
Automatic Conversion of Structured Flowcharts 
into Problem Analysis Diagram for Generation of 

Codes 
 

Xiang-Hu Wu 
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China; 

Email: Wuxianghu@hit.edu.cn 
 

Ming-Cheng Qu, Zhi-Qiang Liu, Jian-Zhong Li 
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China; 

Email: Qumingcheng@126.com; Liuzhiqiangmar@sina.com; Lijz@hit.edu.cn 
 
 
 

Abstract—Compared with flowchart, problem analysis 
diagram (PAD) can not only be used to describe the 
sequence of program but also the hierarchy structure. It is 
of great significance to automatically convert flowchart to 
PAD for generation of codes. There are some deficiencies in 
existing researches, and their key algorithms and 
technologies are not elaborated. By analyzing the 
characteristics of PAD and structured flowchart, a coding 
strategy is proposed, and a structure identification and 
coding algorithm are put forward for structured flow 
diagram and PAD. Based on the coding strategy a 
transformation algorithm which can transform flowchart 
into a semantically equivalent PAD is proposed. Then by 
using recursive algorithm the specific language code are 
generated from PAD. Finally a integrated development 
platform is developed using such algorithms, including 
flowchart modeling, code automatic generation, and 
CDT\GCC\GDB. The correctness and effectiveness of 
coding strategy and algorithm, the structural 
transformation from flowchart to PAD, and automatic 
generation of codes based on PAD have been verified 
through practical operations. 
 
Index Terms—Automatic generation of codes; structured 
flowchart; identification of structure; problem analysis 
diagram; integrated development platform 

I.  INTRODUCTION 

Software development ideas based on Model Driven 
Architecture (MDA) have attracted much attention from 
the research community in recent years[1,2]. MDA is first 
proposed by OMG. It is a methodology and standard 
system by which software systems are built on the basis 
of a variety of models, through model transformation to 
drive system development[3]. The development of 
Model-driven software is a hot issue in the current field 
of software engineering, and it has become a new 
software development paradigm to improve the quality 
and efficiency of software development[4]. 

Standard flowchart plays an important role during 
requirement analysis, overall design and detailed design 
of software development[5]. However the use of 
flowchart is limited to display, communication and 

description only to make communication and document 
formation easy. Direct conversion of flowchart into a 
specific language code is more in line with the objective 
of MDA[6,7]. 

Flow chart describes the control logic of a program by 
top-down process. For PAD (problem analysis diagram), 
it has the capability of top-down and left-right. So we can 
say if flowchart is a one-dimension chart, then PAD is a 
two-dimensional chart[8]. So, the transformation from 
flowchart to PAD can further enhance the readability of 
an algorithm, reduce the difficulty of a system design and 
improve the reliability and robustness of software[9]. 

Recently, there are some reports about the automatic 
generation of code from flowchart. However, these 
researches all have certain deficiencies, and the core 
algorithm and technologies are not public, so the 
accuracy and validity are hard to be convinced. More 
researches, such as “AthTek Code to FlowChart”, “Code 
to Chart”, “AutoFlowchart” etc, are just its reverse 
engineering, that is automatic generation of flowchart 
from code.  

II.  RELATED WORK 

Currently, automatic code generation is a mainstream 
technology for real-time embedded system application. 
There is a number of code generation technologies based 
on object-oriented and state diagram reported in recent 
years[10-13]. Now Rose, Rhapsody, Matlab and other 
automated development tools already have these features. 
The concept of real-time framework is adopted by many 
commercial IDEs. Such as the "ROOM virtual machine" 
of "Real-time Object-Oriented Modeling", the 
"visualSTATE engine" of "IAR visualSTATE" and the 
"Object Execution Framework (OXF)" of "I-Logix 
Rhapsody". But for strong real-time weapon systems, the 
code should be refined as much as possible, so it will lead 
to bad efficiency for the software system based on real-
time framework. 

Hemlata Dakhore presented a strategy that bases on 
XML parser to generate code. But the paper did not 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1109

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.5.1109-1120



discuss how to identify the semantic of a specific 
flowchart. That is, the identification method of selection 
and loop are not discussed. According to the method, it 
must first determine whether a judgment node is a loop or 
selection, this information must be specified in advance 
by the modeler. If so it will lose the flexibility and 
convenience of a flowchart model, and also lack of 
automation and intelligence. And the paper only gives a 
sequence-selection simple example, for the algorithms of 
converting flowchart to XML and automatically 
generating code are not discussed[14]. 

Martin C. Carlisle proposed a modeling and simulation 
system RAPTOR, which provides selection and loop 
primitives. This means that the modelers must know what 
kinds of structures they should draw in advance. While in 
standard flowchart there is only a judgment node, loop 
and selection nodes should be determined according to 
the semantic of a specific flowchart. So the RAPTOR is a 
specialized and non-standard graphical language. And 
this article only describes the functions of a system[15]. 

