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Abstract—This paper investigates the scheduling problem of 

minimizing makespan on parallel batch processing 

machines encountered in different manufacturing 

environments, such as the burn-in operation in the 

manufacture of semiconductors and the aging test operation 

in the manufacture of thin film transistor-liquid crystal 

displays (TFT-LCDs). Each job is characterized by a 

processing time, a release time and a job size. Each machine 

can process multiple jobs simultaneously in a batch, as long 

as the total size of all jobs in the batch does not exceed 

machine capacity. The processing time of a batch is 

represented by the longest time among the jobs in the batch. 

An approximation algorithm with worst-case ratio 2  is 

presented, where 0 can be made arbitrarily small. 

 

Index Terms—scheduling, parallel batch processing 

machines, makespan, release times, job sizes, worst-case 

analysis 

 

I.  INTRODUCTION 

Batch processing machines are encountered in many 

different environments, such as the diffusion and burn-in 

operations in semiconductor fabrication, heat treatment 

operations in metalworking, and aging test operations in 

the manufacture of thin film transistor-liquid crystal 

displays (TFT-LCDs). In these operations, the machines 

are usually treated as batch-processing machines that can 

accommodate several jobs as a batch for processing 

simultaneously, with the total size of the batch not 

exceeding machine capacity. Since different batching 

groups require different available times and processing 

times, the batching and scheduling of the jobs is highly 

non-trivial and can greatly affect the production rate. 

Many batch scheduling problems are NP-hard, i.e., for 

many of them there does not exist any polynomial time 

algorithm unless P = NP. Researchers therefore turn to 

studying approximation algorithms for these kinds of 

problems. The quality of an approximation algorithm is 

often measured by its worst-case ratio: the smaller the 

ratio is, the better the algorithm will be. We say that an 

algorithm has a worst-case ratio   (or is a  -

approximation algorithm) if for any input instance, it 

always returns in polynomial time of the input size a 

feasible solution with an objective value not greater than 

   times of the optimal value. Furthermore, a family of 

approximation algorithms is called a polynomial-time 

approximation scheme (PTAS) if, for any fixed 0 , 

at least one of the algorithms has a worst-case ratio no 

more than 1 . 

The scheduling problem considered in this paper is 

described as follows: There is a set },,2,1{ nJ   of 

n  jobs that can be processed on m  batch processing 

machines. Each job, j , is characterized by a triple of real 

numbers ),,( jjj spr , where jr  is the release time 

before which job j  cannot be scheduled, jp  is the 

processing time which specifies the minimum time 

needed to process job j  without interruption on any one 

of the machines, and ]1,0(js  is the size of job j . 

Each batch processing machine has a capacity 1 and can 

process a number of jobs simultaneously as a batch as 

long as the total size of jobs in the batch does not exceed 

1. The available time and processing time of the batch are 

represented by the latest release time and longest 

processing time among the jobs in the batch, respectively. 

Jobs processed in the same batch have the same 

completion time (the completion time of the batch in 

which they are contained), i.e., their common start time 

(the start time of the batch in which they are contained) 

plus the processing time of the batch.  Once the process 

begins, it cannot be interrupted until the process is 

completed. Our goal is to find a schedule for the jobs so 

that the makespan, defined as the completion time of the 

last job, is minimized. This model is expressed as 

max|1,,| CbsrP jj  . 

Recently, many research efforts have been devoted to 

scheduling problems concerned with batch processing 

machines. These problems have either identical or non-

identical job size characteristics.  

With regard to batch-processing machine scheduling 

problems with identical job size characteristics, Chandru, 

Lee, and Uzsoy [1] proposed a branch-and-bound method 

to minimize total completion time on a single batch-

processing machine and presented several heuristics for 

identical parallel batch-processing machines as well. Lee, 
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Uzsoy, and Martin-Vega [2] studied the single batch-

processing machine problem and provided dynamic 

programming-based algorithms to minimize the number 

of tardy jobs and the maximum tardiness under a number 

of assumptions. They also provided two heuristic 

algorithms for the problem of parallel batch-processing 

machines with makespan criterion. Sung and Choung [3] 

proposed a branch-and-bound method to minimize the 

makespan for a single batch-processing machine problem. 

