
Power Estimating Model and Analysis of General
Programming on GPU

Haifeng Wang 2 3 , Qingkui Chen 1 2*

1University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering,
Shanghai, China

2University of ShangHai for Science and Technology, , School of Management, Shanghai, China
3Lin Yi University, Linyi, China

Email: gadfly7@126.com, chenqingkui@gmail.com

Abstract—Energy efficiency is a major concern in the
General Programming on Graphic Process Unit. Recent
research focus on the measurement approach and energy
optimization of Graphic Process Unit. Few studies provide
insight to where and how power is consumed from the
program perspective. The aim of this research was to build
power consumption model to estimate the energy
consumption for the application programmers. Program
slicing was used to decompose the programs into slice set.
The program slice as basic unit was to measure and analyze
the program power consumption. We consider the
computation intensity and the number of active SMs that
have directly impact on energy consumption. Aiming to the
sparseness-branch and denseness-branch programs, two
power consumption prediction models were proposed. The
experimental results show that the average relative error of
the two prediction models are less than 6 percent. We
conclude that the power consumption prediction models can
effectively estimate the energy consumption of applications.

Index Terms—Power Consumption Model, GPU
Computing, CUDA, Program Slicing

I. INTRODUCTION

With Compute Unified Device Architecture (CUDA)
launched by NVIDIA and the development of
applications of GPU (Graphic Process Unit) in the High
Performance computing field the power consumption of
GPUs increase rapidly. The energy measurement and
optimization for GPUs has received much attentions in
recent years due to the development of Green
Computing[1]. Jiao. et al. showed the different power
characterizations of GPU computing and investigated the
relationship between power consumption and different
computational patterns under various voltage and
frequency levels[2]. Shaikh et al. measured the power
consumption of different instructions in GPU computing.
The results provide valuable data for the GPU power
optimization[3]. One attempt to improve our
understanding of power and performance is the research
work to propose a prediction model for GPU computing.
The prediction model can optimize the power
consumption by setting the optimal number of active
cores to execute the computing tasks[4]. In addition,
some researchers have studied the power efficiency of

GPUs clustering. Jeremy et al. used one technique to
measure the GPU clustering power that is a very
inexpensive, non-intrusive method for GPUs clustering
monitoring system in order to improve the performance-
per-watt of GPU applications[5]. PowerPack is a
comprehensive hardware-software framework for
performing an in-depth analysis of the energy
consumption of parallel applications on a multi-core
systems. The PowerPack no longer measures the
componet power consumption alone and considers the
correlation between the power consumption of a
component and the software executing on the system[6].

To improve the energy efficiency of GPU computing
systems and applications, it is critical to profile the power
consumption from the software perspective. The
instruction level is the first level to measure and optimize
the power consumption. Sylvain et al. measured the
power consumption of the arithmetic operations and
memory accessing operations on three typical GPU
architectures[7]. The function or procedure level is the
second level to analyze the processor energy consumption.
Some researchers had analyzed and quantified the CPU
power consumption[8]. Wang et al. proposed kernel
fusion method to reduce energy consumption and
improve power efficiency on GPU architecture[9].
However, measuring and analyzing power consumption
at the instruction level is fine-grained approach that is
difficult to apply into the practice. On the other hand, it is
course-grained power analyzing approach from the
function level that has poor accuracy. The program
slicing between the instruction and the function level is
an effective way to analyze the power consumption of
GPUs from the software perspective in practice. To our
best knowledge, little attention has been paid to the
program slice level of granularity to analyze the power
consumption model.

Our goal is to build a power consumption model for
the GPU applications and allow the programmers to
estimate their program’s power consumption by scanning
the source code. So our research work belongs to the
GPU power measurement and analysis from the software
perspective. To address this issure, we build the power
consumption model at the program slice level. Compared
to the instruction and the function levels, our approach is

1164 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.5.1164-1170

more practical than the former. And it is a more accurate
way than the one from the function level. In this paper,
the programs are decomposed by the program slicing
technology. The program slice as power consumption
unit is to measure the whole power consumption of GPU
programs. Aiming to the sparseness-branch programs and
denseness-branch programs, we proposed two different
power consumption models that can support the power
managment and the optimization of the GPU computing.