Tia Watts gave a flowchart modeling tool SFC, which 
can be used to automatically generate a code. But its 
operation is mechanical, can only be inserted into pre-
standard graphical elements at fixed points, the flexibility 
is very low, operation is not convenient, lack of 
scalability, and it does not support the component model. 
Most importantly, it does not support nested flowchart 
(processing node can be implemented as a sub-flow 
chart)[16]. Kanis Charntaweekhun simply introduced the 
method of how to use flow chart for programing and its 
advantages, and said that the developed system can 
transform flowchart into code. But, the conversion 
algorithm, key technologies and data structures are not 
mentioned, and the examples given are very simple[17]. 

 

III.  MAIN WORK AND CONTRIBUTION 

Main contribution By analyzing the characteristics of 
PAD and flowchart, a coding strategy is proposed, we put 
forward a structure identification and coding algorithm 
based on it, after taking the flowchart identified and 
coded in previous step as input, a algorithm which can 
convert structured flowchart to PAD is presented in 
detail, at last we proposed a algorithm for automatic 
generation codes from PAD. 

We designed and implemented an integrated 
development platform based on Eclipse and algorithms 
presented above. The platform uses a structured flowchart 
to describe program logic and convert flowchart model 
into standard ANSI-C code. Code editor (CDT), 
compilation tools (GCC) and debugging tools (GDB) are 
all integrated into this platform.  

(1) Build the system with flowchart: Tasks and 
interrupt service can be modeled, platform can generate 
an instance of the task or interrupt, and support nested 
flowchart model and code generation. 

(2) Variables and head-file management: 
Management of global variables, local variables, macros, 
and various header files. 

IV.  MAIN WORK AND CONTRIBUTION 

A. PAD vs structured flowchart 
Any complex algorithm can be composed of three basic 
structures, i.e., sequence, selection and loop. These basic 
structures can be coordinated, so that they can include 
each other, but they can not cross and directly jump to 
another structure from the internal of a structure. As the 
whole algorithm is constructed by these three structures, 
just like modules, and so, it has the characteristics of 
clear structure, easily verifying accuracy, easy error 
correction[18,19]. 

Flowchart is independent of any programming 
language. Structured flowchart can be further divided into 
five kinds of structures: sequence, selection, more 
selection, pre-check loop and post-check loop, as shown 
in figure 1. Any complex flow chart can be built by the 
combination or the nest of the five basic control 
structures. Now there are many tools which support 
flowchart modeling, such as Visio, Word, Rose and so 
on. 

A

B

(1)sequence

P

A B

TF

(2)selection

P

S

T       F

(3)while-do/for

S

P

T

F

(4)do-while

P=1

F

P=2

F

P=3

F

:

P=n

F

A1
T

A2
T

A3
T

An
T

(5)case  
Figure 1.  Five structures of structured flowchart 

PAD is the acronym for Problem Analysis Diagram. It 
is made by Japan Hitachi, evolved by flowchart. It has 
now been approved by ISO. Its advantage is clear, 
intuitive, and the order and hierarchy of program can be a 
good show. We can say that if the flow chart is a one-
dimensional, PAD is then two-dimensional. A lot of 
people use PAD for system modeling at present in China 
and other countries. As shown in Figure 2, PAD has also 
set up five basic control structure primitives. 

 
Figure 2.  Five structures of PAD 

 
Figure 3.  Examples of convergence 

1110 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



In order to make flowchart model more clear and 
intuitive and unambiguously, as shown in Figure 3, in 
addition to the order structure, the remaining four 
structures all use a judge node, when the executions exit 
their structures, the page reference primitive ("o") must 
be used. It is called "on page reference" in visio, and in 
this paper it is called convergence, as shown in Figure 5. 

 
Figure 4.  Flow of program expressed by PAD 

In this paper we use the most commonly used five 
kinds of primitives for flowchart for automatic generation 
of code, and they are: “Begin”, “End”, “Process”, 
“Judgment” and “Convergence”. 

 

B. Idea for automatic generation of codes 
The semantics of PAD and flowchart can be 

transformed to and from each other. But in comparison 
with flowchart, PAD can more clearly depict the order 
and hierarchy of program. A PAD will start from the top 
of the left vertical line, and execute in Top-down order. 
When it encounters judgment or loop, it will go into the 
next level from left to right, and will continue from the 
top of the vertical line at the next level until it reaches the 
bottom of that vertical line, and then return to the exit 
position of the previous level. So it continues until the 
execution arrives at the bottom of main vertical line (the 
left one). If we can effectively travel onto every node in a 
PAD, and when the depth-first traversal strategy is used, 
the traversal process is just consistent with the execution 
order of PAD. An example from PAD to flowchart is 
shown in Figure 7. 

