
Edge Coverage Analysis for Software
Architecture Testing

Lijun Lun

College of Computer Science and Information Engineering, Harbin Normal University, Harbin, China
Email: lunlijun@yahoo.cn

Xin Chi

College of Computer Science and Information Engineering, Harbin Normal University, Harbin, China
Email: chixin9010@yahoo.cn

Xuemei Ding

Faculty of Software, Fujian Normal University, Fuzhou, China
Email: dxmgw@yahoo.com.cn

Abstract—Software architecture is perceived as one of the
most important artifacts created during a system's design,
to control software complexity, improve system quality,
support software development and reuse and so on.
Coverage analysis is a structural testing technique, which
helps to eliminate gaps in a test suite and determines when
to stop testing. To compute test coverage, the paper presents
a new concept – coverage about edge based on C2-style
architecture. Firstly, the software architecture is
represented using C2-style, then we use architecture
component interaction graph (CIG) to describe interface
connection relationship, then we define three testing criteria
and introduce algorithms to generate testing coverage set
according to edge types of CIG. Finally, we present four
edges coverage to compute coverage effectiveness.

Index Terms—software architecture testing; C2-style;
component interaction graph; edge coverage criteria;
coverage analysis

I. INTRODUCTION

Software architecture represents the earliest software
design decisions. These design decisions are the most
critical to get right and the most difficult to change
downstream in the system development cycle. The
software architecture is the first design artifact addressing
reliability, modifiability, real-time performance, and
inter-operability goals and requirements. Software
architecture testing is an important technique for
validating and checking the correctness of software
architecture. Formalization testing based on software
architecture has improved the quality of the software
products. Automatic test coverage generation is a hotspot
and difficulty in the field of software architecture testing.
Current research divided into two categories [1]. One is
to improve the traditional software testing techniques and
methods, so that they service for software architecture
testing. The other is to develop new software architecture
testing techniques and methods, so that it can better solve
problems of software architecture testing.

This paper uses C2-style architecture to model a
software system, and apply the component interaction
graph to software architecture testing. We have present
methods to analyze test coverage for JAVA programs in
our CASE tool.

The process can be divided into five steps: (1)
Describe the software architecture using C2-style
architecture, (2) Map C2-style specification to component
interaction graph, (3) Analyze the dependence
relationship between the interfaces and the events, (4)
Define the three coverage criteria of component
interaction and algorithms to generate testing coverage
set, (5) Presents our approach to compute test coverage.

II. BASIC NOTIONS

This section introduces C2-style architecture formal
defined, component interaction graph and its type of edge,
and its built approach.

A. C2 Architecture Style
The C2-style architectural is primarily concerned with

high-level system composition issues [2]. The C2-style
architectural consists of components and connectors,
which transmit messages between components.
Components maintain state, perform operations, and
exchange messages with other components via two
interfaces (named top and bottom). Each interface
consists of a set of messages that may be sent or received.
Inter-component messages are classified into two types,
viz. requests to a component to perform an operation, and
notifications that a given component has performed an
operation or changed state. In the C2-style architectural,
both components and connectors have a top and a bottom
interface. Systems are composed in a layered style, where
a component′s top interface may be connected to the
bottom interface of a connector, and its bottom interface
may be connected to the top interface of another
connector. Each side of a connector may be connected to
any number of components or connectors.

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1121

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.5.1121-1128

Definition 2.1 A C2-style architecture can be defined
as C2 = (Comps, Conn), where:

• Comps = {Comps1, Comps2, …, Compsm} is a
finite set of components, where Compsi =
{Compsi.top_in, Compsi.top_out, Compsi.
bottom_in, Compsi.bottom_out}.

• Conn = {Conn1, Conn2, …, Connn} is a finite set
of connectors, where Conni = {Conni.top_in1,
Conni.top_in2, …, Conni.top_inn, Conni.top_out1,
Conni.top_out2, …, Conni.top_outn, Conni.
bottom_in1, Conni.bottom_in2, …, Conni.bottom_
inm, Conni.bottom_out1, Conni. bottom_out2, …,
Conni.bottom_outm}.