The remainder of this paper is organized as follows:
Section 2 presents the power consumption measurement
scheme for GPUs and the program slicing technology.
The detailed power consumption models for the two
different kind programs are provided in section 3. Next,
we analyze the validity of the power consumption models
through the experiments in section 4. Finally summarizes
our research and future work.

II. RELATION WORKS

A. Measurement Description
The power measurement is the basic problem to the

power consumption model. The power supplies of High-
End GPU come from the PCI-E and the extra power. We
only consider the external power supply due to
inaccessibility to the PCI-E interface power pin. A simple
current data acquisition card was designed and used to
measure the energy consumption. The probe sensor in the
current acquisition card converts the measured current to
corresponding voltage signals through the current sensor
ACS713-20T. The microprocessor Atmega168 of the data
acquisition card is responsible to convey the AC signal to
DC signal. And the USB controller FTDI 232RL send the
signal data to the computer system to record the variation
of the power of the GPUs.

B. Program Slicing
Program slicing is a well known program analysis

technique that is widely used in program comprehension,
testing, debugging, re-engineering and software
maintenance fields[10]. A program slice is a statements
set affected given variables. So the program slicing is a
program decompose technique to reduce the scope of the
program analysis and understanding.

The applications of GPUs is a set of Kernel functions,
namely P = {K1,K2,…,Km}. And the kernel function is a
set of program slice. K = {C1,C2,Ci,…}, Ci represents the
ith program slice, K denotes the kernel function running
on the GPUs. Ci is triple (K, S, V), K represents the
kernel function, S is the statements set relating to V and
V is the variable affected in S. Then we explain how to
slice a Kernel function by an concrete example.

We decompose the kernel function shown in Fig.1(a)
by mean of the static sclicing. A slice is denoted as C1 =
(K, S, patlen) shown in Fig.1(b). Patlen is the variable in
the slice C1 and S is the statement set affected this
variable. This kernel function may be decomposed as K =
(C1,C2,C3), C1 = (K, S1, patlen), C2 = (K, S2, charnum)
and C3 = (K, S3, pchar). However the slicing form is not

constant. This kernel function may be decomposed in
other forms. Such as, K = (C1,C2), C1 = (K, S1,
patlen),C2 = (K, S2, charnum, pchar).

Figure1. (a). Source code of Kernel Function

 Figure1. (b). Program Slice

To determine the slicing form for the kernel function,
we use the variable type to divide the slices. There are
global memory, shared memory, constant memory and
texture memory in GPUs and denoted as GM, SHM, CM
and TM respectively. The variable set in the GPU
program can be grouped into four different types
according to the memory locations. Regardless the
register file in GPUs, the kernel function should be
decomposed as a constant form, namely K =
(CGM ,CSHM,CCM, CTM).

Being different in the energy consumption of accessing
the different memory areas, we should measure the power
consumption of memory accessing slices by experiments.
The NVIDIA Geforce GTX280 GPU was selected in our
experiments. For the sake of simplicity, we replace the
program slices with specific kernel functions that contain
the identical accessing statements. In order to record the
experimental results accurately, the executing time of
each kernel fucntion should be above 50ms. The four
memory accessing kernels denote as GM,SHM,CM and
TM, As shown in Figure 2. The peak value of shared
memory accessing reaches to 135W. The global memory

if (inner_id != block_per_group -1)
{

charnum = tex2D(x1)-tex2D(x2);
patlen = tex2D(x2)- tex2D(x3);
pchar = tex2D(x4) * tex2d(x1);

}
else{

if (threadIdx.x < patNum-inner_group)
{

charnum = tex2D(x4)-tex2D(x6);
patlen = tex2D(x5)- tex2D(x7);
pchar = tex2D(x3) - tex2d(x1);

}
else
{

patlen = tex2D(x8)- tex2D(x9);
}

if (inner_id != block_per_group -1)
{
 patlen = tex2D(x2)- tex2D(x3);
 }
else{

if (threadIdx.x < patNum-inner_group)
{

 patlen = tex2D(x5)- tex2D(x7);
}
else
{

patlen = tex2D(x8)- tex2D(x9);
 }

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1165

© 2012 ACADEMY PUBLISHER

accessing and texture memory accessing are between
71W and 75W. In the most case the energy consumption
of texture memory accessing is lower than the global
memory accessing due to the cache. The constant
memory energy consumption fluctuates between 65W
and 68W and is the minimum value among the four
memory accessing patterns.