Lee and Uzsoy [4] presented a number of efficient 

heuristics to solve the single batch-processing machine 

problem with unequal release times. In addition, Li et al. 

[5] extended the study of the single batch-processing 

machine problem by Lee and Uzsoy [4] to involve an 

examination of the identical parallel batch processing 

machines problem and proposed a polynomial time 

approximation scheme (PTAS). They also obtained the 

first PTAS for the problem of minimizing maximum 

lateness on identical parallel batch processing machines 

[6]. Studies in identical job sizes were also done by 

Dupont and Ghazvini [7], Qi and Tu [8] and Wang and 

Uzsoy [9]. 

With regard to batch-processing machine scheduling 

problems with non-identical job size characteristics, 

Uzsoy [10] derived complexity results for makespan and 

total completion time criteria and provided some 

heuristics and a branch and bound algorithm for the case 

of a single batch processing machine. Zhang et al. [11] 

examined the worst-case performance of the heuristics 

addressed by Uzsoy [10] for the single machine 

makespan problem. They also proposed an improved 

algorithm with a 3/2 worst-case ratio. Li et al. [12] 

presented a )2(  -approximation algorithm for the 

single machine problem with release times, where 

0 can be made arbitrarily small. Nong et al. [13] 

studied the problem of scheduling family jobs on a batch 

processing machine to minimize the makespan and 

presented an approximation algorithm with a 5/2 worst-

case ratio. Dupont and Dhaenens-Flipo [14], on the other 

hand, presented some dominance properties and proposed 

a branch-and-bound method to solve the single batch-

processing machine scheduling problem with non-

identical job sizes. Chung, Tai, and Pearn [15] considered 

the parallel batch-processing machines with unequal 

release times and non-identical job sizes, which is 

motivated by the aging test operation in the manufacture 

of TFT-LCD. For this problem, they proposed a mixed 

integer programming model and three heuristic 

algorithms to minimize makespan. Wang et al. [16] 

proposed the mixed integer programming model, genetic 

algorithm and simulated annealing algorithm to solve the 

scheduling problem of parallel batch-processing 

machines with unequal release times, non-identical job 

sizes, and different machine capacities. Studies which 

discussed the total completion time objective were done 

by Chang and Wang [17] and Ghazvini and Dupont [18].  

Recently, metaheuristics such as simulated annealing 

(SA), tabu search (TS), and genetic algorithm (GA) have 

been successfully employed in solving difficult 

combinatorial optimization problems. A number of 

researchers have applied metaheuristics to solve batch 

processing machine problems. Melouk et al. [21] 

provided a simulated annealing approach to minimize 

makespan for scheduling a batch processing machine 

with different job sizes. An effective hybrid genetic 

algorithm is developed by Husseinzadeh Kashan et al. 

[22], using a representation that could dominate a 

random-key based genetic algorithm and also the 

simulated annealing approach by Melouk et al. [21]. 

Kohetal. [23], proposed some heuristics and a random 

key based representation genetic algorithm for the 

problems of minimizing makespan and total weighted 

completion time on a batch processing machine within 

compatible job families. A hybrid genetic algorithm is 

proposed by Chou et al. [24], to minimize makespan for 

the dynamic case of the single batch processing machine 

problem. Chou [25] developed a joint approach for 

scheduling in the presence of job ready times, based on 

the genetic algorithm in which the dynamic programming 

algorithm is used to evaluate the fitness of the generated 

solutions. Parsa et al. [26] presented a branch and bound 

algorithm to minimize makespan on a single batch 

processing machine with non-identical job sizes. The 

scheduling problem with bi-criteria of makespan and 

maximum tardiness by considering arbitrary size for jobs 

is also addressed by Husseinzadeh Kashan et al. [27]. 

