayleigh testing effort curve.  

In addition to basic assumptions 1, 3 and 8, Kapur et 
al. [17-19] assumes the following for Discrete time 
models: 

1. Each time a failure occurs, an immediate (delayed) 
effort takes place to decide the cause of the failure in 
order to remove it. 
2. The debugging process is perfect - To obtain a 

realistic estimate of the residual number of faults, and the 
reliability, it is necessary to amend the assumption of 
instantaneous and perfect debugging. A number of 
researchers have recognized this shortcoming, and have 
attempted to incorporate explicit debugging into some of 
the software reliability models. Dalal [4] assumes that the 
software debugging follows a constant debugging rate, 
and incorporates debugging into an exponential order 
statistics software reliability model. Schneidewind [40], 
[39], [38] incorporates a constant debugging rate into the 
Schneidewind software reliability model [37]. Gokhale et 
al. [8] incorporates explicit repair into SRGM using a 
numerical solution. Imperfect debugging also affects the 
residual number of faults, and in fact at times can be a 
major cause of field failures and customer dissatisfaction. 
Imperfect debugging has also been considered by other 
researchers [7], [9-10]. 

During the software testing phase, software systems 
are executed with a sample of test cases to detect / 
remove software faults which cause software failures. A 
discrete counting process [N(n), n ≥ 0] is said to be an 
NHPP with mean value function m(n), if it satisfies the 
following conditions. 

1. There are no failures experienced at n = 0, i.e. N(n = 
0) = 0. 
2. The counting process has independent increments, 
that is, for any collection of the numbers of test cases 
n1, n2, ..., nk, where (0 < n1,< n2 < ... < nk). 
The k random variable N(n1),N(n2),−N(n1), 
...,N(nk)−N(nk−1) are statistically independent. 
For any number of test cases ni and nj , where (0 ≤ ni ≤ 
nj), we have: 
 
PrI$JKLM − $�KN	 = OP =
	['JQRM�'�QS	�T

U! exp	+−,JKLM − ,�KN		-	, O ≥ 0      (20) 

 
The mean value function m(n) which is bounded above 
and is non-decreasing in n represents the expected 
accumulative number of faults detected by n test cases. 
Then the NHPP model with m(n) is formulated by: 
 

Pr[$�K	 = O� = 	 ['�Q	�T
U! exp	+−,�K	-	, O ≥ 0       (21) 
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Notation Description 
 
a 

 
Initial fault-content of the software 

b Fault removal rate per remaining fault per test case 

m(n) The expected mean number of faults removal by the nth 
test case 

mf(n) The expected mean number of faults caused by the nth test 
case 

TABLE IV.   NOTATIONS OF EXPONENTIAL &  DELAYED S-SHAPED 
DISCRETE-TIME MODELS 

As a useful software reliability growth index, the fault 
detection rate per fault (per test case) after the nth test 
case is given by: 
 

V�K	 = 	 ['�Q5�	�'�Q	�
['�W	�'�Q	� 	 , K ≥ 0                                 (22) 

 
where m( ) represents the expected number of faults 
to be eventually detected. 
Let $= (n) denote the number of faults remaining in the 
system after the nth test case is given as: 
 
$=�K	 = $�∞	 − $�K	                                            (23) 
 
The expected value of $=(n) is given by: 
 
ℎ�K	 = ,�∞	 − ,�K	                                            (24) 
 
which is equivalent to the variance of $=(n). 
Suppose that nd faults have been detected by n test 
cases. The conditional distribution of $=(n), given that 
N(n) = nd, is given by: 
 
Pr+$=�K	 = Y|$�K	 = K<- = 	 +Z�Q	-

[

\! exp	[−+Σ�K	-�      (25) 

 
which means a poisson distribution with mean ∑(n), 
independent of nd. 
 