The flowchart equivalent to Figure 4 is shown in 
Figure 5. In Figure 7 each selection and loop structure 
end at their convergences is named by the judgment 
condition of judgment node. The analysis of semantic is 
as follows: first execute code a, then a loop “UNTIL X6”, 
this loop corresponds to a "do-while (X6)" structure. 
Code block b will execute first in structure "UNTIL X6", 
then X1(if-else structure), when "UNTIL X6" finishes, 
code block j will executes. The execution order and 
hierarchy of program can be seen clearly in Figure 4, but 
it is not obvious and intuitive in Figure 5. 

Main ideas: Firstly, convert flowchart into PAD in 
consistent semantics, and then adopt depth-first search 
strategy to generate code from PAD. 
 

 
Figure 5.  Flowchart semantically equivalent to Figure 4 

C. Node coding strategy 
It can be seen from figure 6 the order of program can be 
represented by longitudinal line and the level can be 
represented by the transverse layer. So each primitive 
node can be located by sequence coding and level coding. 
From PAD every layer expands with judgment node. 
After expanding, structures can be loop (while/for/do-
while) or judgment (if-else/if/case). If each node of a 
flowchart has a unique code to express the sequence and 
level position, we can convert flowchart into PAD using 
the unique code. 

Coding strategy: (1) The basic unit of coding for 
every node is a number in the form of XXYY (length is 
4); (2) where XX is the coding number of branches for 
judgment node, and start counting from 00; (3) YY is a 
sequence code which increases one by one in the same 
layer, and starts counting from 00; (4) if the level 
increases one(the follow-up node of judgment), the length 
of code will increase by 4; (5) The node code of a new 
layer inherits from the code of its direct judgment node 
and append four numbers at its tail; (6) The code of every 
convergence is the same as the one of its corresponding 
judgment node. 

The code for the nodes in figure 6 are：Node1=0000, 
Node2=0001, Node3=0003, Node4=00010000, Node5= 
00010001, Node6= 000100010000, Node7= 00010001-
0001  and Node8=000100010100. 

From the coding strategy: (1) The hierarchy of a PAD 
can be learned from the code length; (2) the productions 
of levels all start from judgment node; (3) The code 
length of judgment node is four longer than the ones in 
the direct follow-up layer. 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1111

© 2012 ACADEMY PUBLISHER



 
Figure 6.  Correspondence between code and PAD 

The codes of each node in Figure 5 are: Node1=0000, 
Node2=0001, Node3=0003, Node4= 00010000, 
Node5=00010001, Node6=000100010000, Node7= 
000100010001, and Node8=000100010100. 

It is known from the strategy that it is suitable for PAD 
and flowchart, because all the layers start from the 
judgment node. 

Special regulation: the code of Convergence must be 
the same as the one of its corresponding Judgment. 

V.  STRUCTURE IDENTIFICATION AND NODE CODING 

A. The minimum transmission time model (A) 
(1) Identification of basic structure 

For the three basic structures shown in figure 7, the 
loop structure must be a cycle path, while the sequence 
and selection structures must not be. Figures A and B 
both have a cycle path. For a basic structure, if a cycle 
path occurs in a Process node for the first time, its current 
father (where it comes from) must be a Judgment, if not, 
the flowchart must be wrong. We can identify the 
Judgment as a do-while structure. If a cycle path occurs 
in a Judgment node, we can also identify its current father 
(Judgment node) as a do-while structure. If all the sons of 
a Judgment have been processed (return from their 
Convergence node), and the Judgment has not been 
identified, we can identify it as a Selection structure. 

It can be seen from figure 7 that the identification of 
while/for structure depends on its Judgment only; and the 
identification of do-while must depend on the first node 
(Process or Judgment: node J in A of figure 7, Judgment 
can exist in the nested structure, as shown in figure 8). 
The first node in a do-while structure, the Judgment of a 
while structure and the Convergence of a selection 
structure are all called key nodes. 

 
Figure 7.  Three basic structures 

(2) Identification of nested structure 
According to the execution process of flowchart, the 
structure first executes to end must be the internal and 
basic structure. In figure 8, nested structures (1) (2) (3) 
are constructed by the basic structures shown in figure 7. 
As each basic structure completes (jump to their 
Convergence), the out layer structures are executed one 
by one. So if nested structures exist, the internal 
structures must be identified firstly, and then the out 
layer. 

As the identification of a while structure only depend 
the Judgment node itself (begins and finishes at itself), so 
if a cycle path appears in the Process node and its current 
father (where it comes from) is Judgment, then we can 
identify the father as a do-while structure. If the Process 
is the first node (key node) in multi-do-while, we should 
record the nested level in the Process node and build a 
link between the Process node and its current father. 

