

Makespan Minimization on Parallel Batch

Processing Machines with Release Times and Job

Sizes

Shuguang Li
College of Computer Science and Technology, Shandong Institute of Business and Technology, Yantai, China

Email: sgliytu@hotmail.com

Abstract—This paper investigates the scheduling problem of

minimizing makespan on parallel batch processing

machines encountered in different manufacturing

environments, such as the burn-in operation in the

manufacture of semiconductors and the aging test operation

in the manufacture of thin film transistor-liquid crystal

displays (TFT-LCDs). Each job is characterized by a

processing time, a release time and a job size. Each machine

can process multiple jobs simultaneously in a batch, as long

as the total size of all jobs in the batch does not exceed

machine capacity. The processing time of a batch is

represented by the longest time among the jobs in the batch.

An approximation algorithm with worst-case ratio 2 is

presented, where 0 can be made arbitrarily small.

Index Terms—scheduling, parallel batch processing

machines, makespan, release times, job sizes, worst-case

analysis

I. INTRODUCTION

Batch processing machines are encountered in many

different environments, such as the diffusion and burn-in

operations in semiconductor fabrication, heat treatment

operations in metalworking, and aging test operations in

the manufacture of thin film transistor-liquid crystal

displays (TFT-LCDs). In these operations, the machines

are usually treated as batch-processing machines that can

accommodate several jobs as a batch for processing

simultaneously, with the total size of the batch not

exceeding machine capacity. Since different batching

groups require different available times and processing

times, the batching and scheduling of the jobs is highly

non-trivial and can greatly affect the production rate.

Many batch scheduling problems are NP-hard, i.e., for

many of them there does not exist any polynomial time

algorithm unless P = NP. Researchers therefore turn to

studying approximation algorithms for these kinds of

problems. The quality of an approximation algorithm is

often measured by its worst-case ratio: the smaller the

ratio is, the better the algorithm will be. We say that an

algorithm has a worst-case ratio  (or is a  -

approximation algorithm) if for any input instance, it

always returns in polynomial time of the input size a

feasible solution with an objective value not greater than

 times of the optimal value. Furthermore, a family of

approximation algorithms is called a polynomial-time

approximation scheme (PTAS) if, for any fixed 0 ,

at least one of the algorithms has a worst-case ratio no

more than 1 .

The scheduling problem considered in this paper is

described as follows: There is a set },,2,1{ nJ  of

n jobs that can be processed on m batch processing

machines. Each job, j , is characterized by a triple of real

numbers),,(jjj spr , where jr is the release time

before which job j cannot be scheduled, jp is the

processing time which specifies the minimum time

needed to process job j without interruption on any one

of the machines, and]1,0(js is the size of job j .

Each batch processing machine has a capacity 1 and can

process a number of jobs simultaneously as a batch as

long as the total size of jobs in the batch does not exceed

1. The available time and processing time of the batch are

represented by the latest release time and longest

processing time among the jobs in the batch, respectively.

Jobs processed in the same batch have the same

completion time (the completion time of the batch in

which they are contained), i.e., their common start time

(the start time of the batch in which they are contained)

plus the processing time of the batch. Once the process

begins, it cannot be interrupted until the process is

completed. Our goal is to find a schedule for the jobs so

that the makespan, defined as the completion time of the

last job, is minimized. This model is expressed as

max|1,,| CbsrP jj  .

Recently, many research efforts have been devoted to

scheduling problems concerned with batch processing

machines. These problems have either identical or non-

identical job size characteristics.

With regard to batch-processing machine scheduling

problems with identical job size characteristics, Chandru,

Lee, and Uzsoy [1] proposed a branch-and-bound method

to minimize total completion time on a single batch-

processing machine and presented several heuristics for

identical parallel batch-processing machines as well. Lee,

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1203

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1203-1210

Uzsoy, and Martin-Vega [2] studied the single batch-

processing machine problem and provided dynamic

programming-based algorithms to minimize the number

of tardy jobs and the maximum tardiness under a number

of assumptions. They also provided two heuristic

algorithms for the problem of parallel batch-processing

machines with makespan criterion. Sung and Choung [3]

proposed a branch-and-bound method to minimize the

makespan for a single batch-processing machine problem.