Now, the probability of no faults detected between the 
nth and (n + h)th test cases, given that nd faults have 
been detected by r test case, is given by: 
 

^ �_Q = exp[−+,�K + ℎ	 − ,�K	-� , K, ℎ	 ≥ 0      (26) 

 
The above conditional reliability function, called the 
software reliability function, is based on an NHPP for 
a Discrete SRGM and is independent of nd. 
• Discrete-time exponential model - Based on the 
previously mentioned assumptions for Discrete 
models, Yamada and Osaki [47] showed that the 
expected cumulative number of faults removed 
between the nth and the (n+1)th test cases is 
proportional to the number of faults remaining after 
the execution of the nth test run, and satisfies the 
following difference equation: 
 
,�K + 1	 − ,�K	 = C�D − ,�K		                       (27)  

 
Solving the above difference equation using the 
probability generality function (PGF) with initial 
condition m(n = 0) = 0, one can obtain the closed form 
solution as: 
 
,�K	 = D�1 − �1 − C	Q	                                        (28) 
 
The above mean value function is exponential in 
nature and does not provide a good fit to the S-shaped 
growth curves that generally occur in software 
reliability. Next, we briefly discuss below an S-shaped 
model. 
 
• Discrete-time delayed S-shaped model - In the 
model developed by Kapur et al. [17], the testing 
phase is assumed to have two different processes 
namely, fault isolation and fault removal processes. 
Accordingly, we have two difference equations:  
 
,F�K + 1	 − ,F�K	 = C�D − ,F�K		                  (29) 
 
,�K + 1	 − ,�K	 = C�,F�K	 − ,�K		              (30) 
 

Solving the above difference equation (29) and (30) 
using PGF with initial conditions mf (n = 0) = 0 and 
m(n = 0) = 0 respectively, one can obtain the closed 
form solution as: 
 
,�K	 = D[1 − �1 + CK	�1 − C	Q�                         (31) 
 
Alternatively the model can also be formulated a one-
stage process directly as follows: 
 

,�K + 1	 − 	,�K	 = 	 G
HQ�Q5�	
�5GQ �D − ,�K		          (32) 

 

It is observed that, 
GHQ�Q5�	

�5GQ  → b and n→	∞. This 

model was specifically developed to account for lag in 
the failure observation and its subsequent removal. 

IV.   EXTENSIONS OF NHPP MODELS 

Some NHPP models depict exponential reliability 
growth whereas others show S-Shaped growth, depending 
on the nature of growth phenomenon during testing. They 
are broadly classified into two categories. If the growth is 
uniform, generally Exponential models have been used 
and for non-uniform growth, S-shaped models have been 
developed. As S-shapedness in reliability can be ascribed 
to different reasons, many models exist in the literature, 
at times leading to confusion in model selection from the 
models available. 

Initially, Goel and Okumoto [7] proposed the time 
dependent failure rate model based on NHPP. Later, Goel 
modified his original model [6] by introducing the test 
quality parameter. This is a continuous approximation to 
the original Exponential model and is described in terms 
of an NHPP process with a failure intensity function that 
is exponentially decaying. For all practical purposes, the 

1302 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



Model Type Example 
 
Flexible models 

 

- Models which can capture variability in either exponential and 
S-shaped curves 

- Model for module structured software 
- Two types of fault models 
- To model the failure phenomenon of software during operation 

Enhanced NHPP models  

- A model which incorporates explicitly the time-varying test-
coverage function in its analytical formulation, and provides for 
defective fault detection and test coverage during the testing and 
operational phases. 

- Log-logistic model 
 

Time-dependent transition probability models  

- Models which can be used for both calendar time data as well as 
for the execution time data 

- Basic execution model 
- Logarithmic model 

TABLE V. EXTENSIONS OF NHPP MODELS 

G-O and the other models are indistinguishable from the 
Exponential model. The Exponential model can be 
further generalized [13] to simplify the modeling process 
by having a single set of equations to represent a number 
of important models having the Exponential hazard rate 
function. The overall idea is that the failure occurrence 
rate is proportional to the number of faults remaining and 
the failure rate remains constant between failures while it 
is reduced by the same amount when a fault is removed.  

In other cases, where there was a need to fit the 
reliability growth by an S-shaped curve, some available 
hardware reliability models depicting a similar curve 
were used [31]. In the literature, S-shapedness has been 
attributed to different reasons. Ohba and Yamada [33], 
and Yamada et al. [46] ascribed to it the mutual 
dependency between software faults whereas latter 
SRGMs were developed taking various causes of the S-
shapedness into account, such as the models developed 
by Ohba [32], Yamada et al. [46], Kapur et al. [17], 
Kareer et al. [20], Bittanti et al. [3], Kapur and Garg [16], 
and Pham [34]. 