Some researchers have also focused on scheduling with 

non-identical job sizes on identical parallel batch 

processing machines (Koh et al. [28], Chang et al. [29] 

and Husseinzadeh Kashan et al. [30]). 

To the best of our knowledge, there has been no 

constant-ratio approximation algorithm for the general 

max|1,,| CbsrP jj   problem to date. In this paper we 

combine the techniques of [5, 6, 12] to solve this problem 

and present an approximation algorithm with worst-case 

ratio 2 , where 0 can be made arbitrarily small.  

We use BPP (Batch Processing Problem) to denote the 

general problem max|1,,| CbsrP jj   and use SBPP 

to denote the problem which is the same as BPP except 

that all jobs can be split in size. The outline of our main 

idea is as follows: we first get a PTAS for SBPP in 

Section 2, and then use it to get a )2(  -

approximation algorithm for BPP in Section 3.  

II.  A PTAS FOR PROBLEM SBPP 

In this section, we present a polynomial time 

approximation scheme for problem SBPP. We use opt  

to denote the optimal makespan of problem SBPP. 

Throughout this section, if a job has been split in size and 

some part of it has been scheduled, the remaining part of 

it will be treated as a single job.  

The special case of max|1,,| CbsrP jj   where all 

0jr  and all 
B

s j

1
 is already strongly NP-hard [2], 

where B  ( nB 1 ) is an integer. Lee et al. [2] 

observed that there exists an optimal schedule for this 
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special case in which all jobs are pre-assigned into 

batches according to the BLPT (full-batch-longest-

processing-time) rule: rank the jobs in non-increasing 

order of processing times, and then batch the jobs by 

successively placing the B  (or as many as possible) jobs 

with the longest processing times into the same batch. 

To solve the general max|1,,| CbsrP jj   problem, 

we need the following modified version of the FBLPT 

rule. 

 

MFBLPT Rule 

Index the jobs in non-increasing order of their 

processing times. Place the job with the longest 

processing time in a batch. If the batch has enough room 

for the next job in the job list, then put the job in the 

batch; otherwise, place part of the job in the batch such 

that the batch is completely full and put the remaining 

part of the job at the head of the remaining job list and 

continue. 

 

A job is called a split job if it is split in size. We call a 

job available if it has been released but not yet assigned 

into a batch. We call an available job suitable for a given 

batch if it can be added in that batch. We call a batch 

available if all the jobs in it have been released and it has 

not been scheduled. 

We will perform several transformations on the given 

input to form an approximate problem instance that has a 

simpler structure. Each transformation potentially 

increases the objective function value by optO )( , so 

we can perform a constant number of them while still 

staying within a )(1 O  factor of the original optimum. 

When we describe such a transformation, similar to [19], 

we shall say that it produces )(1 O  loss. To simplify 

notations we will assume throughout the paper that /1  

is integral. 

In the remainder of this section, we first simplify the 

problem by applying the rounding method. We proceed to 

define short and long jobs and then present a PTAS for 

the case where all jobs are short. Finally, we get a PTAS 

for problem SBPP. 

A.  Simplifying the Input 

We use the FBLPT rule for all the jobs and get a series 

of batches. Denote by d the total processing time of 

these batches. Let jnj rr  1max max . Then we get the 

following bounds for the optimal makespan of problem 

SBPP: 

Lemma 1.  

.},,max{ maxmaxmaxmax
m

d
propt

m

d
pr   

Proof. It is obvious that }.,max{ maxmax propt   By a 

job-interchange argument, we observe that for the special 

case of problem SBPP in which all 0jr , there exists 

an optimal schedule in which all jobs are pre-assigned 

into batches according to the MBLPT. Hence we get 

.
m

d
opt   

We use the MBLPT rule for all the jobs and get a 

number of batches. Starting from time 
maxr  we schedule 

these batches by List Scheduling algorithm [20]: 

whenever a machine is idle, choose any available batch to 

start processing on that machine. Suppose that batch A  

is the last batch to finish in the List Scheduling schedule. 