Lee and Uzsoy [4] presented a number of efficient

heuristics to solve the single batch-processing machine

problem with unequal release times. In addition, Li et al.

[5] extended the study of the single batch-processing

machine problem by Lee and Uzsoy [4] to involve an

examination of the identical parallel batch processing

machines problem and proposed a polynomial time

approximation scheme (PTAS). They also obtained the

first PTAS for the problem of minimizing maximum

lateness on identical parallel batch processing machines

[6]. Studies in identical job sizes were also done by

Dupont and Ghazvini [7], Qi and Tu [8] and Wang and

Uzsoy [9].

With regard to batch-processing machine scheduling

problems with non-identical job size characteristics,

Uzsoy [10] derived complexity results for makespan and

total completion time criteria and provided some

heuristics and a branch and bound algorithm for the case

of a single batch processing machine. Zhang et al. [11]

examined the worst-case performance of the heuristics

addressed by Uzsoy [10] for the single machine

makespan problem. They also proposed an improved

algorithm with a 3/2 worst-case ratio. Li et al. [12]

presented a)2( -approximation algorithm for the

single machine problem with release times, where

0 can be made arbitrarily small. Nong et al. [13]

studied the problem of scheduling family jobs on a batch

processing machine to minimize the makespan and

presented an approximation algorithm with a 5/2 worst-

case ratio. Dupont and Dhaenens-Flipo [14], on the other

hand, presented some dominance properties and proposed

a branch-and-bound method to solve the single batch-

processing machine scheduling problem with non-

identical job sizes. Chung, Tai, and Pearn [15] considered

the parallel batch-processing machines with unequal

release times and non-identical job sizes, which is

motivated by the aging test operation in the manufacture

of TFT-LCD. For this problem, they proposed a mixed

integer programming model and three heuristic

algorithms to minimize makespan. Wang et al. [16]

proposed the mixed integer programming model, genetic

algorithm and simulated annealing algorithm to solve the

scheduling problem of parallel batch-processing

machines with unequal release times, non-identical job

sizes, and different machine capacities. Studies which

discussed the total completion time objective were done

by Chang and Wang [17] and Ghazvini and Dupont [18].

Recently, metaheuristics such as simulated annealing

(SA), tabu search (TS), and genetic algorithm (GA) have

been successfully employed in solving difficult

combinatorial optimization problems. A number of

researchers have applied metaheuristics to solve batch

processing machine problems. Melouk et al. [21]

provided a simulated annealing approach to minimize

makespan for scheduling a batch processing machine

with different job sizes. An effective hybrid genetic

algorithm is developed by Husseinzadeh Kashan et al.

[22], using a representation that could dominate a

random-key based genetic algorithm and also the

simulated annealing approach by Melouk et al. [21].

Kohetal. [23], proposed some heuristics and a random

key based representation genetic algorithm for the

problems of minimizing makespan and total weighted

completion time on a batch processing machine within

compatible job families. A hybrid genetic algorithm is

proposed by Chou et al. [24], to minimize makespan for

the dynamic case of the single batch processing machine

problem. Chou [25] developed a joint approach for

scheduling in the presence of job ready times, based on

the genetic algorithm in which the dynamic programming

algorithm is used to evaluate the fitness of the generated

solutions. Parsa et al. [26] presented a branch and bound

algorithm to minimize makespan on a single batch

processing machine with non-identical job sizes. The

scheduling problem with bi-criteria of makespan and

maximum tardiness by considering arbitrary size for jobs

is also addressed by Husseinzadeh Kashan et al. [27].

Some researchers have also focused on scheduling with

non-identical job sizes on identical parallel batch

processing machines (Koh et al. [28], Chang et al. [29]

and Husseinzadeh Kashan et al. [30]).

To the best of our knowledge, there has been no

constant-ratio approximation algorithm for the general

max|1,,| CbsrP jj  problem to date. In this paper we

combine the techniques of [5, 6, 12] to solve this problem

and present an approximation algorithm with worst-case

ratio 2 , where 0 can be made arbitrarily small.