Similarly, if a Judgment node (JN) has been identified 
as a while/for or selection structure, and a cycle path 
again appears in the Judgment node, and its current father 
is Judgment node, then we can identify the father as a do-
while structure. If the Judgment node (JN) is the first 
node (key node) in a multi-do-while structure, then we 
should record the nested level in the Judgment node (JN) 
and build a link between the Judgment node (JM) and its 
current father. 

As shown in In figure 8, the three figures are all nested 
do-while structures. The white nodes in figure 8 are all 
key nodes. In figure (1) there are two cycle paths in node 
F, and its current father F1 or G is Judgment, so F1 and G 
are both identified as do-while structures; as shown in 
figure (2), H is a key node of while structure, meanwhile 
it is a key node of outer layer do-while structure; as 
shown in figure (3), D is identified as Selection structure, 
then a cycle path appears in D, so D is the key node of the 
outer do-while. 

 
Figure 8.  Nested structure of do-while 

In order to recursively traverse, every Judgment 
node must be able to have a direct access to its 
Convergence node, so it can jump current structure to 
traverse the outer nodes recursively. As a Judgment node 
and its Convergence is matched, when a Judgment has 
been traversed, its Convergence must be the subsequent 
one. So we can use a stack to match them. Define a stack 
as StackofJudgement, when a Judgment node is first in, 
we put it into StackofJudgement, when the execution 
arrives at a Convergence (as currentConvergence), pop 
the first node (as currentJudgment), and build a link 

1112 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



between currentJudgment and currentConvergence, i.e., 
currentJudgment.Convergence= currentConvergence.  
If the basic structures shown in figure 3 are nested by do-
while, we can get the structures shown in figure 8. While 
D, F1, H will be identified first, then cycle paths will 
again appear in F, H, D nodes, so we can know the outer 
structure must be do-while. Then E, G, I are identified as 
do-while structure. We should build links between them 
and G, I, E. Meanwhile the nested level (as 
doWhileCounter) of G, I, E should do 
doWhileCounter++. The program can access G, I, E from 
D, F, H by the combinative conditions: get the father of 
(D,F,H) and father.doWhileNode=(D,F,H) and 
father.doWhileCounter =(D,F,H).doWhileCounter. 

B. Structure recognization and coding algorithm 
General description 

We used a depth-first search algorithm based on 
recursion, which consists of two parts: one is structure 
identification and coding (called CodeAlgorithm), the 

other one is recode for do-while (called Recode). The 
nodes are coded during identification process. 

Here a problem appears, as the Judgment of do-while 
structure appears in the end of a structure, so if we code 
from top-down during the traverse, the key node of do-
while structure will get the highest level coding and 
Judgment node will get the lowest level coding. This is 
different from the coding strategy above. To keep 
consistentency, we should recode all the nodes in a do-
while structure when the Judgment is identified as do-
while. So we give a recode algorithm (called Recode) for 
do-while structures which is called in CodeAlgorithm 
when a do-while is identified. 

As a layer starts from a Judgment, we should process 
all the sub-nodes recursively when the program arrives at 
a Judgment. 

The return conditions of recursion: no need return from 
sequence; when arrive at a Convergence return; when a 
Judgment has been Identified return, and jump the 
Convergence of Judgment to process the follow-up 
nodes. 

(1) : 
(2) : 
(3) : 
(4) : 
(5) : 
(6) : 
(7) : 
(8) : 
(9) : 
(10) : 
(11) : 
(12) : 
(13) : 
(14) : 
(15) : 
(16) : 
(17) : 
(18) : 
(19) : 
(20) : 
(21) : 
(22) : 
(23) : 
(24) : 
(25) : 
(26) : 
(27) : 
(28) : 
(29) : 
(30) : 
(31) : 
(32) : 
(33) : 
(34) : 
(35) : 
(36) : 
(37) : 
(38) : 
(39) : 
(40) : 
(41) : 
(42) : 
(43) : 
(44) : 
(45) : 
(46) : 
(47) : 
(48) : 
(49) : 
(50) : 

/*************************************************************************** 
Function：Generate a code for every node according to the coding strategy. 
Input：All the nodes of flowchart. 
Output：The flowchart coded 
****************************************************************************/ 
Stack StackofJudgement(Judgment);  /* the elements of this stack is a Judgment, used to match Judgment and its convergnece */ 
Node root;    /*root is Begin node, its code is 0000, so the code of first node is 0001*/ 
Let the code of node be a string;     
CodeAlgorithm(root, root.son, 0000)    /*start up recursion*/  [0] 
CodeAlgorithm(Node Father, Node CurrentNode, String CurrentrCode) 
{ 