It must be the case that from time 
maxr  on, no machine is 

idle prior to the start of batch A , otherwise we would 

have scheduled A  earlier. So A  must start no later than 

m

d
r max . Then A  must finish no later than 

m

d
pr  maxmax . Hence we get 

m

d
propt  maxmax , which completes the proof of 

the lemma. 

Let }.,,max{ maxmax
m

d
pr   Round each 

release time down to the nearest multiple of  . After 

getting a schedule for the rounded problem, we can 

increase each batch’s start time by   in the output to 

obtain a feasible schedule for the original problem. As 

opt  , we get the following lemma. 

Lemma 2. With 1  loss, we can assume that all the 

release times in an instance are multiple of  , and the 

number of distinct release times is at most .1/1   

  One can see that all the jobs in J  can be scheduled in 

the time interval ],0[ maxmax
m

d
pr  . We partition 

this time interval into 







 /)( maxmax

m

d
prh  

disjoint intervals in the form ),[ 1ii RR , where 

)1(  iRi  for each hi 1  and 

m

d
prRh  maxmax1 . Since 

},,max{ maxmax
m

d
pr  , we have 1/3  h . 

Note that each of the first 1h  intervals has a length  , 

and the last one has a length at most  . By Lemma 2, we 

can assume that every job in J  is released at some iR  

( 1/11  i ).  

We say that a job (or a batch) is short if its processing 

time is smaller than  ; and long, otherwise. 
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We can assume that there are only a constant number 

of distinct processing times of long jobs, as the following 

lemma states. 

Lemma 3. With 31  loss, the number of distinct 

processing times of long jobs, k , can be bounded from 

above by .1/1/1 3    

Proof. By Lemma 1 and the definition of long jobs, we 

know that for each long job j ,  )/1( jp . 

We round each long job’s processing time down to the 

nearest integral multiple of  2
. This creates a rounded 

instance in which there are at most  

1/1/11)/()()/(])/1[( 322  
 distinct processing times of long jobs. Hence we get 

.1/1/1 3  k  Consider the optimal value of the 

rounded instance. Clearly, this value cannot be greater 

than opt , the optimal makespan of problem SBPP. As 

there are at most 
2/3   long batches in any optimal 

schedule in the rounded instance, by replacing the 

rounded values with the original ones we may increase 

the solution value by at most 

opt  33))(/3( 22
.  

B.  Short Jobs 

In this subsection we concentrate on the case in which 

all the jobs are short. Based on the ideas of [5, 12], we 

present a very simple and easy to analyze approximation 

scheme for this case. 

Denote by 
iJ   the subset of jobs in J  that are 

released at 
iR  ( 1/11  i ).  

 

Algorithm ScheduleShort 
Step 1. Use the MFBLPT rule for all the jobs in 

1/121 ,,, JJJ  , respectively. 

Step 2.  Use the List Scheduling algorithm [20] to 

schedule the obtained batches. 

 

Theorem 1. If all the jobs are short, then Algorithm 

ScheduleShort is a PTAS for problem SBPP.  

Proof. Let   be the schedule produced by Algorithm 

ScheduleShort. Suppose that 
ikiii BBB ,2,1, ,,,   are the 

batches in   whose jobs are from iJ  ( 1/11  i ) 

such that  1,2,1, ,,, ikiii BBB   are full batches and 

)()( 1,,  jiji BpBq , where )( , jiBp denotes the 

processing time of the longest job in jiB , , and )( , jiBq  

denotes the processing time of the shortest job in jiB ,  if  

jiB ,  is full and is set to zero otherwise. Then we have the 

following observation: 

.)())()(( 1,

1

,, 


i

k

j

jiji BpBqBp
i

          (1) 

We modify all the batches jiB ,  in   as follows: 

reduce the processing time of each job in jiB ,  to 

)( , jiBq , 
ikj 1 , 1/11  i . We call the 

obtained batches modified batches. Each original job is 

now modified into one new job if it has not been split, or 

two new jobs if it has been split. (Any original short job 

will be split at most once.) We call the new jobs modified 

jobs. Then we define two accessory problems: 

SBPP1: To schedule the modified batches to minimize 

makespan. 