We use BPP (Batch Processing Problem) to denote the

general problem max|1,,| CbsrP jj  and use SBPP

to denote the problem which is the same as BPP except

that all jobs can be split in size. The outline of our main

idea is as follows: we first get a PTAS for SBPP in

Section 2, and then use it to get a)2( -

approximation algorithm for BPP in Section 3.

II. A PTAS FOR PROBLEM SBPP

In this section, we present a polynomial time

approximation scheme for problem SBPP. We use opt

to denote the optimal makespan of problem SBPP.

Throughout this section, if a job has been split in size and

some part of it has been scheduled, the remaining part of

it will be treated as a single job.

The special case of max|1,,| CbsrP jj  where all

0jr and all
B

s j

1
 is already strongly NP-hard [2],

where B (nB 1) is an integer. Lee et al. [2]

observed that there exists an optimal schedule for this

1204 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

special case in which all jobs are pre-assigned into

batches according to the BLPT (full-batch-longest-

processing-time) rule: rank the jobs in non-increasing

order of processing times, and then batch the jobs by

successively placing the B (or as many as possible) jobs

with the longest processing times into the same batch.

To solve the general max|1,,| CbsrP jj  problem,

we need the following modified version of the FBLPT

rule.

MFBLPT Rule

Index the jobs in non-increasing order of their

processing times. Place the job with the longest

processing time in a batch. If the batch has enough room

for the next job in the job list, then put the job in the

batch; otherwise, place part of the job in the batch such

that the batch is completely full and put the remaining

part of the job at the head of the remaining job list and

continue.

A job is called a split job if it is split in size. We call a

job available if it has been released but not yet assigned

into a batch. We call an available job suitable for a given

batch if it can be added in that batch. We call a batch

available if all the jobs in it have been released and it has

not been scheduled.

We will perform several transformations on the given

input to form an approximate problem instance that has a

simpler structure. Each transformation potentially

increases the objective function value by optO )( , so

we can perform a constant number of them while still

staying within a)(1 O factor of the original optimum.

When we describe such a transformation, similar to [19],

we shall say that it produces)(1 O loss. To simplify

notations we will assume throughout the paper that /1

is integral.

In the remainder of this section, we first simplify the

problem by applying the rounding method. We proceed to

define short and long jobs and then present a PTAS for

the case where all jobs are short. Finally, we get a PTAS

for problem SBPP.

A. Simplifying the Input

We use the FBLPT rule for all the jobs and get a series

of batches. Denote by d the total processing time of

these batches. Let jnj rr  1max max . Then we get the

following bounds for the optimal makespan of problem

SBPP:

Lemma 1.

.},,max{ maxmaxmaxmax
m

d
propt

m

d
pr 

Proof. It is obvious that }.,max{ maxmax propt  By a

job-interchange argument, we observe that for the special

case of problem SBPP in which all 0jr , there exists

an optimal schedule in which all jobs are pre-assigned

into batches according to the MBLPT. Hence we get

.
m

d
opt 

We use the MBLPT rule for all the jobs and get a

number of batches. Starting from time
maxr we schedule

these batches by List Scheduling algorithm [20]:

whenever a machine is idle, choose any available batch to

start processing on that machine. Suppose that batch A

is the last batch to finish in the List Scheduling schedule.

It must be the case that from time
maxr on, no machine is

idle prior to the start of batch A , otherwise we would

have scheduled A earlier. So A must start no later than

m

d
r max . Then A must finish no later than

m

d
pr  maxmax . Hence we get

m

d
propt  maxmax , which completes the proof of

the lemma.

Let }.,,max{ maxmax
m

d
pr  Round each

release time down to the nearest multiple of  . After

getting a schedule for the rounded problem, we can

increase each batch’s start time by  in the output to

obtain a feasible schedule for the original problem. As

opt  , we get the following lemma.

Lemma 2. With 1 loss, we can assume that all the

release times in an instance are multiple of  , and the

number of distinct release times is at most .1/1 

 One can see that all the jobs in J can be scheduled in

the time interval],0[maxmax
m

d
pr  . We partition

this time interval into 







 /)(maxmax

m

d
prh

disjoint intervals in the form),[1ii RR , where

)1( iRi for each hi 1 and

m

d
prRh  maxmax1 . Since

},,max{ maxmax
m

d
pr  , we have 1/3  h .