If(CurrentNode is Process)  [1] 
{     

CurrentNode.code= CurrentCode   /*Generate the code for CurrentNode;*/    [1-1] 
Increase YY of CurrentCode by one→ CodeofSon 
If(CurrentNode has not been traversed) CodeAlgorithm(CurrentNode, CurrentNode.Son, CodeofSon); 
 [2] 

   Else   
{     
    /*Father is recognized as a do-while structure, mark the Judgment and link it with his Father, include do-while and nested 

do-while */ 
    if(Father is Judgment and Father has not been recognized)     [3] 

{ 
Father.Type←do-while; 
CurrentNode.doWhileCounter++;  /*original value is zero*/ 
Father.doWhileNode=CurrentNode; 
Father. doWhileCounter= CurrentNode.doWhileCounter; 
CurrentNode.doWhileRecodeCounter=CurrentNode.doWhileCounter;/*used for recode*/ 

} 
             if(CurrentNode.doWhileRecodeCounter>0)  Recode(CurrentNode);    [4] 
        } 
    } 

If(CurrentNode is Judgment)  [5] 
{ 
     
    If(CurrentNode has not been traversed)  /*first in*/   [5-2] 
    { 
        CurrentNode.code= CurrentCode   /*Generate the code for CurrentNode;*/    [5-1] 
        Stack.push(StackofJudgement, Judgment)  /*push Judgment into StackofJudgement */    [6] 

     
For every son j of CurrentNode (except for convergence) do  /*j starts from 0*/    [7] 
{ 
    CurrentCode =currentCode+0j00；    /*nex layer*/ 
    CodeAlgorithm(CurrentNode, CurrentNode.Son, CurrentCode);    [7-1] 
} 
If CurrentNode has a son of convergence( as convergenceSon )   [7-2] 

CodeAlgorithm(CurrentNode, convergenceSon, null); 
 
[8] 
If(CurrentNode is not recognized)  /*loop structures have been recognized, the left is selections*/ 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1113

© 2012 ACADEMY PUBLISHER



(51) : 
(52) : 
(53) : 
(54) : 
(55) : 
(56) : 
(57) : 
(58) : 
(59) : 
(60) : 
(61) : 
(62) : 
(63) : 
(64) : 
(65) : 
(66) : 
(67) : 
(68) : 
(69) : 
(70) : 
(71) : 
(72) : 
(73) : 
(74) : 
(75) : 
(76) : 
(77) : 
(78) : 
(79) : 
(80) : 
(81) : 
(82) : 
(83) : 
(84) : 
(85) : 
(86) : 
(87) : 
(88) : 
(89) : 
(90) : 
(91) : 
(92) : 
(93) : 
(94) : 
(95) : 
(96) : 
(97) : 
(98) : 
(99) : 
(100) : 
(101) : 
(102) : 
(103) : 
(104) : 
(105) : 
(106) : 
(107) : 
(108) : 
(109) : 
(110) : 
(111) : 
(112) : 
(113) : 
(114) : 
(115) : 
(116) : 
(117) : 
(118) : 
(119) : 
(120) : 
(121) : 
(122) : 
(123) : 
(124) : 
(125) : 
(126) : 
(127) : 

{ 
            /* according to the condition of judgment, the detailed structures of if-else/if/case can be recognized also.*/ 

     CurrentNode.type←selection;   /* Recognized as selection structures; */ 
} 
/*Continue to process the nodes behind Convergence. */ 
CurrentNode=CurrentNode.directJudgmentNode;      
Increase YY of CurrentCode.Code by one→ CodeofSon 
CodeAlgorithm(CurrentNode, CurrentNode.Son, CodeofSon);    [9] 

        } 
        Else    /*been traversed */ 

{ 
    If(CurrentNode is not recognized)   /*the first round trip*/    [10] 
    { 
        CurrentNode.type←while or for   /* recognized as while or for structures;*/  
    } 

Else    /*been traversed and recognized*/ 
{ 

        if(Father is Judgment and Father has not been recognized)     [11] 
{ 

Father.Type←do-while; 
CurrentNode.doWhileCounter++;  /*original value is zero*/ 
Father.doWhileNode=CurrentNode; 
Father. doWhileCounter= CurrentNode.doWhileCounter; 
/*used for recode*/ 
CurrentNode.doWhileRecodeCounter=CurrentNode.doWhileCounter; 

} 
        if(CurrentNode.doWhileRecodeCounter>0)  Recode(CurrentNode,null);    [12] 