• bottom_in is the set of requests received at the
bottom side of a component or connector.
bottom_out is the set of notifications that a
component or connector emits from its bottom
side.

• top_in is the set of notifications received on the
top side of a component or connector. top_out is
the set of requests sent from its top side.

Fig. 1 represents the external view of a component
Compsi, Compsi.top_in and Compsi.top_out is defined by
the component′s dialog.

Fig. 2 represents the external view of a connector

iConn , with the components (1, ...,)
jt

j nComps =

and (1, ...,)
kc

k mComps = attached to its top and

bottom respectively. A connector′s upper and lower
domain is completely specified in terms of these
components.

B. Component Interaction Graph

The component interaction graph is a digraph whose
nodes represent the top or bottom of component or
connector, and edges represent possible information
flows between component and connector in the C2-ADL
architecture specification.

Definition 2.2 Let C2 = (Comps, Conn) is C2-style
architecture. Component interaction graph can be defined
as direct graph CIG = (V, E, Vstart, Vend), where:

• V = {Compsi.top_in, Compsi.top_out, Compsi.
bottom_in, Compsi.bottom_out, Connj.top_in,
Connj.top_out, Connj.bottom_in, Connj.bottom_
out} is a finite the set of nodes. Nodes represent
the interface of component or connector, and
component interface with a hollow circle,
connector interface with a solid circle represents.

• E ⊆ V × V is a finite set of edges.
• Vstart ∈ {Compsi.top_out | Compsi.bottom_in = ∅

∧ Compsi.bottom_out = ∅, Compsi ∈ Comps} is
the initial node, this node transmit messages only.

• Vend ∈ {Compsi.bottom_in | Compsi.top_out = ∅
∧ Compsi.top_in = ∅, Compsi ∈ Comps} is the
terminal node, this node receive messages only.

There are three types of edge in the CIG of a C2-style
architecture specification, namely, edge from component
to connector, edge from connector to component, and
edge from connector to connector, which represents
information flows between component and connector.

Definition 2.3 Let E is the edge set of CIG, element of
E is divided into three edges.

• eComps-Conn = {e | e ∈ (Compsi.top_out, Connj.
bottom_in) ∨ (Compsi.bottom_out, Connj.top_in)}
represents edge from component Compsi to
connector Connj.

• eConn-Comps = {e | e ∈ (Conni.bottom_out, Compsj.
top_in) ∨ (Conni.top_out, Compsj.bottom_in)}
represents edge from connector Conni to
component Compsj.

• eConn-Conn = {e | e ∈ (Conni.top_out, Connj.
bottom_in) ∨ (Conni.bottom_out, Connj.top_in)}
represents edge from connector Conni to
connector Connj.

CIG can be represented as an adjacency list. Adjacency
node of each node in CIG can be represented as a linked
list. Adjacency list consists of the order of the list storage
nodes n and n a linked list. The order of the list for
storage, each part contains two domains, one domain
stores component or connector name, the other is pointer
domain, point at adjacency list of CIG. The node of
linked list consists of three domains, one represent as
node Vi and serial number of Vj adjacent node, one
represent as point at node Vi and next node Vk adjacent
node, the other represent as point at edge information
between node Vi and node Vk.