Note that each of the first 1h intervals has a length  ,

and the last one has a length at most  . By Lemma 2, we

can assume that every job in J is released at some iR

(1/11  i).

We say that a job (or a batch) is short if its processing

time is smaller than  ; and long, otherwise.

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1205

© 2012 ACADEMY PUBLISHER

We can assume that there are only a constant number

of distinct processing times of long jobs, as the following

lemma states.

Lemma 3. With 31 loss, the number of distinct

processing times of long jobs, k , can be bounded from

above by .1/1/1 3  

Proof. By Lemma 1 and the definition of long jobs, we

know that for each long job j , )/1( jp .

We round each long job’s processing time down to the

nearest integral multiple of  2
. This creates a rounded

instance in which there are at most

1/1/11)/()()/(])/1[(322  
 distinct processing times of long jobs. Hence we get

.1/1/1 3  k Consider the optimal value of the

rounded instance. Clearly, this value cannot be greater

than opt , the optimal makespan of problem SBPP. As

there are at most
2/3  long batches in any optimal

schedule in the rounded instance, by replacing the

rounded values with the original ones we may increase

the solution value by at most

opt  33))(/3(22
.

B. Short Jobs

In this subsection we concentrate on the case in which

all the jobs are short. Based on the ideas of [5, 12], we

present a very simple and easy to analyze approximation

scheme for this case.

Denote by
iJ the subset of jobs in J that are

released at
iR (1/11  i).

Algorithm ScheduleShort
Step 1. Use the MFBLPT rule for all the jobs in

1/121 ,,, JJJ  , respectively.

Step 2. Use the List Scheduling algorithm [20] to

schedule the obtained batches.

Theorem 1. If all the jobs are short, then Algorithm

ScheduleShort is a PTAS for problem SBPP.

Proof. Let  be the schedule produced by Algorithm

ScheduleShort. Suppose that
ikiii BBB ,2,1, ,,,  are the

batches in  whose jobs are from iJ (1/11  i)

such that 1,2,1, ,,, ikiii BBB  are full batches and

)()(1,,  jiji BpBq , where)(, jiBp denotes the

processing time of the longest job in jiB , , and)(, jiBq

denotes the processing time of the shortest job in jiB , if

jiB , is full and is set to zero otherwise. Then we have the

following observation:

.)())()((1,

1

,, 


i

k

j

jiji BpBqBp
i

 (1)

We modify all the batches jiB , in  as follows:

reduce the processing time of each job in jiB , to

)(, jiBq ,
ikj 1 , 1/11  i . We call the

obtained batches modified batches. Each original job is

now modified into one new job if it has not been split, or

two new jobs if it has been split. (Any original short job

will be split at most once.) We call the new jobs modified

jobs. Then we define two accessory problems:

SBPP1: To schedule the modified batches to minimize

makespan.

SBPP2: To schedule the modified jobs to minimize

makespan.

Both these problems deal with the modified jobs. But

while SBPP1 demands to leave the grouping of the

modified jobs into batches as dictated by the MFBLPT

rule, SBPP2 allows the re-opening of the batches and

playing with the grouping into batches. Hence, SBPP2

might obtain a better makespan. However, we are going

to prove that this is not the case by showing

that optoptopt  21 , where 1opt and 2opt

denote the optimum values to SBPP1 and SBPP2,

respectively.

Any optimal solution to SBPP1 is a feasible solution to

SBPP2, therefore we get 21 optopt  . On the other

hand, any optimal solution to SBPP2 can be transformed

into a feasible solution to SBPP1 without increasing the

objective value, which implies that 21 optopt  . To

show this, let us fix an optimal solution,
*

2 , to SBPP2.

Suppose that A is the batch which starts earliest among

the batches in
*

2 with the longest processing time.