} 
} 

} 
If(CurrentNode is Convergence)  
{ 
    If(CurrentNode has not been traversed)  /*match a judgment node and a convergence node*/  [13] 
    { 
        /*as a judgment and a convergence is exist geminate, so the top judgment in stack must be able to  

match the current convergence */              
tempJudgeNode=Stack.Pop(StackofJudgement);  

        CurrentNode.directJudgmentNode= tempJudgeNode; 
        tempJudgeNode.directJudgmentConvergence= CurrentNode; 
        CurrentNode.code= tempJudgeNode.code; 

} else Return;   [14] 
} 
If(CurrentNode is End) return;    [15] 

} 
 
/*************************************************************************** 
Function: Recode do-while. 
Input: When first enter, the first parameter is the first node in do-while and the second is null. 
Output: Recoded flowchart. 
***************************************************************************/  
Stack LoopReturnStack(Judgment);  /*used by recursion return codition */ 
Recode(Node CurrentNode, String CurrentCode) 
{ 

If (is not first in)     [R1] 
{ 

 if(CurrentNode.type is loop)  
{ 

if (LoopReturnStack.top!= currentNode) Push currentNode into LoopReturnStack;  [R2] 
    else    [R3] 

{ 
    LoopReturnStack.pop; 

return;   
        } 
    } 
} 
If (CurrentCode!=null) CurrentNode.Code= CurrentCode;  [R4] 
 

    if(CurrentNode.doWhileRecodeCounter>0)   
{ 
     [R5] 

Get a father (as tfather) of CurrentNode , and meet: 
(tfather.doWhileCounter= doWhileRecodeCounter 
and tfather.doWhileNode=CurrentNode); 

CurrentNode.doWhileRecodeCounter--; 
 

Recode(tfather, CurrentNode.Code); /*Let the code of tfather be the code of CurrentNode*/  [R6] 
if(CurrentNode.doWhileRecodeCounter==0)   [R7] 

1114 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



(128) : 
(129) : 
(130) : 
(131) : 
(132) : 
(133) : 
(134) : 
(135) : 
(136) : 
(137) : 
(138) : 
(139) : 
(140) : 
(141) : 
(142) : 
(143) : 
(144) : 
(145) : 
(146) : 
(147) : 
(148) : 
(149) : 
(150) : 
(151) : 
(152) : 
(153) : 
(154) : 
(155) : 
(156) : 
(157)  

CurrentNode.doWhileRecodeCounter= CurrentNode.doWhileCounter; 
     } 

 
If(CurrentNode.type is Process)   [R8] 
{ 
    CurrentCode←CurrentCode.YY+1;  /*the sequence part of code increase one*/ 

         Recode(CurrentNode.son, CurrentCode,);    [R8-1] 
 
} 
Else if(CurrentNode.type is selection) 
{ 
    For every son j of CurrentNode (except for convergence) do  /*j starts from 0*/   [R9] 
    { 

CurrentCode =currentCode+0j00；    /*nex layer*/ 
Recode(son, CurrentCode); 

    } 
    Recode(CurrentNode.directJudgmentConvergence.son, CurrentCode);  [R10] 
} 
Else if(CurrentNode.type is loop)   [R11] 
{ 
    CurrentCode =currentCode+0000;    /*nex layer*/ 
    Recode(CurrentNode.son, CurrentCode);    /* CurrentNode.son is not the convergence */  [R11-1] 
    If(LoopReturnStack.top==null) return;   /*return to CodeAlgorithm*/     [R13] 

CurrentCode←CurrentCode.YY+1; 
Recode(CurrentNode.directJudgmentConvergence.son, CurrentCode);    [R11-2] 

} 
Else return;    [R12] 

} 

 

C. Time complexity analysis 
If no do-while exists, the algorithm will traverse all the 

nodes one by one, so the time complexity is O(n). If there 
are do-while structures, the algorithm must recode all the 
nodes inside. Let the nested do-while be L1, L2,…, L（i-1）, 
Li from inside to outside. As when coding for laye-i, the 
inside layer (i-1),…, layer-0 must be recoded, so from L1 
to L(i+1), the code times are L1=i, L2=i-1,…, L(i-1)=2, Li=1. 
Let the sum of nodes in L1 to L(i+1) are X1, X2,…, X（i-1）, 
Xi. Then the total execution times SUM=iX1+ (i-
1)X2+,…,+ 2X(i-1)+ Xi. 

In the worst case, let the most nodes kN lie in the 
innermost do-while structure, where N is the sum of 
nodes, and 0<k<1. So it can be approximately regarded 

that: X1=X2= … =Xi=kN, ( 1)
2

i iSUM kN −= . The traverse 

time for the other nodes outside is less than N, so the time 
complexity will be O(i2N). Obviously the execution time 
will increase as nested level of do-while increases. 