CIG construction algorithm is shown as follows.
Algorithm 1 BuiltCIG
Input: Adjacency list of CIG = (V, E, Vstart, Vend)
Output: Component interaction graph
Begin

V = ∅; E = ∅; Vstart = ∅; Vend = ∅;
appoints a starting node V1;
visits to the starting node V1;
Vstart = V1;
while (V1 ≠ ∅) {

V = V ∪ {Vstart};

Figure 2. C2 connector domains

Figure 1. C2 component domains

1122 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

obtains node V1 and V2 adjacent node from
adjacency list;

while (V2 ≠ ∅) {
visits an edge e between node V1 and V2;
do{

switch (type of e) {
case eComps-Conn: {

E = E ∪ {eComps-Conn};break;}
case eConn-Comps: {

E = E ∪ {eConn-Comps};break;}
case eConn-Conn: {

E = E ∪ {eConn-Conn};break;}
}
visits next an edge e between node V1 and V2;

}while (e = ∅);
Vend = Vend ∪ {V2};
visits next node V1 and V2 adjacent node;

}
visits next node V1;
Vstart = V1;

}
End Algorithm BuiltCIG

III. EDGE COVERAGE CRITERIA AND ALGORITHMS

We model component interactions using CIG which
depicts interaction scenarios among components.
Coverage criteria require that a set of entities of the CIG
is covered when the test cases are executed.

Definition 3.1 A set of test cases represented by TS =
{t1, t2, …, tn}, where a test case is triple ti = (Pre, In, Out),
it can cause C2-style architecture to input a set of
execution, Pre represents pre-condition of input in C2-
style architecture, In represents of input value in C2-style
architecture, Out represents of expected outputs in C2-
style architecture.

Testing coverage criteria can be used in one of two
ways, as a mechanism to help testers mechanically or
manually generate tests (test generation), or to measure
the quality of pre-existing tests (coverage analysis). Edge
coverage criteria of CIG are described below.

A. Component to Connector Edge Coverage Criteria
(EComps-ConnCC)

A test case set TS satisfies the component to connector
edge coverage criteria if and only if for each eComps-Conn is
executed by t in TS. In CIG, the result of EComps-
ConnCC can be formalized as follows:

(Compsi.top_out , Connj.bottom_in) ## or
(Compsi.bottom_out , Connj.top_in) ##
Algorithm 2 is used to create component to connector

edge coverage set of CIG. The functions are explained as
follows: If find an edge from component Compsi to
connector Connj, then this edge will be added to the edge
coverage set of the component to connector. m is
numbers of component, n is numbers of connector. The
algorithm 2 is shown as follows.

Algorithm 2 FindeComps-Conn
Input: CIG
Output: Edge coverage set from component to

connector

Begin
EdgeComps_ConnSet = ∅; eComps_Conn = ∅;
for (i = 1; i < = m; i++)

for (j = 1; j < = n; j++) {
if ((comps[i].top_out, conn[j].bottom_in) ∈ E){

eComps_Conn = ## (comps[i].top_out,
conn[j].bottom_in) ##;

EdgeComps_ConnSet = EdgeComps_Conn
Set ∪ eComps_Conn;}

if ((comps[i].bottom_out, conn[j].top_in) ∈ E){
eComps_Conn = ## (comps[i].bottom_out,

conn[j].top_in) ##;
EdgeComps_ConnSet = EdgeComps_Conn

Set ∪ eComps_Conn;}}
End Algorithm FindeComps-Conn

B. Connector to Component Edge Coverage Criteria
(EConn-CompsCC)

A test case set TS satisfies the connector to component
edge coverage criteria if and only if for each eConn-Comps is
executed by t in TS. In CIG, the result of EConn-
CompsCC can be formalized as follows:

(Conni.bottom_out , Compsj.top_in) ## or
(Conni.top_out , Compsj.bottom_in) ##
Algorithm 3 is used to create connector to component

edge coverage set of CIG. The functions are explained as
follows: If find an edge from connector Conni to
component Compsj, then this edge will be added to the
edge coverage set of the connector to component. m is
numbers of component, n is numbers of connector. The
algorithm 3 is shown as follows.