Suppose that A is the batch which becomes available

earliest among the modified batches with the longest

processing time. We exchange the modified jobs which

are in A but not in A and the modified jobs which are

in A but not in A without increasing the completion

time of any batch in
*

2 . Consequently, A appears in

modified
*

2 . Repeat this procedure until all the modified

batches except those with processing time zero appear in

modified
*

2 . The modified jobs with processing time

zero are fully negligible and thus can be batched in such a

way that the modified batches with processing time zero

appear in modified
*

2 . We eventually achieve a feasible

solution to SBPP1, whose makespan is not greater than

that of
*

2 . It follows that 21 optopt  . Therefore we

get 21 optopt  . It is obvious that optopt 2 . Hence

we get optoptopt  21 .

Consider a schedule, denoted by   , which is obtained

by using the List Scheduling algorithm for all the

modified batches. Then we have

.))()(()()(
1/1

1 1

,,maxmax 


 





i

k

j

jiji

i

BqBpCC

1206 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Inequality (1) implies that the second term on the right-

hand side of the above inequality is bounded from above

by opt)()1/1(2 . Hence we get:

.)()()(2

maxmax optCC   (2)

On the other hand, we claim that

.)21()(2

max optC   Suppose that A is the

last batch to finish in   . Consider the latest idle time

point 1t prior to the start of batch A . It is easy to see

that 1t must be a release time, i.e., one of the ends of the

first /1 intervals. Since all batches in   are short, any

batch that starts before 1t must finish earlier than

1t . By the rule of List Scheduling algorithm, any

batch which starts after 1t cannot be released earlier than

1t , otherwise it should be scheduled earlier. From 1t

onwards, no machine is idle prior to the start of batch A .

It follows that

.)21(21)(2

max optoptC   Thus the

claim holds. The claim, together with inequality (2),

implies that optC )31()(2

max  ,

completing the proof of the theorem.

C. General Case

We are now going to establish a PTAS to solve the

general SBPP problem.

By the job interchange argument, we get the following

lemma which plays an important role in design and

analysis of our algorithm.

Lemma 4. There exists an optimal schedule with the

following properties:

(1) on any one machine, the batches started (but not

necessarily finished) in the same interval are processed

successively in the order of non-increasing batch

processing times, and

(2) from time 0 onwards, interval by interval, the

batches started in the same interval are filled in the order

of non-increasing batch processing times such that each

batch contains as many as possible of the longest suitable

jobs, and

(3) any job can be split in size whenever necessary,

therefore all the batches in the same interval are full

batches except possibly the shortest one.

The following lemma is useful:

Lemma 5. With
231   loss, we can assume that

no short job is included in long batches.

Proof. By Lemma 4, there exists an optimal schedule in

which only the last long batch in each interval may

contain short jobs. Therefore, we can stretch those

intervals to make extra spaces with length  for the

short jobs that are included in the long batches. Since

there are 1/3  intervals, we may increase the

solution value by at most )3( , which is no more

than opt)3(2 . This completes the proof of the

lemma.

Combining Lemma 5 and Theorem 1, we can

determine the batch structure of short jobs at the

beginning of the algorithm as follows: use the MFBLPT

rule for all the short jobs in
iJ (1/11  i) and

get a series of short batches.

The idea for dealing with long jobs is essentially based

on enumeration. Recall that the number of distinct

processing times of long jobs, k , has been bounded from

above by 1/1/1 3   (Lemma 3). Without loss of

generality, let
kPPP ,,, 21  be the k distinct

processing times of long jobs. Suppose further that

kPPP  21
. We now turn to the concepts of

machine configurations and execution profiles.

let us fix a schedule,  .We delete from  all the jobs

and the short batches, but retain all the empty long

batches, which are represented, respectively, by their

processing times. For a particular machine, we define a

machine configuration, with respect to  , as a vector

),,,(1/321 ccc  , where
ic consists of all the empty

long batches started on that machine in interval

),[1ii RR , 1/31  i . For the sake of clarity, we

define
ic equivalently as a k -tuple),,,(21 ikii xxx  ,

where ijx is the number of empty long batches started in

interval),[1ii RR on the machine with jP as their

processing times, 1/31  i , kj 1 .

The processing time of a long batch is chosen from the

1/1/1 3  k values. When
ic contains l

empty long batches (i.e., lx
k

j ij  1
), the number of

different possibilities is not greater than
lk . Since a

feasible schedule has the property that on any one

machine, at most /1 long batches are started in each of

the intervals, the number of machine configurations to

consider,  , can be roughly bounded from above by
1/31/31/32 2)1(   kkkk l .