Time(ms)

0 100 200 300 400 500 600 700 800 900 1000

Po
w

er
 C

on
su

m
pt

io
n

（
w

)

50

60

70

80

90

100

110

120

130

GM
SHM
CM
TM

 Figure 2 Energy Consumption of four Accessing Patterns

In order to normalize the four different memory
accessing patterns, we unify the different memory
accessing statements into unified form by mean of the
proportional coefficient. The proportional coefficient for
GM,SHM,CM,TM represent λ0, λ1, λ2 and λ3 respectively..
Setting the global memory accessing pattern is norm
pattern, namely λ0 =1, since the global memory accessing
operations occur most frequently in the GPGPU programs.
Assume that a program slice Ci includes GM accessing
statements x1, SHM accessing statements x2, CM
accessing statements x3 and TM accessing statesment x4.
Expressed in a formula, the number of unified memory
accessing statements X can be written as .

 0 1 1 2 2 3 3 4 X = λ x + λ x + λ x + λ x (1)
The proportional coefficients for GTX 280 obtained
through the experiments are set as follows, λ1 = 1.67, λ2 =
0.91, λ3 = 0.95.
C.Computation Intensity

The computation intensity was introduced to quantify
the GPUs performance. It is defined by the ratio between
the number of arithmetic operations and the number of
memory accessing operations[11]. Here we take the
power consumption as an important factor to redefine the
computation intensity. Different in the power
consumption incurred by the different memory accessing
patterns, we don’t treat the different memory accessing
statements as the same one compared to the definition of
computation intensity in literature[11]. So the
computation intensity from the power consumption
perspective can be defined as equation 2.

()0 1 2 3

#AA =
#A+λ GM + λ SHM + λ CM+ λ TM ∑ ∑ ∑ ∑

 (2)

Where A denotes the computation intensity from the
power consumption perspective, the number of the
arithmetic statements represents #A and

0 1 2 3λ GM + λ SHM + λ CM+ λ TM ∑ ∑ ∑ ∑ is the number of
memory accessing statements.

III. POWER CONSUMPTION MODEL BASED ON SLICE

A. Regreesion Model of Program Slice
To build power consumption model for applications,

the power consumption of program slicing should be
considered and measured due to the fact that the program
is composed of many slices. The computation intensity of
applications changing, the power consumption will
change as well. So we investigated the power
consumption of slices and built a prediction model for the
slices. It is difficult to directly measure the power
consumption of program slices. Then we use the kernel
function to substitute the program slice with the identical
computation intensity. Many different computation
intensity kernels are designed in the experiments, theirs
executing time being greater than 50ms.

Computation Intensity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
o
w
e
r

C
o
n
s
u
m
p
a
t
i
o
n
(
W)

70

80

90

100

110

120

130

140

Regress

Figure 3 Variation of Power Consumption with Different Computation
Intensity on GTX280

Fig.3 shows the variation of power consumption with
the different computation intensity to the kernel functions.
We obtain the following observations from this figure: 1)
when the computation intensity is greater than 0.2, the
power consumption increases proportionally. 2) when the
computation intensity is less than 0.17, the power
consumption drops noticeably from 138W down to 83W,
indicating that these memory-intensive computation
kernels include more shared memory accessing
operations that consume much more energy. In general,
there are few computation tasks in practice whose
computation intensity are less than 0.2 because such
computation tasks are unsuitable for the GPUs. So we
neglect the tasks whose computation intensity are less
than 0.2 and consider the computation intensity from 0.2
to 0.9 to build the power consumption model through
linear regression analysis. Given the computation
intensity is independent variable x and the power

1166 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

consumption is dependent variable y. Then the regression
function shown in Equ.3 is obtained with least square
method.

() 69.4 34.5f x x= + (3)

B. Active number of SMs
The number of active cores inside a chip, especially in

GPUs, is an important factor to be considered for the
energy consumption, because we can achieve speedup by
launching more active cores but with increased total
energy consumption. Then we investigate the correlation
between the number of active stream multiprocessor and
the power consumption. Currently, the number of Stream
Multiprocessor (SM) in the GPUs is increasing
dramatically. For example, NVIDIA GeForce GTX 280
has 30 streaming multiprocessors with 240 Stream
Processors (SP). The computing performance increases
with more SMs, but the power consumption increases
accordingly[4]. To further improve the accuracy of the
power consumption model, the number of active SMs
should be considered and investigated the variation of
energy consumption with changing the number of active
SMs. In the experiment, the matrix multiplication whose
computation intensity is 0.506 is selected to measure the
power consumption with different SMs.