Algorithm 3 FindeConn-Comps
Input: CIG
Output: Edge coverage set from connector to

component
Begin

EdgeConn_CompsSet = ∅; eConn_Comps = ∅;
for (i = 1; i < = n; i++)

for (j = 1; j < = m; j++) {
if ((conn[i].bottom_out, comps[j].top_in) ∈ E){

eConn_Comps = ## (conn[i].bottom_out,
comps[j].top_in) ##;

EdgeConn_CompsSet = EdgeConn_Comps
Set ∪ eConn_Comps;}

if ((conn[i].top_out, comps[j].bottom_in) ∈ E){
eConn_Comps = ## (conn[i].top_out,

comps[j].bottom_in) ##;
EdgeConn_CompsSet = EdgeConn_Comps

Set ∪ eConn_Comps;}}
End Algorithm FindeConn-Comps

C. Connector to Connector Edge Coverage Criteria
(EConn-ConnCC)

A test case set TS satisfies the connector to connector
edge coverage criteria if and only if for each eConn-Conn is
executed by t in TS. In CIG, the result of EConn-ConnCC
can be formalized as follows:

(Conni.top_out , Connj.bottom_in) ## or
(Conni.bottom_out , Connj.top_in) ##

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1123

© 2012 ACADEMY PUBLISHER

Algorithm 4 is used to create connector to connector
edge coverage set of CIG. The functions are explained as
follows: If find an edge from connector Conni to
connector Connj, then this edge will be added to the edge
coverage set of the connector to connector. n is numbers
of connector. The algorithm 4 is shown as follows.

Algorithm 4 FindeConn-Conn
Input: CIG
Output: Edge coverage set from connector to

connector
Begin

EdgeConn_ConnSet = ∅; eConn_Conn = ∅;
for (i = 1; i < = n; i++)

for (j = 1; j < = n; j++) {
if (conn[i].top_out, conn[j].bottom_in)∈E){

eConn_Conn = ## (conn[i].top_out,
conn[j].bottom_in) ##;

EdgeConn_ConnSet = EdgeConn_ConnSet
∪ eConn_Conn;}

if (conn[i].bottom_out, conn[j].top_in)∈E){
eConn_Conn = ## (conn[i].bottom_out,

conn[j].top_in) ##;
EdgeConn_ConnSet = EdgeConn_ConnSet

∪ eConn_Conn;}}
End Algorithm FindeConn-Conn

Ⅳ. EDGE COVERAGE ANALYSIS
Edge coverage analysis is a structural testing technique,

which helps to eliminate gaps in a test suite and
determines when to stop testing. We use four metrics
standard to evaluate the effectiveness of edge coverage
criteria.

Let | |Comps is number of component of C2-style
architecture, | |Conn is number of connector of C2-style
architecture, | |Comps Conne − is the number of edge from

component to connector, | |Conn Compse − is the number of

edge from connector to component, | |Conn Conne − is the
number of edge from connector to connector.

Definition 4.1 The coverage of component to
connector is the total of edge from component to
connector divided by the number of component and
connector in C2-style architecture. It is defined as follows:

| | | |

1 1
| |

100%
| | 2 | |

ji

Comps Conn

Comps Conn
Conn i j
Comps Comps Conn

e
EC

−
= == ×

+

∑ ∑
 (1)

Definition 4.2 The coverage of connector to
component is the total of edge from connector to
component divided by the number of component and
connector in C2-style architecture. It is defined as follows:

| || |

1 1
| |

100%
| | 2 | |

i j

CompsConn

CompsConn
Comps i j
Conn Comps Conn

e
EC

−
= == ×

+

∑ ∑
 (2)

Definition 4.3 The coverage of connector to connector
is the total of edge from connector to connector divided

by the number of component and connector in C2-style
architecture. It is defined as follows:

| | | |

1 1
| |

100%
| | 2 | |

i j

Conn Conn

Conn Conn
Conn i j
Conn Comps Conn

e
EC

−
= == ×

+

∑ ∑
 (3)

Definition 4.4 The coverage of C2-style architecture is
the average of the coverage of component to connector,
the coverage of connector to component, and the
coverage of connector to connector. It is defined as
follows:

 2

3

Conn Comps Conn
C Comps Conn ConnEC EC ECEC

+ +
= (4)

Ⅴ. CASE STUDY
In order to better describe the above modeling process

and explain the correctness of analysis process, we have
implemented our proposed technique for the computation
of edge coverage for simple JAVA programs. The
experiment results, results analysis, and discussion are
described in detail.