This allows us to say that, for a given schedule, a

particular machine has a certain configuration. We denote

the configurations as ,,2,1  . Then for any schedule,

we define an execution profile as a tuple

),,,(21 mmm  , where im is the number of

machines with configuration i for that schedule.

Therefore, there are at most
)1(m execution profiles

to consider, a polynomial in m .

We next present our algorithm.

Algorithm ScheduleSplit
Step 1. Get all possible execution profiles.

Step 2. For each of them, do the following:

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1207

© 2012 ACADEMY PUBLISHER

(a) Assign a configuration for each machine according

to the profile. If this is not possible, delete the profile.

(b) On each machine in each interval, start the

specified empty long batches as early as possible in the

order of non-increasing processing times. If some batch

has to be delayed to start in one of the next intervals, then

delete the profile.

(c) From time 0 onwards, interval by interval, fill the

empty long batches started in the same interval in the

order of non-increasing batch processing times such that

each of them contains as many as possible of the longest

suitable jobs (any job can be split in size whenever

necessary). If some long job cannot be assigned into a

batch and has to be left, then delete the profile.

(d) Run Algorithm ScheduleShort in the spaces left by

the long batches and get a feasible schedule. If a short

batch crosses an interval, we stretch the end of the

interval to make an extra space with length  for it

such that it need no longer cross the interval.

Step 3. From among the obtained feasible schedules,

select the one with the smallest makespan.

Theorem 2. Algorithm ScheduleSplit is a PTAS for the

general SBPP problem.

Proof. By Lemma 4, the long batches started in the same

interval on the same machine can be arranged in the order

of non-increasing batch processing times. Note that we

can stretch the end of an interval to make an extra space

with length  for a crossing short batch such that it

need no longer cross the interval. Therefore given an

execution profile, we can first start the empty long

batches as early as possible while keeping them in the

specified intervals, and then run Algorithm

ScheduleShort in the spaces between them.

Any optimal schedule is associated with one of the
)1(m execution profiles. Given an execution profile

that can lead to an optimal schedule, our way to deal with

long jobs in Algorithm ScheduleSplit is optimal, while

invoking Algorithm ScheduleShort will yield at most
231   loss. Combining Lemmas 2, 3 and 5, by

taking the smallest one among all obtained feasible

schedules, Algorithm ScheduleSplit can be executed with

at most
2481   loss.

It is easy to see that the time complexity of Algorithm

ScheduleSplit is))1(log(1 mnnnO .

III. AN ALGORITHM FOR PROBLEM BPP

Now we start to construct an approximation algorithm

for BPP. We say that a batch splits a job if it contains

some part but not the last part of the job, and the batch is

now called a splitting batch.

Algorithm ScheduleWhole

Step 1: Get a)
2

1(


 -approximation schedule 1 for

SBPP by Algorithm ScheduleSplit.

Step 2: Move out all split jobs from 1 and open a

new batch for each of them.

Step 3: Process the new batches successively at the end

of 1  , on the same machines as the corresponding

splitting batches in 1 , where 1  is the schedule that is

obtained from 1 after removing from it all split jobs.

Theorem 3. Algorithm ScheduleWhole is a)2( -

approximation algorithm for problem BPP, where

0 can be made arbitrarily small.

Proof. Denote by  the schedule given by Algorithm

ScheduleWhole. Let
maxC and

*

maxC be the makespans

of  and an optimal schedule for BPP, respectively.

Recall that opt denotes the optimal makespan of

problem SBPP. It is obvious that
*

maxCopt  and  is

a feasible schedule for BPP. Note that  consists of two

parts, one of which is 1  and another consists of the new

batches opened for the split jobs. The completion time

1C of the former part is no more than opt)
2

1(


. Let

us consider the maximum total processing time 2C on

any machine of the latter part. From Algorithm

ScheduleSplit, each batch splits at most one job and each

job can be split at most once in 1 . Since the processing

time of a split job cannot be greater than the

corresponding splitting batch, it follows that 12 CC  .