D. Effectiveness verification of algorithm 
As the algorithm is based on recursion, so we can use 

an exhaustive method to verify its effectiveness, 
including the recursive entry and return. For the three 
basic structures shown in figures 6, they nest with each 
other or their own can generate nine nested structures, as 
shown in figures 8, 9 and 10. We use these twelve 
structures to verify the effectiveness of the algorithm. 

Take figure (2) in Figure 8 as an example, let 
CurrentrCode an input of CodeAlgorithm be 0001. H 
enters into [5-2], and executes [5-1], H is coded by 0001, 
then execute [6], H is put into stack, execute [7], generate 
code 00010000. Here H has two sons, take H1, then 
execute [7-1](recursion-1), enter [1], execute [1-1], H1 is 
coded by 00010000, then generates new code 00010001, 

continue to process H, execute[2](recursion 2), enter [5], 
enter [10], H is identified as while/for. Return to 
[2](recursion 2), return to [7-1](recursion 1), all the sons 
of H have been processed. Execute [7-2](recursion 3), 
enter [13], H is poped and matched with X, and X is 
coded by 0001 (the same with H). Then return to [7-
1](recursion 3), jump [8], execute [7], generate code 
00020000, execute [7-1](recursion 5), and process H. 
Then H enter [11], node I is identified as do-while, H and 
I are linked and the nested level is recorded. Continue to 
execute [12], pass H into Recode function to recode it. 
When return from Recode, directly return to [7-
1](recursion 5), execute [7-2], and continue to process the 
sequent nodes behind Y. 

 

 
Figure 9.  Nest of while 

 
Figure 10.  Nest of selection 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1115

© 2012 ACADEMY PUBLISHER



 
Figure 11.  Figure 8 coded 

 
Figure 12.  Coded flowchart of figure 5 

Enter Recode function, if first in, directly execute 
[R5], by the link between H and I created previously, 
node I will be taken as tfather. Eexcute [R6](recursion 
C1), take code 0001 of H and node I (tfather) as inputs. 
Enter [R1], execute branch [R2], put H into stack, then 
execute [R4], I is coded by 0001, enter [R11], generate 
code 00010000. Continue to process, execute [R11-1] 
(recursion C2). H goes into [R1], execute branch [R2], H 
is put into stack, execute [R4], H is coded by 00010000. 
Enter [R11], generate code 000100000000, execute [R11-
1] (recursion C3), and process H1. H1 goes into [R4], and 
is coded by 000100000000, and then go into [R8]. 
Generate code 000100000001, execute [R8-1] (recursion 

C4), and process H. Then H goes into [R1], [R3], return 
to [R8-1] C4, return to [R11-1] C3, and generate code 
00010001. Jump [R13], execute [R11-2] (recursion C5), 
jump X, continue to process I, input code 00010001, I 
goes into [R1], [R3], then return to [R11-2] (C5), and 
return to [R11-1] (C2). Now the program has returned to 
I, and LoopReturnStack is empty, execute R[13], return to 
[R6] (recursion C1), execute [R7], reset 
doWhileRecodeCounter(the outer may be nested by do-
while, so the code must be reseted). Then return to 
CodeAlgorithm.  

According to the algorithm above, make code for 
Figure 5, output the coded flowchart as shown in Figure 
12. 

VI.  TRANSFORMATION FROM FLOWCHART TO PAD 

A. Description of algorithm 
The depth-first strategy is used. Here the code of node is 
defined as string, so opterator “+” means “append”.  

Define hashtable List<code, node>, and let code be 
key. 

Define function node List.GetNode(code), and search 
the node by key. 

Construct six instances of hash List, as List4, List8, 
List12, List16, List20, List24, they will be used to store 
nodes with code length from four to twenty four 
respectively. 

Define a data structure Block<NodeType, codeblock, 
SubNodeList >. NodeType: the type of node; codeblock: 
the program segment of current node; SubNodeList is 
used to store all the nodes linked to it at the same level, 
and the storage order is the execution order of a PAD. 
Convertion Process: recursion technology is used, fisrt 
scan the coded flowchart, push the nodes into responding 
hashtables, define a new Block as newBlock. The startup 
code is 0001, get the coresponding node of 0001 from 
hashtable as currentNode. If currentNode is Process, then 
newBlock.NodeType=Process, newBlock.codeblock 
=currentNode.Codeblock, and newBlock.SubNodeList= 
null; then currentCode←(the sequence part YY of 
currentCode increase one). If NodeType is selection, then 
get the sum of its sons as i, generate the next layer code: 
currentCode+0100, currentCode+0000… currentCode+ 
0(i-1)00, get the corresponding nodes from hashtable and 
put them into currentNode.SubNodeList, then recursively 
process the their sub-nodes. If currentNode is Loop, then 
directively generate code currentCode+0000, and 
recursively process its sub-nodes. 