A. Case
KLAX system [3] is a video game of the C2-style

architectural. The game includes three parts: KLAX
Chute drops tiles of random colors at random times and
locations; KLAX Palette catches tiles coming down the
Chute and drops them into the Well, and Well removes
horizontal, vertical, and diagonal sets of three or more
consecutive tiles of the same color the collapse down the
tiles above them to fill in the newly-created empty spaces.

The game calculates the scores accordingly. The C2-
style architecture designed for the game of KLAX is
shown in Fig. 3, where ADT components encapsulate the
game’s state, Logic components request changes of ADT
state in accordance with game rules and interpret ADT
state change notifications to determine the state of the
game in progress, and artist components maintain the
state of a set of abstract graphical objects.

 Figure 3. KLAX architecture in the C2-style

1124 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

Fig. 4 shows the corresponding CIG for the example
KLAX system of Fig. 3 according to C2-style
architecture specification. In the figure, there are three
types of edge, which are (LM.top_out, LTC.bottom_in)
represents the edge from component LayoutManager to

connector LTConn, (ALAC.bottom_out, PA.top_in)
represents the edge from connector ALAConn to
component PaletteADT, and (LTC.top_out, TAC.
bottom_in) represents the edge from connector LTConn
to connector TAConn.

For example, the CIG depicted in Fig. 4 has:
V = {GraphicsBinding.top_out, GraphicsBinding.top_

in, GLConn.bottom_out, GLConn.bottom_in, GLConn.
top_out, GLConn.top_in, LayoutManager.bottom_out,
LayoutManager.bottom_in, LayoutManager.top_out,
LayoutManager.top_in, …}.

E = {(GraphicsBinding.top_out, GLConn.bottom_in),
(GLConn.bottom_out, GraphicsBinding.top_in),
(GLConn.top_out, LayoutManager.bottom_in), …}.

Vstart = {GraphicsBinding.top_out, NextTilePlacing
Logic.top_out, StatusLogic.top_out}.

Vend = {ClockLogic.bottom_in, StatusADT.bottom_in,
ChuteADT.bottom_in, WellADT.bottom_in, PaletteADT.
bottom_in}.

B. Experiment Result
We have implemented a prototype tool named C2 Tool

that generates edge coverage automatically by our
approach. We have implemented our tool using JAVA
programs. The tool uses C2-ADL specification as input.
Then it analyzes the names of all components, connectors
and interfaces, interfaces types, the connection
relationship between components and connectors and so
on. These are stored in corresponding data structure
respectively. Then according to edge coverage criteria, it
can generate edge coverage set. In addition, the tool also
provides the help documents about the details of the
system functions, the operation and some open source
code in an html format and so on.

Figure 5. C2 tool application interface and EComps-ConnCC set

Figure 4. CIG of KLAX system

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1125

© 2012 ACADEMY PUBLISHER

Fig. 5 shows the application interface of the C2 tool
and the edge coverage set from component to connector
according to coverage criteria EComps-ConnCC, where
the upper part represents C2-ADL specification of
software architecture, the next part is edge coverage set
according to coverage criteria correspondingly.

It can be discovered from Fig. 5 that coverage criteria
EComps-ConnCC covers 24 edges from component to
connector according to KLAX system specification.
Similar, coverage criteria EConn-CompsCC covers 24
edges from connector to component.

Fig. 6 shows the application interface of the C2 tool
and the edge coverage set from connector to connector
according to coverage criteria EConn-ConnCC.

Tab. I illustrate the computation of three coverage

using the Fig. 3 and experiment result of Fig. 5 and Fig. 6.