Number of Active SMs

3 6 9 12 15 18 21 24 27 30

P
o
w
er

C
o
ns

u
m
pt

i
o
n
(W

)

80

100

120

140

160

 Figure 4 GTX 280 Power Consumption vs. Active SMs
As shown in Fig.4, the maxinum power delta between

using only one SM and all SMs is about 30W. This can
prove that the number of active SMs is an significant
factor to the power consumption model. It is evident that
the power consumption does not increase linearly as
increasing the number of active SMs. The curve indicates
a Non-linear relationship between the energy
consumption and the number of active SMs.
Consequently, the Non-linear regression function is built
as follows.

0 10() log ()P n b nμ α β= + + (4)
Where b0 is the initial value and b0 = 90, μ is scale factor
that relies on the GPU architecture, n is the number of
active SMs, the coefficients parameters α, β set
respectively to 4.5 and 2.1. Then the same experiments
were performed on the Low-End GPU NVIDIA GT200
with six SMs. The maxinum power delta between one

SM and all SMs is only about 3.2W. Comparing Fig. 4
and 5 show that the number of active SMs has different
impact on the power consumption to the different GPU
architectures. The Nonlinear regression function for
GT200 is as follows.

10() 64.5 3.3log (2 2.1)P n n= + + (5)

the Number of Active SMs

1 2 3 4 5 6
P
ow
e
r
C
on
s
um
p
ti
o
n
(W
)

65

66

67

68

69

70

Figure 5 GT200 Power Consumption vs. Active SMs

C. Power Consumption Model of Slice
The approach used in this study aims to predict the

power consumption of applications by the program slices.
The program slice is a fine-grained power measurement
level. Using the computation intensity based on energy
consumption, we distinguished the power consumption
between the computation instructions and the accessing
instructions. Finally, the power consumption can be
modeled by taking the computation intensity and the
number of active SMs as shown in Equation 6.

i i active
10

bench

#SM
P (x,n) = f (x) + [log ()]

#SM
i i inμ α β+ (6)

The final power consumption model is composed of
two parts. The first part is obtained by the equation 3 and
the input parameter is the slices computation intensity.
The second part can adjust the power consumption
accordingly to the number of active SMs for different
applications and the input parameter is the number of
active SMs. In the equation 6, #SMbench is the number of
SMs used in the experiments that determines the
regression analysis function. #SMactive denotes the number
of active SMs in the program slices.

D. Average Computation Intensity Model (ACIM)
The purpose of our study is to build power

consumption model for programs. Suppose that the
program P = {C1,C2,…,Cn}, where iC is the slice length
calculated by counting the statement number in the slice
Ci. iA represents the computation intensity of slice Ci.
Then the power consumption of P is shown in Equation 7.

n
i

i=1
GPU_P = (A , n) ti iP ×∑ (7)

 From this equation, we can see that the program
energy consumption is the sum of all the slices’ power
consumption. However this power consumption model is
ideal scheme due to the fact that is difficult to apply into

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1167

© 2012 ACADEMY PUBLISHER

the practice. The reason is that the executing time of each
slices can not to be measured. To address this problem,
the average computation intensity metric is introduced to
evaluate energy consumption of programs. As shown in
Equation 8, A denotes the Average Computation
Intensity (ACI).

1 2 n1 2 n

i i i
1 1 1

C C C
A (A A ... A)

C C C
n n n= + + +

∑ ∑ ∑
 (8)

Suppose the executing time is T, the average computation
intensity power consumption model (ACIM) is

GPU_P = P (A , n) T× (9)

TABLE I.