SBPP2: To schedule the modified jobs to minimize 

makespan. 

Both these problems deal with the modified jobs. But 

while SBPP1 demands to leave the grouping of the 

modified jobs into batches as dictated by the MFBLPT 

rule, SBPP2 allows the re-opening of the batches and 

playing with the grouping into batches. Hence, SBPP2 

might obtain a better makespan. However, we are going 

to prove that this is not the case by showing 

that optoptopt  21 , where 1opt  and 2opt  

denote the optimum values to SBPP1 and SBPP2, 

respectively.  

Any optimal solution to SBPP1 is a feasible solution to 

SBPP2, therefore we get 21 optopt  . On the other 

hand, any optimal solution to SBPP2 can be transformed 

into a feasible solution to SBPP1 without increasing the 

objective value, which implies that 21 optopt  . To 

show this, let us fix an optimal solution, 
*

2 ,  to SBPP2. 

Suppose that A  is the batch which starts earliest among 

the batches in 
*

2  with the longest processing time. 

Suppose that A  is the batch which becomes available 

earliest among the modified batches with the longest 

processing time. We exchange the modified jobs which 

are in A   but not in A   and the modified jobs which are 

in A  but not in A   without increasing the completion 

time of any batch in 
*

2 . Consequently, A  appears in 

modified 
*

2 . Repeat this procedure until all the modified 

batches except those with processing time zero appear in 

modified 
*

2 . The modified jobs with processing time 

zero are fully negligible and thus can be batched in such a 

way that the modified batches with processing time zero 

appear in modified 
*

2 . We eventually achieve a feasible 

solution to SBPP1, whose makespan is not greater than 

that of 
*

2 . It follows that 21 optopt  . Therefore we 

get 21 optopt  . It is obvious that optopt 2 . Hence 

we get optoptopt  21 . 

Consider a schedule, denoted by   , which is obtained 

by using the List Scheduling algorithm for all the 

modified batches. Then we have 

.))()(()()(
1/1

1 1

,,maxmax 


 





i

k

j

jiji

i

BqBpCC  
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Inequality (1) implies that the second term on the right-

hand side of the above inequality is bounded from above 

by opt )()1/1( 2 . Hence we get: 

.)()()( 2

maxmax optCC        (2) 

On the other hand, we claim that 

.)21()( 2

max optC    Suppose that A  is the 

last batch to finish in   . Consider the latest idle time 

point 1t  prior to the start of batch A . It is easy to see 

that 1t  must be a release time, i.e., one of the ends of the 

first /1  intervals. Since all batches in    are short, any 

batch that starts before 1t  must finish earlier than 

1t . By the rule of List Scheduling algorithm, any 

batch which starts after 1t  cannot be released earlier than 

1t , otherwise it should be scheduled earlier. From 1t  

onwards, no machine is idle prior to the start of batch A . 

It follows that 

.)21(21)( 2

max optoptC    Thus the 

claim holds. The claim, together with inequality (2), 

implies that optC  )31()( 2

max  , 

completing the proof of the theorem.  

C. General Case 

We are now going to establish a PTAS to solve the 

general SBPP problem. 

By the job interchange argument, we get the following 

lemma which plays an important role in design and 

analysis of our algorithm. 