According to (4), the coverage result of KLAX system

is:
1 (85.7% 85.7% 21.4%) 64.3%
3

KLAXEC = + + =

C. Result Analysis
Fig. 7 shows the Elevator system [4] experiment

results [5]. In this figure, X-coordinate describes the
Elevator car scales of the Elevator system: there is one,
two, three, four, and five Elevator car respectively. Y-
coordinate is the test coverage.

There are four curves in this figure: Three is the result
according to methods proposed in this paper. The other is
the coverage result of C2-style architecture. The values in
this figure corresponding to the same X-value are
obtained under the same Elevator car.

From Fig. 7, we have:
• The coverage of component to connector is same

as the coverage of connector to component, and
the value increased continuously with the
Elevator car growing.

• The coverage of connector to connector increased
continuously with the Elevator car growing.

• The coverage of component to connector and the
coverage of connector to connector have a result
of the same with the Elevator car growing.

• The coverage of C2-style architecture increased
continuously with the Elevator car growing.

D. Discussion
Zhenyi and Offutt defined six architecture relations [6]

among architecture units: Component(Connector)_
Internal_Transfer_Relation(N.interf1, N.interf2),
Component(Connector)_Internal_Sequencing_Relation(N.
interf1, N.interf2), Component(Connector)_Internal_
Relation(N1.interf1, N1.interf2), N_C_Relation(N.interf1,
C.interf1) or C_N_Relation(C.interf1, N.interf1), Direct_
Component_Relation(N1.interf1, C1.interf1, C1.interf2, N2.
interf2), and Indirect_Component_Relation(N1.interf1, C1.
interf1, C1.interf2, N2.interf2, C2.interf1, C2.interf2, N3.
interf1). The relations are used to define architecture
testing paths, which are then used to define architecture
level testing criteria. Let Ni are components, Cj are
connectors, and Interfk are interfaces. Where:

30
35
40
45
50
55
60
65
70
75
80

C
ov

er
ag

e
(%

)

46.2 47.1 47.6 48.0 48.3

46.2 47.1 47.6 48.0 48.3

38.5 47.1 57.1 64.0 69.0

43.6 47.1 50.8 53.3 55.2

One Two Three Four Five
Conn
CompsEC
Comps
ConnEC
Conn
ConnEC

KLAXEC

Figure 7. Experiment result

Figure 6. C2 tool application interface and EConn-ConnCC set

TABLE I.
COVERAGE COMPUTATIONS ON KLAX

Coverage Computation Value
Conn

CompsEC

Comps

ConnEC

Conn

ConnEC

8 1 8 2
16 2 6
× + ×

=
+ ×

2 2 5 2 4 3 1 4
16 2 6

× + + × + × +
=

+ ×

1 1 1 1 1 1
16 2 6

+ + + + +
=

+ ×

= 85.7 %

= 85.7 %

= 21.4 %

1126 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

• N_C_Relation(N.interfi, C.interfj) is equivalent to
eComps-Conn(N.top_out, C.bottom_in) or eComps-Conn
(N.bottom_out, C.top_in), C_N_Relation
(C.interfi, N.interfj) is equivalent to eConn-Comps(C.
top_out, N.bottom_in) or eConn-Comps(C.bottom_
out, N.top_in).

• Direct_Component_Relation(N1.interfi, C2.interfj)
and a C_N_Relation(C2.interfk, N3.Interfl) is
equivalent to the combination of eComps-Conn(N1.
top_out, C2.bottom_in) and eConn-Comps(C2.top_out,
N3.bottom_in) or eComps-Conn(N1.bottom_out, C2.
top_in) and eConn-Comps(C2.bottom_out, N3.top_in).