 Identifier Maching
Target Identifier

Kernel Function __global__,__device__
Shared Memory __shared__

Constant Memory __constant__
Texture Memory texture,cudaArray
Global Memory cudaMalloc 等

Arithmetic Operation +,-,*,/,<<,>>,%
Memroy Accessing =

In this work, we should explore an approach for
calculating average computation intensity of program that
need to solve three key problems as follows. (1) How to
distinguish the different memory accessing patterns. Our
apporach is to scan and match the identifiers which are
used to direct the CUDA complier. These identifiers are
listed in the tableⅠ [12]. For example, the variables
located in the shared memory can be determined by the
identifier __shared___. (2) How to distinguish the
arithmetic and the memory accessing operations. In most
cases the arithmetic operations and the memory accessing
operations couple with closely. So the program statement
may be transformed several logical statements
accordingly to the operator symbols. Such as, (*Vect0) =
m0 + m3. This statement may be decompsed two logical
statements. The first one is a arithmetic logic statement,
m0 + m3. And the other one is a memory accessing logic
statement. (3) The last problem is to unroll the loop
structure in a program in order to count the statements in
loop body. Initially each slice is divided into many
smaller blocks. Subsequently the loop body in each
blocks are extracted by scanning the source code. After
the unrolling process each statement in loop is added a
count field recorded cycle index. The loop unrolling
algorithm is as follows.
Algorithm3.1 Loop Unrolling in Slice
Input: Slice C = {B1,B2,...,Bk}
Output: Unrolled Slice C = {S1,S2,...,Sn}

1.For Bi = B1 to Bk do
2. For each Sj in Bi do
3. Sj.count = 1;
4. Endfor
5.Endfor
6. For Bi = B1 to Bk do
7. If Bi is LoopBlock then
8. Search the iteration_number in Bi;
9. For each Sj in Bi do

10. Sj.count = cycle index;
11. Endfor
12. Endfor
13. return C{ S1,S2,...,Sn}

In the loop unrooling algorithm, firstly each statement
initializes the count field (line 1-5). Then matching the
loop keywords is to extract the loop body (line7). When a
loop is identified in the block, the cycle index is
calculated by analyzing the source code (line 8). The next
step is to set the count field of each statement by the
cycle index (line 9-11). When the algorithm stops, the
result is a set of the logic statements that have no loop
body (line 13).
Algorithm3.2 Average Computation Intensity
calculating
Input: Slice Set{Cgm,Cshm,Ccm,Ctm}, Operator Sets
OPc,OPm；
Output: average computation intensity A ；

1.For Ci = Cgm to Ctm do
2. For each Cij in Ci do
3. For each Si in Cij do
4. If Si.op ∈OPc then
5. #c = #c+ Si.count;
6. Elseif Si.op ∈OPm
7. #m = #m+ Si.count;
8. Endfor
9. Endfor
10. A = #c/#m;
11. Return A .

Assume that the program P consists of four different

slice sets, P = {Cgm,Cshm,Ccm,Ctm}, Cgm
i∩Cgm

j = Ф. The
arithmetic operator set and the memory accessing
operator set denote OPc and OPm respectively.

In the algorithm 3.2, the loop is to traverse each
statements in each slice (line 1-3). If the statement has
arithmetic operator, the arithmetic counter variable #c
will be added (line 4-5). If the statement has memory
accessing operator, the memory accessing counter
variable #m will be increased (line 6-7). Finally, the
average computation intensity is the ratio of the variable
#c and the variable #m (line 10).

E. Probabilistic Slicing Model (PSM)
The average computation intensity model remains a

significantly limitation that is unsuitable to predict the
power consumption of the denseness-branch programs. In
fact, there are plenty of denseness-branch programs due
to the diversity and complexity of applications. The
limitation of average computation intensity model will be
discussed as follows.

1168 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

Figure 6. Denseness-branch Program

 Figure 6 shows a denseness-branch kernel which will
motivate the probabilistic slicing[13]. The energy
consumption of this slice is the product between the
execution time and the average computation intensity.
The average computation intensity is calcuated the mean
value of the statements in line 7, 8 and 10. Table 2 shows
the branch outcome frequencies.

TABLE II.

 Probabilities of Conditional Branch Outcomes
Line Test #executions #then’s #else’s

5 condition1 10000 1570 8430
6 condition2 1570 1560 10

 From table II, the statement at line 8 has a executing
probability of 0.001, so we may ignore the infrequent
branch statement. However, this statement at line in
ACIM make more contribution to the average
computation intensity. This example illustrates that the
average computation intensity model is not suitable for
the denseness-branch programs.

The Probability Slicing Model (PSM) is proposed to
handle the denseness-branch programs. The main idea of
PSM is to calculate the computation intensity of program
by incorporating probability information. It will be
possible to remove infrequent statements as well as
irrelevant statements in calculating the computation
intensity process. Assume that the slice Ci in the program
P includes two sub-slices Ci1 and Ci2. If the executing
probability of Ci2 is less than specific threshold. The
computation intensity of Ci2 will be ignored and only use
the Ci1’s computation intensity as the whole program’s
computation intensity.