Thus we get optCCC )
2

1(221max



 .)2()2(*

maxCopt  

This completes the proof of the theorem.

Note that in the algorithm the treatment of the split

jobs is very trivial (each one in its own batch and all the

new batches are processed at the end of 1 ). Is it

possible to improve this and get a better worst-case ratio?

In [12], the authors showed an example to explain why

more involved techniques for batching the split jobs do

not seem to yield a better worst-case ratio. One might

expect that we can make a more educated choice of the

new batches’ start times to improve the ratio. For

example, each new batch starts immediately after the

completion of the corresponding splitting batch. However,

this is not the case, because the generic bad cases are the

same.

In Algorithm ScheduleWhole, Step 1 can be executed

in))1(log(1 mnnnO time, while Steps 2 and

3 can be executed in)(nO time, therefore this algorithm

can be implemented in))1(log(1 mnnnO

time.

ACKNOWLEDGMENT

1208 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

This work is supported by the National Natural

Science Foundation of China (60970105), National

Natural Science Foundation of China for Distinguished

Young Scholar (11161035), Special Fund of Shandong

Provincial Information Industry Department (No.

2008X00039), and Shandong Provincial Soft Science

Research Program (2011RKGB5040).

REFERENCES

[1] Chandru, V., Lee, C.-Y., & Uzsoy, R. (1993). Minimizing

total completion time on batch processing machines.

International Journal of Production Research, 31, 2097–

2121.

[2] Lee, C.-Y., Uzsoy, R., & Martin-Vega, L. A. (1992).

Efficient algorithms for scheduling semiconductor burn-in

operations. Operation Research, 40, 764–775.

[3] Sung, C. S., & Choung, Y. I. (2000). Minimizing

makespan on a single burn-in oven in semiconductor

manufacturing. European Journal of Operational Research,

120, 559–574.

[4] Lee, C.-Y., & Uzsoy, R. (1999). Minimizing makespan on

a single batch processing machine with dynamic job

arrivals. International Journal of Production Research, 37,

219–236.

[5] Shuguang Li, Guojun Li, Shaoqiang Zhang. (2005).

Minimizing makespan with release times on identical

parallel batching machines. Discrete Applied Mathematics,

148, 127–134.

[6] Shuguang Li, Guojun Li, Shaoqiang Zhang. Minimizing

maximum lateness on identical parallel batch processing

machines. Lecture Notes in Computer Science 3106:

Proceedings of the 10th Annual International Conference

on Computing and Combinatorics, 229–237, 2004.

[7] Dupont, L., & Ghazvini, F. J. (1997). A branch and bound

algorithm for minimizing mean flow time on a single batch

processing machine. International Journal of Industrial

Engineering, 4, 197–203.

[8] Qi, X., & Tu, F. (1999). Earliness and tardiness scheduling

problems on a batch processor. Discrete Applied

Mathematics, 98, 131–145.

[9] Wang, C.-S., & Uzsoy, R. (2002). A genetic algorithm to

minimize maximum lateness on a batch processing

machine. Computers &Operations Research, 29, 1621–

1640.

[10] Uzsoy, R. (1994). Scheduling a single batch processing

machine with non-identical job sizes. International Journal

of Production Research, 32, 1615–1635.

[11] Zhang, G., Cai, X., Lee, C.-Y., & Wong, C. K. (2001).

Minimizing makespan on a single batch processing

machine with nonidentical job sizes. Naval Research

Logistics, 48, 226–240.

[12] Shuguang Li, Guojun Li, Xiaoli Wang, Qiming Liu.

Minimizing Makespan on a Single Batching Machine with

Release Times and Non-Identical Job Sizes. Operations

Research Letters, 33(2): 157–164, 2005.

[13] Q.Q. Nong, C.T. Ng and T.C.E. Cheng (2008). The

bounded single-machine parallel-batching scheduling

problem with family jobs and release dates to minimize

makespan, Operations Research Letters, 36(1), 61-66.

[14] Dupont, L., & Dhaenens-Flipo, C. (2002). Minimizing the

makespan on a batch machine with non-identical job sizes:

An exact procedure. Computers & Operations Research, 29,

807–819.