Lemma 4. There exists an optimal schedule with the 

following properties: 

(1) on any one machine, the batches started (but not 

necessarily finished) in the same interval are processed 

successively in the order of non-increasing batch 

processing times, and 

(2) from time 0 onwards, interval by interval, the 

batches started in the same interval are filled in the order 

of non-increasing batch processing times such that each 

batch contains as many as possible of the longest suitable 

jobs, and  

(3) any job can be split in size whenever necessary, 

therefore all the batches in the same interval are full 

batches except possibly the shortest one. 

The following lemma is useful: 

Lemma 5. With 
231    loss, we can assume that 

no short job is included in long batches. 

Proof. By Lemma 4, there exists an optimal schedule in 

which only the last long batch in each interval may 

contain short jobs. Therefore, we can stretch those 

intervals to make extra spaces with length   for the 

short jobs that are included in the long batches. Since 

there are 1/3   intervals, we may increase the 

solution value by at most   )3(  , which is no more 

than opt )3( 2 . This completes the proof of the 

lemma. 

Combining Lemma 5 and Theorem 1, we can 

determine the batch structure of short jobs at the 

beginning of the algorithm as follows: use the MFBLPT 

rule for all the short jobs in 
iJ  ( 1/11  i )  and 

get a series of short batches. 

The idea for dealing with long jobs is essentially based 

on enumeration. Recall that the number of distinct 

processing times of long jobs, k , has been bounded from 

above by 1/1/1 3   (Lemma 3). Without loss of 

generality, let 
kPPP ,,, 21   be the k  distinct 

processing times of long jobs. Suppose further that 

kPPP  21
. We now turn to the concepts of 

machine configurations and execution profiles. 

let us fix a schedule,  .We delete from   all the jobs 

and the short batches, but retain all the empty long 

batches, which are represented, respectively, by their 

processing times. For a particular machine, we define a 

machine configuration, with respect to  , as a vector 

),,,( 1/321 ccc  , where 
ic  consists of all the empty 

long batches started on that machine in interval 

),[ 1ii RR , 1/31  i . For the sake of clarity, we 

define 
ic   equivalently as a k -tuple ),,,( 21 ikii xxx  , 

where ijx   is the number of empty long batches started in 

interval ),[ 1ii RR on the machine with jP  as their 

processing times, 1/31  i , kj 1 . 

The processing time of a long batch is chosen from the 

1/1/1 3  k  values. When 
ic  contains l  

empty long batches (i.e., lx
k

j ij  1
), the number of 

different possibilities is not greater than 
lk . Since a 

feasible schedule has the property that on any one 

machine, at most /1  long batches are started in each of 

the intervals, the number of machine configurations to 

consider,  , can be roughly bounded from above by 
1/31/31/32 2)1(    kkkk l . 

This allows us to say that, for a given schedule, a 

particular machine has a certain configuration. We denote 

the configurations as ,,2,1  . Then for any schedule, 

we define an execution profile as a tuple 

),,,( 21 mmm  , where im  is the number of 

machines with configuration i for that schedule. 

Therefore, there are at most 
 )1(m  execution profiles 

to consider, a polynomial in m . 

We next present our algorithm. 

 

Algorithm ScheduleSplit 
Step 1. Get all possible execution profiles. 

Step 2.  For each of them, do the following: 
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(a) Assign a configuration for each machine according 

to the profile. If this is not possible, delete the profile. 

(b) On each machine in each interval, start the 

specified empty long batches as early as possible in the 

order of non-increasing processing times. If some batch 

has to be delayed to start in one of the next intervals, then 

delete the profile. 

(c) From time 0 onwards, interval by interval, fill the 

empty long batches started in the same interval in the 

order of non-increasing batch processing times such that 

each of them contains as many as possible of the longest 

suitable jobs (any job can be split in size whenever 

necessary). If some long job cannot be assigned into a 

batch and has to be left, then delete the profile. 

(d) Run Algorithm ScheduleShort in the spaces left by 

the long batches and get a feasible schedule. If a short 

batch crosses an interval, we stretch the end of the 

interval to make an extra space with length    for it 

such that it need no longer cross the interval. 