Then we discuss how to obtain the probability of the
branches. The main idea of the approach is used the
historical data to predict the future data. Firstly, select
some data to calculate the braches probability of the
specific programs. Assume that the probability results
obtained by the test data will be available to future data
that are in the executing phase of the specific programs.
 Given P contains program slice sets, P = (C1,C2,...,Cn).
The probability vector pi <pi1,pi2,...,pim> is the executing
probability for each sub-slices Ci (Ci1,Ci2,...,Cim). The
computation intensity of all the sub-slices for Ci
represents <ai1,ai2,...,aim>. Then the computation intensity
calculating algorithm is as follows.

Algorithm3.3 Computation Intensity calculating of
PSM
Input: <p1,p2,...,pi,...,pn>, <ai,ai,...,ai> δ ;
Output: the computation intensity of Program A;

1.For Ci = C1 to Cn do
2. For Cij = Ci1 to Cim do
3. If Pij > δ then

4.
1

A +=
m

ij ij ij
j

p p a
=

×∑

5. End for
6.End for

Finally, PSM is as shown in Equation 10.

GPU_P = P (A , n) T× (10)
 Where T is the executing time of program, A is the
Computation Intensity of the Probability Slicing (PSCI)
obtained by the algorithm 3.3. And n is the number of
active SMs.

IV. EXPERIMENTS

The goal of the experiments is to verify the accuracy of
the power consumption model by comparing the
prediction value and the measured one. Our testbed is an
Intel Core 2 processors, 2G DDR RAM, 320G SeaGate
HardDisk and NIVIDA GeForce GTX280 card with 602
MHZ core frequency and 1107 MHZ memory frequency.
The operation system is Windows XP Profession with
CUDA toolkit2.3 and the driver version is CUDA 190.29.
A.Average Computation Intensity Model

 In this experiment, we selected four GPGPU
applications to verify the power consumption model for
the sparseness-branch programs[14]. As shown in Table
Ⅲ, these applications are the sparseness-branch programs.
The computation intensity of these applications range
from 0.18 to 0.93 on a 0 to 1 scale. The experimental
results show that the relative error between the prediction
value and the meassured value are not more than 6%.
These data enable us to conclude that ACIM is available
for the sparseness-branch programs.

TABLE III.

Experimental data of average computation intensity model

B. Probability Slicing Model

 To verfiy the probability slicing model, these
applications Discrete Cosine Transform (DCT), String
greping and H.264 decoding were selected in this
experiments. Compare to the DCT algorithm, the string
greping algorithm and H.264 decoding algorithm have
more branch statements[15]. From the table �, the
computation intensity of DCT based on probability is less
than the average computation intensity. So the estimated
value of probability model is less than the ACI value and
the relative error is 2.4% that is also less than the average

Bench
mark

Description ACI ACIM Messured

Dotp Matrix dotproduct 0.574 114.6 119.5
Madd Matrix multiply-add 0.921 101.2 105.6

Dmadd Matrix double multiply add 0.927 102.1 108.2
Mtrans Matrix Transpose 0.182 86.8 92.3

1：int v1,v2,v3,v4
2: v4 = input();
3: v2 = 0;
4: v3 = -2;
5：if (condition1)
6： then if (condition2)
7: then v1 =3;
8: else v2 = 5 * v4/v1;
9: else
10: v1 = 10;

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1169

© 2012 ACADEMY PUBLISHER

computation model 3.8%. The relative error delta in the
string greping algorithm and H.264 decoding algorithm
are more greater than the DCT algorithm due to more
branch statements. We can conclud that PSM is prior to
ACIM to the denseness-branch programs.

TABLE IV.

Experimental Data of PSM
Benchmark Description ACI PSCI ACIM PSM Messured

DCT Discrete
Cosine
Transform

0.724 0.676 125.4 123.5 120.6

cugrep String
greping

0.532 0.725 110.5 117.1 114.2

cuh264 H.264
decoding

0.623 0.9478 108.14 119.7 122.3

V. CONCLUSION

We presented program slicing method for power
profiling and evaluation of General-Computing GPU
applications at the program slice granularity. With the aid
of static program slicing technique, we quantified the
power consumption of applications on the current and
emerging GPU high-performance computing field. Two
important factors that are the number of branch
statements and active SMs are considered. The GPGPU
programmers can use this power consumption model to
analyze theirs application’s energy consumption profile.
So it also be used to optimize the power consumption in
the GPGPU field. In our future work, we will improve the
power consumption model to adapt to various GPU
architectures and further enhance the prototype
functionalities. Such as extracting the code area that
comsume more energy than other areas will be designed.