A.  Flexible modeling approach 

In addition to the models discussed above, other NHPP 
models termed as flexible growth models have been 
developed in the past which can capture variability in 
exponential and S-shaped curves. In this section, we 
present a brief overview of some of these models.  

Ohba proposed a Hyper-Exponential model [31] to 
describe the fault detection process in module structured 
software; Khoshgoftaar [22] proposed the K-stage 
Erhangian model; Xie and Zhao [45] proposed a simple 
model with graphical interpretation; Kapur and Garg [15] 
modified the G-O model by introducing the concept of 
imperfect debugging; Zeephongsekul [49] proposed a 
model describing use when a primary fault introduces a 
secondary fault in real life software development 
projects. Non-uniform testing is more popular and hence 
the S-shaped growth curve has been observed in many 
software development projects.  

Kareer et al. [20] and Yamada [48] proposed two types 
of fault models where each fault type is modeled by an S-
shaped curve; Kimura et al. [23] proposed an exponential 

S-shaped model which describes software with two types 
of faults. Later in the testing phase, Kapur [17] ascribed it 
to the presence of different types of faults in software 
systems.  

The above SRGMs have been proposed for the testing 
phase and it is generally assumed that the operational 
profile is similar to the testing phase, which may not be 
the case in practice. Very few attempts have been made to 
model the failure phenomenon of commercial software 
during its operational use. One of the reasons for this can 
be attributed to the inability of software engineering to 
measure the growth during the usage of software while it 
is in the market. This is unlike the testing phase where 
testing effort follows a definite pattern. Kenney [21] 
proposed a model to estimate the number of faults 
remaining in the software during its operational use. He 
has assumed a power function to represent the usage rate 
of the software, though he argues that the rate at which 
commercial software is used is dependent upon the 
number of its users. Kenney's model however fails to 
capture the growth in the number of users of the software. 

Also, it is important that the SRGM should explicitly 
take into account faults of different severity. Such a 
modeling approach was earlier adopted by Kapur et al. 
[19]. This approach can capture variability in the growth 
curves depending on the environment in which it is being 
used and at the same time, it has the capability to reduce 
either exponential or S-shaped growth curves. 

B. Enhanced NHPP models 

The Enhanced NHPP model developed by Gokhale 
and Trivedi [11] states that the rate at which faults are 
detected is proportional to the product of the rate at which 
potential fault sites are covered and the expected number 
of remaining faults. This model allows for time-
dependent failure occurrence rate per fault, i.e., the rate at 
which an individual fault will surface can vary with 
testing time. 

The NHPP models have constant, increasing or 
decreasing failure occurrence rates per fault. These 
models were inadequate to capture the failure processes 
underlying some of the failure data sets, which exhibit an 
increasing/decreasing nature of the failure occurrence rate 
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per fault. The Log-logistic model was proposed to capture 
the increasing/decreasing nature of the failure occurrence 
rate per fault captured by the hazard of the Log-logistic 
distribution [24]. The mean value function m(t) in this 
case is given by: 

 

,�%	 = 	D �`�	(
�5�`�	(                                                     (33) 

 
where λ and k are constants. 

C. Log-normal models 

In his proposed model, Mullen [27] showed that the 
distribution of failure rates for faults in software systems 
tends to be lognormal. Since the distribution of event 
rates tends to be lognormal and faults are just a random 
subset or sample of the events, the distribution of the 
failure rates of the faults also tends to be lognormal. 

The probability density function (pdf) of the lognormal 
distribution is given by: 

 

:a�O	 = �
Ub√de fOg

��hi�T	jk	H
HlH :O�O > 0	                 (34) 

 
where, x is the variate, µ is the mean value of the log 

of the variate, and n2 is the variance of the log of the 
variate. The mean value of the variate is exp(µ+n2/2). 
The median value of the variate is exp(µ). The mode of 
the variate is exp(µ − n2) and its variance is exp(2µ + 
n2)exp(n2 − 1). If x is distributed as L(µ, n2) then 1/x is 
distributed as L(−µ, n2). 