Step 3. From among the obtained feasible schedules, 

select the one with the smallest makespan. 

 

Theorem 2. Algorithm ScheduleSplit is a PTAS for the 

general SBPP problem.  

Proof. By Lemma 4, the long batches started in the same 

interval on the same machine can be arranged in the order 

of non-increasing batch processing times. Note that we 

can stretch the end of an interval to make an extra space 

with length    for a crossing short batch such that it 

need no longer cross the interval. Therefore given an 

execution profile, we can first start the empty long 

batches as early as possible while keeping them in the 

specified intervals, and then run Algorithm 

ScheduleShort in the spaces between them. 

Any optimal schedule is associated with one of the 
 )1(m  execution profiles. Given an execution profile 

that can lead to an optimal schedule, our way to deal with 

long jobs in Algorithm ScheduleSplit is optimal, while 

invoking Algorithm ScheduleShort will yield at most 
231    loss. Combining Lemmas 2, 3 and 5, by 

taking the smallest one among all obtained feasible 

schedules, Algorithm ScheduleSplit can be executed with 

at most 
2481    loss. 

It is easy to see that the time complexity of Algorithm 

ScheduleSplit is ))1(log( 1 mnnnO . 

III.  AN ALGORITHM  FOR PROBLEM BPP 

Now we start to construct an approximation algorithm 

for BPP. We say that a batch splits a job if it contains 

some part but not the last part of the job, and the batch is 

now called a splitting batch. 

 

Algorithm ScheduleWhole 

Step 1: Get a )
2

1(


 -approximation schedule 1  for 

SBPP by Algorithm ScheduleSplit. 

Step 2: Move out all split jobs from 1   and open a 

new batch for each of them. 

Step 3: Process the new batches successively at the end 

of 1  , on the same machines as the corresponding 

splitting batches in 1 ,  where 1   is the schedule that is 

obtained from 1  after removing from it all split jobs. 

 

Theorem 3. Algorithm ScheduleWhole is a )2(  -

approximation algorithm for problem BPP, where 

0 can be made arbitrarily small. 

Proof. Denote by   the schedule given by Algorithm 

ScheduleWhole. Let 
maxC  and 

*

maxC  be the makespans 

of   and an optimal schedule for BPP, respectively. 

Recall that opt denotes the optimal makespan of 

problem SBPP. It is obvious that 
*

maxCopt   and   is 

a feasible schedule for BPP. Note that   consists of two 

parts, one of which is 1   and another consists of the new 

batches opened for the split jobs. The completion time 

1C of the former part is no more than opt )
2

1(


. Let 

us consider the maximum total processing time 2C  on 

any machine of the latter part. From Algorithm 

ScheduleSplit, each batch splits at most one job and each 

job can be split at most once in 1 . Since the processing 

time of a split job cannot be greater than the 

corresponding splitting batch, it follows that 12 CC  . 

Thus we get optCCC  )
2

1(221max


 

                           .)2()2( *

maxCopt    

This completes the proof of the theorem. 

Note that in the algorithm the treatment of the split 

jobs is very trivial (each one in its own batch and all the 

new batches are processed at the end of 1  ). Is it 

possible to improve this and get a better worst-case ratio? 

In [12], the authors showed an example to explain why 

more involved techniques for batching the split jobs do 

not seem to yield a better worst-case ratio. One might 

expect that we can make a more educated choice of the 

new batches’ start times to improve the ratio. For 

example, each new batch starts immediately after the 

completion of the corresponding splitting batch. However, 

this is not the case, because the generic bad cases are the 

same. 

In Algorithm ScheduleWhole, Step 1 can be executed 

in ))1(log( 1 mnnnO  time, while Steps 2 and 

3 can be executed in )(nO  time, therefore this algorithm 

can be implemented in ))1(log( 1 mnnnO  

time. 
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