[15] Chung, S. H., Tai, Y. T., & Pearn, W. L. (2008).

Minimising makespan on parallel batch processing

machines with non-identical ready time and arbitrary job

sizes. International Journal of Production Research.

doi:10.1080/00207540802010807.

[16] Wang Hui-Mei and Fuh-Der Chou (2010). Solving the

parallel batch-processing machines with different job sizes,

and capacity limits by metaheuristics. Expert Systems with

Applications, 37, 1510-1521.

[17] Chang, P.-C., & Wang, H.-M. (2004). A heuristic for a

batch processing machine scheduled to minimize total

completion time with non-identical job sizes. International

Journal of Advanced Manufacturing Technology, 24, 615–

620.

[18] Ghazvini, F. J., & Dupont, L. (1998). Minimizing mean

flow times criteria on a single batch processing machine

with non-identical jobs sizes. International Journal of

Production Economics, 55, 273–280.

[19] F. Afrati, E., C. Chekuri, D. Karger, C. Kenyon, S. Khanna,

I. Milis, M. Queyranne, M. Skutella, C. Stein, M.

Sviridenko (1999). Approximation schemes for minimizing

average weighted completion time with release dates,

Proceedings of the 40th Annual IEEE Symposium on

Foundations of Computer Science, New York, October,

32–43.

[20] R. L. Graham (1966). Bounds for certain multiprocessor

anomalies. Bell System Technical Journal, 45: 1563–1581.

[21] Melouk S, Damodaran P, Chang P-Y. Minimizing

makespan for single machine batch processing with non-

identical job sizes using simulated annealing. International

Journal of Production Economics, 2004, 87: 141–7.

[22] Husseinzadeh Kashan A, Karimi B, Jolai F. Effective

hybrid genetic algorithm for minimizing makespan on a

single batch processing machine with non-identical job

sizes. International Journal of Production Research, 2006,

44: 2337–60.

[23] Koh S-G, Koo P-H, Kim D-C, Hur W-S. Scheduling a

single batch processing machine with arbitrary job sizes

and incompatible job families. International Journal of

Production Economics, 2005, 98: 81–96.

[24] Chou FD, Chang PC, Wang HM. A hybrid genetic

algorithm to minimize makespan for the single batch

machine dynamic scheduling problem. International

Journal of Advanced Manufacturing Technology, 2006, 31:

350–9.

[25] Chou FD. A joint GA+DP approach for single burn-in

oven scheduling problems with makespan criterion.

International Journal of Advanced Manufacturing

Technology, 2007, 35: 587–95.

[26] N. Rafiee Parsa, B. Karimi, A. Husseinzedeh Kashan. A

branch and bound algorithm to minimize makespan on a

single batch processing machine with non-identical job

sizes. Computers & Operations Research, 2010, 37 (10):

1720-1730.

[27] Husseinzadeh Kashan A, Karimi B, Jolai F. Bi-criteria

scheduling on a single batch processing machine with non-

identical job sizes. In: Proceeding of the 12th IFAC

symposium on information control problems in

manufacturing, INCOM’2006, St-Etienne, France, 2006b.

[28] Koh S-G, Koo P-H, Ha J-W, Lee W-S. Scheduling parallel

batch processing machines with arbitrary job sizes and

incompatible job families. International Journal of

Production Research, 2004, 42: 4091–41107.

[29] Chang P Y, Damodaran P, Melouk S. Minimizing

makespan on parallel batch processing machines.

International Journal of Production Research, 2004, 42:

4211–20.

[30] Husseinzadeh Kashan A, Karimi B, Jenabi M. A hybrid

genetic heuristic for scheduling parallel batch processing

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1209

© 2012 ACADEMY PUBLISHER

machines with arbitrary job sizes. Computers & Operations

Research, 2008, 35: 1084–98.

Shuguang Li was born in Shandong, China in 1970. He

received the PhD degree in operations research and cybernetics

from the Shandong University, Jinan, China, in 2007. He is an

associate professor in the College of Computer Science and

Technology, Shandong Institute of Business and Technology,

Yantai, China. His current research areas are combinatorial

optimization and theoretical computer science.

1210 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