• If there are relations that connect N1, N2, N3, C1,
and C2 together, then the resulting path
N1−C1−N2−C2−N3 is equivalent to a number of
combinations of eComps-Conn(N1.top_out, C1.
bottom_in), eConn-Comps(C1.top_out, N2.bottom_in),
eComps-Conn(N2.top_out, C2.bottom_in), and eConn-

Comps(C2.top_out, N3.bottom_in) or eComps-Conn(N1.
bottom_out, C1.top_in), eConn-Comps(C1.bottom_
out, N2.top_in), eComps-Conn(N2.bottom_out, C2.
top_in), and eConn-Comps(C2.bottom_out, N3.top_in).

Ⅵ. RELATED WORK

The technologies of software architecture testing
mainly concentrate on the establishment of abstract
testing model and the extraction of dynamic architecture
features. Bertolino et al [1,7] proposed the thought that
testing cases were derived from the software architecture
description, founding the beginning of a matter for
software architecture analyzing and testing.

Muccini et al [8] used software architecture as the
reference model for testing with its corresponding
architecture specification. Zhenyi and Offutt presented in
[6] an architecture-based testing technique to test
software. Software architectures abstract away details
from applications so the applications can be viewed as
sets of components with connectors that describe the
interactions among components. Architecture description
languages are used to model software architecture for
analysis and development. Muccini et al [9] proposed an
approach to handle the retesting of a software system
during evolution of both its architecture and
implementation, while reducing the testing effort.

Lun and Xu introduced πBG to describe software
architecture. They presented seven testing coverage
criteria and discussed the subsume relation between
testing criteria [10,11]. Lun and Ding [12] presented a
formal approach to analyze architecture-based test criteria
by RDG and automata based on the formal description of
the software architecture, and generating test sequences
according to two testing criteria. Lun and Chi [13]
presented a software architecture testing technology base
on C2-style. First, it describes software architecture
through C2-style, then represents software architecture
through CIG, and abstracted the behavior of interactive
between components and connectors. Formalized
architecture edge coverage, generated the testing edge
sets that covered the architecture according to the edge

coverage criterion and algorithms, and analyze the
relation of test path numbers between software
architecture testing criteria. Muccini et al [14] proposed a
specialization and refinement of our general approach for
SA-based conformance testing, he deal with the SA to
code mapping rules imposed by the C2 framework helps
to limit the mapping problem, and allows a systematic
testing approach.

Ⅶ. CONCLUSIONS AND FUTURE WORK

This paper presents a software architecture testing
technology based on C2-style. First, it describes software
architecture through C2-style, then represents software
architecture through CIG, and abstracted the behavior of
interactive between components and connectors.
Formalized architecture edge coverage, generated the
testing edge sets that covered the architecture according
to the edge coverage criterion and algorithms. This
technology could establish an abstract model to describe
the characteristics of dynamic architecture, it covered all
the testing component nodes and reduced scale of testing
coverage set, so that test the architecture effectively.

As for the future work, the application of the approach
needs to study at the implementation level. It is also
planned to investigate other testing criteria and testing
criteria adequacy and the approach to generate test cases
which satisfy the testing criteria without necessarily
simulating the execution process of all possible test paths.

ACKNOWLEDGMENT

Part of this work is supported by the Natural Science
Foundation of Heilongjiang Province of China under
Grant No. F201036, the Scientific Research Foundation
of Heilongjiang Provincial Education Department of
China under Grant No. 11551127.

REFERENCES

[1] A. Bertolino, P. Inverardi, H. Muccini, “An Explorative
Journey from Architectural Tests Definition downto Code
Test Execution”, in: Proc. of 23rd ACM/IEEE
International Conference on Software Engineering
(ICSE2001), Washington, USA, pp. 211-220, May 2001.

[2] N. T. Richard, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, J. E. Robbins, “A Component- and Message-
Based Architecture Style for GUI Software”, IEEE Trans.
on Software Engi., vol. 22, pp. 390-406, June 1996.

[3] M. M. Gorlick, R. R. Razouk, “Using Weaves for Software
Construction and Analysis”, in: Proc. of 13th Int’1. Conf.
Software Engineering, Los Alamitos, CA, USA, pp. 23-34,
May 1991.