ACKNOWLEDGMENT

We would like to thank the support of National Nature
Science Foundation of China (No.60970012), the
Innovation Program of Shanghai Science and Technology
Commission (No.09511501000, 09220502800), and
Shanghai leading academic discipline project (S30501).

REFERENCES
[1] Patrick Kurp, “Green Computing, Commons”. Of the

Association for Computing Machinery, 51(10):11-
13,2008.

[2] Y.Jiao, H. Lin, P. Balarji.et al. “Power and Performance
Characterization of Computational Kernel on the GPU”.
IEEE/ACM Int’l Conference on Green Computing and
Communications& Int’l Conference on Cyber, Physical
and Social Computing. pp:221-228,2010

[3] M.Z.Shaikh, M.Gregoire, W.Li, M. Wroblewski, S.Simon,
“In situ Power Analysis of General Purpose Graphical
Processing Unit”, In 19th International Euromicro
Conference on Parallel, Distributed and Network-Based
Processing. 2011

[4] Sunpyo Hong, Hyesoon Kim. “An Integrated GPU Power
and Performance Model”, in ISCA’10. 2010..

[5] Jeremy Enos, Craig Steffen, Joshi Fullop, Michael
Showerman, et al. “Quantifying the Impact of GPUs on
Performance and Energy Efficiency in HPC Clusters”.

[6] R. Ge, X. Feng, S. Song, H. Chang, D.Li, K.Cameron,
“PowerPack: energy profiling and analysis of high-
performance systems and applications”. IEEE
Transactions on Parallel and Distributed Systems, Vol. 21,
No.5, pp. 658-671,2010.

[7] S. Collange, D.Defour, and A. Tisserand, “Power
consumption of gpus from a software perspective”, in
Proceeding of the 9th International Conference on
Computational Science. Berlin, Heidelberg: Springer-
Verlag，pp.914-923,2009.

[8] Tan, T. K. Raghunathan, A. Lakshminarayana,G. et al.
“High-level software energy macro-modeling” In
Proceeding of Design Automation Conference,2001,
pp:605-610.

[9] Guibin Wang, YiSong Lin, Wei Yi. “Kernel Fusion: an
Effective Method for Better Power Efficiency on
Multithreaded GPU”. IEEE/ACM Int’l Conference on
Green Computing and Communications& Int’l
Conference on Cyber, Physical and Social Computing.
pp:344-349,2010.

[10] M. Weiser. “Program slicing” IEEE Transactions on
Software Engineering,10(4):352-357, 1984.

[11] Pharr M, Fernando R. GPU Gems2. Boston: Addison
Wesley, 2005:493-495.

[12] NVIDIA_Corporation, CUDA_3.0 Programming Guide,
2010, http://www.nvidia.com/ (accessed May 2010)

[13] Jeremy Singer. “Towards Probabilistic Program Slicing. In
Beyond Program Slicing, Dagstuhl Seminar Proceedings”.
July,2006

[14] S. Hong , H. Kim. “An analytical model for a gpu
architecture with memory-level and thread-level
parallelism awareness”. In ISCA,2009

[15] Moecke,M. Seara, R. “Sorting Rates in Video Encoding
Process for Complexity Reduction” IEEE Transactions on
Circuits and Systems for Video Technology. 20(1):88-
101,2010.

Haifeng Wang. He received his diploma in computer science
from the Shandong University in 1995, China. He is currently a
PHD candidate in the University of Shanghai for Science and
Technology. His current research interests include GPU
Computing, Network Computing(gadfly7@126.com).

Qingkui Chen. Received the MS degree in computer science
from the JILIN university, and PhD degree in University of
Shanghai for Science and Technology. He is a full professor of
computer science at the University of Shanghai for Science and
Technology, China, where he is the head of the Network
Computing Group and the Wireless Sensor Network Research
Center. His research interests include GPGPU, Network
Computing, and WSN. (chenqingkui@gmail.com)

1170 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