The cumulative distribution function (cdf) for the 
lognormal in the form of the tabulated integral of the 
standard normal density function is given as: 

 

8 :a�Y|o, n	U
� = 	 �

√de 8 fOg�pH
H :q = 	r��st�U	�u	

b

�hi�T	jk	
l

�W    (35) 

 
The ability of the lognormal to fit the empirical failure 

rate distributions is shown to be superior to that of the 
gamma distribution (the basis of the Gamma/EOS family 
of reliability growth models) [2] or a Power-law model. 

D. Time-dependent transition probability models 

Some NHPP models are capable of coping with the 
case of non-homogeneous testing and hence they are 
useful for both calendar time data as well as for execution 
time data [44]. These models are termed Time-dependent 
transition probability models. In these models, the failure 
intensity decreases exponentially with the expected 
number of failures experienced. Musa [28] and Musa and 
Okumoto [30] proposed the basic execution time model 
based on the concept of failure observation and the 
corresponding fault removal phenomenon and log 
poisson model respectively. 

• Basic execution models - This model is perhaps 
the most popular of the software reliability models 
[5]. The time between failures is expressed in terms of 
computational processing units (CPU) rather than the 
amount of calendar time that has elapsed. The model 

contains a feature for converting from calendar time 
to processing time or vice versa.  
The mean value function is such that the expected 
number of failures is proportional to the expected 
number of undetected faults at that time i.e., the 
cumulative number of failures follows a poisson 
process. 
 
,�%	 = 	C��1 − fOg�Gv�	                                      (36) 
 
where, b0, b1 > 0 
Musa himself [29] recommends the use of this model 
(as contrasted to Musa’s logarithmic poisson model) 
when the following conditions are met: 
a) Early reliability is predicted before program 
execution is initiated and failure data observed 
b) The program is substantially changing over time as 
the failure data are observed 
This model can also be used if one is interested in 
seeing the impact of a new software engineering 
technology on the development process. 
• Logarithmic poisson models - This model [30] is 
similar to the G-O model except that it attempts to 
consider that later fixes have a smaller effect on a 
program's reliability than earlier ones. The model is 
also called Musa-Okumoto logarithmic Poisson model 
because the expected number of failures over time is a 
logarithmic function. Thus, the model is an infinite 
failure model.  
The basic assumption of the model, beyond the 
assumption that the cumulative number of failures 
follows a poisson process, is that failure intensity 
decreases exponentially with the expected number of 
failures experienced: 
 
,�%	 = C�wK�C�% + 1	                                           (37) 

V.  CONCLUSIONS 

Reliability models are a powerful tool for predicting, 
controlling and assessing software reliability. As a 
general class of well developed stochastic process 
modeling in reliability engineering, NHPP models have 
been successfully used in studying hardware and software 
reliability problems. They are especially useful to 
describe failure processes which possess certain trends, 
such as reliability growth and deterioration, thus making 
the application of NHPP models to software reliability 
analysis easily implemented.  

In this paper, we first studied the initial model (J-M) 
based on Markov process to provide a measurement for 
software reliability. These models were later grouped into 
NHPP and Bayesian models. We described the modeling 
process for both Continuous and Discrete time models 
based on NHPP. These models can also be classified 
according to their asymptotic representation as either 
concave or S-shaped. We explored a few commonly used 
extensions of NHPP models. Then, we studied the 
flexible modeling approach in which the models can be 
customized as per the need. Finally, we discussed 
Enhanced NHPP models and models based on time-
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dependent transition probability to model both execution 
and calendar time. The existing NHHP SRGMs can help 
remove faults by accelerating the testing effort intensity, 
and the proper allocation and management of the testing 
resources. 

A software release decision is often a trade-off 
between early release to capture the benefits of an earlier 
market introduction, and the deferral of product release to 
enhance functionality, or improve quality. In practice, 
software manufacturers are challenged to find answers to 
questions such as how much testing is needed?; how to 
manage the testing resources effectively and efficiently?; 
when should a product be released?; what is the market 
window?; what are the expectations of customers and 
end-users? etc. The decision making process to release a 
product will normally involve different stakeholders who 
will not necessarily have the same preferences for the 
decision outcome. A decision is only considered 
successful if there is congruence between the expected 
reliability level and the actual outcome, which sets 
requirements for decision implementation. NHHP 
SRGMs can help software practitioners decide if the 
reliability of a software product has reached a given 
threshold and to decide when the software system is 
ready for release.  
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