[4] H. Muccini, M. Dias, D. J. Richardson, “Software
Architecture based Regression Testing”, Journal of
Systems and Software, vol. 79, pp. 1379-1396, October
2006.

[5] L. J. Lun, X. Chi, “On the Relation of Software
Architecture Testing Criteria in the C2 Style”, in: Proc. of
2nd of the International Conference on Computational
Intelligence and Software Engineering (CiSE2010), Wuhan,
China, December 2010.

[6] J. Zhenyi, J. Offutt, “Deriving Tests from Software
Architectures”, in: Proc. of 12th IEEE International

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1127

© 2012 ACADEMY PUBLISHER

Symposium on Software Reliability Engineering,
Washington, DC, USA, pp. 308-313, November 2001.

[7] A. Bertolino, F. Corradini, P. Inverardi, H. Muccini,
“Deriving Test Plans from Architectural Descriptions”, in:
Proc. of ACM Proceedings International Conference on
Software Engineering (ICSE2000), New York, USA, pp.
220-229, June 2000.

[8] H. Muccini, A. Bertolino, P. Inverardi, “Using Software
Architecture for Code Testing”, IEEE Trans. on Software
Engi., vol. 30, pp. 160-171, March 2004.

[9] H. Muccini, M. Dias, D. J. Richardson, “Towards Software
Architecture-based Regression Testing”, ACM SIGSOFT
Software Engineering Notes, vol. 30, pp. 1-7, April 2005.

[10] L. J. Lun, H. Xu, “An Approach to Software Architecture
Testing”, in: Proc. of 9th International Conference for
Young Computer Scientists (ICYCS2008), Zhangjiajie,
China, pp. 1070-1075, November 2008.

[11] L. J. Lun, H. Xu, “Analysis of the Subsume Relation
between Software Architecture Testing Criteria”, in: Proc.
of 2008 International Conference on Computer Science
and Software Engineering (CSSE2008), Wuhan, China, pp.
698-701, December 2008.

[12] L. J. Lun, X. M. Ding, “Analyzing Relation between
Software Architecture Testing Criteria on Test Sequences”,
in: Proc. of 2009 IEEE Secure Software Integration and
Reliability Improvement (SSIRI2009), Shanghai, China, pp.
181-186, July 2009.

[13] L. J. Lun, X. Chi, “Software Architecture Testing in the C2
Style”, in: Proc. of 2010 3rd International Conference on
Advanced Computer Theory and Engineering
(ICACTE2010), Chengdu, China, vol. 1, pp. 123-127,
August 2010.

[14] H. Muccini, M. Dias, D. J. Richardson, “Systematic
Testing of Software Architectures in the C2 style”, in:
Conf. Fundamental Approaches to Software Engineering
(FASE2004), Barcelona, Spain, LNCS 2984, pp. 295-309,
March 2004.

Lijun Lun was born in Harbin,
Heilongjiang Province, China, in 1963.
He received his B.S. degree and Master
degree in Computer Science and
Technology from Harbin Institute
Technology of Computer Science and
Technology, China, in 1986 and 2000
respectively.

Currently, he is a professor, and
teaches and conducts research in the areas of software
architecture, software testing, and software metrics, etc.

Xin Chi was born in Harbin,
Heilongjiang Province, China, in 1990.
She is a three year’s college student at
Harbin Normal University, China, since
2009. She has been engaged in software
architecture testing and software metrics
research for approximately three years.

Xuemei Ding was born in Harbin, Heilongjiang Province,
China, in 1972. She received her B.S. degree and Master degree
in Computer Science and Technology from Heilongjiang
University and Harbin Institute Technology of Computer
Science and Technology, China, in 1996 and 2000 respectively.
Currently, she is an associate professor, and teaches and
conducts research in the areas of software engineering, neural
network, and one-class classification, etc.

1128 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