Judgment
(selection)

Branch_1

Branch_2

:
:

Branch_x

selectionHeadPtr Node_1 …… Node_y

SubNodelist of selection

Is a instance of Block, and its 
Type is selectionHeadPtr SubNodelist of Judgment

selectionHeadPtr Node_1 …… Node_z

………… ………… ………… ………… …………

Is a instance 
of Block

 
Figure 13.  Data structure of a selection node 

1116 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



The following is the process method of the sub-nodes 
for judgment node: define a new Block selectionHeadPtr 
for every branche of selection structure, put every 
selectionHeadPtr into SubNodeList of current judgment 

node, and let selectionHeadPtr.Type=HeadPtr, then 
recursively put all the nodes of every branche into the 
SubNodeList of selectionHeadPtr, and what we can get is 
a data structure as shown in figure seven. 

(1) : 
(2) : 
(3) : 
(4) : 
(5) : 
(6) : 
(7) : 
(8) : 
(9) : 
(10) : 
(11) : 
(12) : 
(13) : 
(14) : 
(15) : 
(16) : 
(17) : 
(18) : 
(19) : 
(20) : 
(21) : 
(22) : 
(23) : 
(24) : 
(25) : 
(26) : 
(27) : 
(28) : 
(29) : 
(30) : 
(31) : 
(32) : 
(33) : 
(34) : 
(35) : 
(36) : 
(37) : 
(38) : 
(39) : 
(40) : 
(41) : 
(42) : 
(43) : 
(44) : 
(45) : 
(46) : 
(47) : 
(48) : 
(49) : 
(50) : 
(51) : 
(52) : 
(53) : 
(54) : 
(55) : 
(56) : 
(57) : 
(58) : 
(59) : 

/************************************************************* 
Function: Convert the coded flowchart into PAD. 
Input: Six hashtables, the coded flowchart. 
Output: A PAD. 
*************************************************************/ 
Define currentCode as string; 
Node GetFromHashTable(currentCode)  /*Get the node from hashtable by GetNode() method*/ 
Put the nodes(except for end and convergnece nodes) into HashTable according to their code length; 
Block beginBlock; 
beginBlock.NodeType=Begin; 
ConvertToPAD(0001, beginBlock);    /*the code of Begin is 0000, so original code is 0001*/ 
ConvertToPAD(currentCode, Blcok fatherBlock) 
{ 

CurrentNode= GetFromHashTable(currentCode); 
If (CurrentNode is null))  return;   /* recursion return condition*/ 
Block newBlock; 
If (CurrentNode is Process)  
{ 
    currentCode←currentCode.YY+1;  /*the sequence part of code increase one*/ 
    newBlock.NodeType=Process; 
    newBlock.codeblock=currentNode.Codeblock;  

newBlock.SubNodeList= null; 
fatherBlock. SubNodeList.append(newBlock); 
ConvertToPAD(currentCode, fatherBlock);   /*as in the same layer, so the fatherBlock is the same*/ 

} 
Else If (CurrentNode is Judgment) 
{ 
    If(CurrentNode.type is selection) 
    { 
        i←the sum of sons of CurrentNode; 

newBlock.NodeType= selectionType;  /*here selectionType represents the types of selection*/ 
newBlock.codeblock=currentNode.Codeblock;  
fatherBlock.SubNodeList.append(newBlock); 

 
        for(j=0;j<i;j++) 
        { 
             Block selectionHeadPtr;    /*every branch has its owe one*/ 
             selectionHeadPtr.NodeType=HeadPtr;   
             newBlock.SubNodeList.append(selectionHeadPtr); 
             TempCode =currentCode+0j00；    /*nex layer*/ 

ConvertToPAD(currentCode, selectionHeadPtr); /*begin a new layer, so the fatherBlock is  
newBlock */ 

} 
/*as all the sub-nodes have been coded, so process the nodes at the same level */ 
currentCode←currentCode.YY+1; 

ConvertToPAD(currentCode, fatherBlock); 
} 
If(CurrentNode.type is loop) 
{ 

currentCode =currentCode+0000；/*into next layer*/ 
newBlock.NodeType= loopType;  /*here loopType represents the types of selection*/ 
newBlock.codeblock=currentNode.Codeblock;  
ConvertToPAD(currentCode, newBlock);   /*begin a new layer, so the fatherBlock is newBlock */ 
/*as all the sub-nodes have been coded, so process the nodes at the same level */ 
currentCode←currentCode.YY+1;  
ConvertToPAD(currentCode, fatherBlock); 

} 
} 

} 

B. Effectiveness verification of algorithm 
We also take an exhaustive method to check the 
correctness. Take the twelve structures built previously 
as input, take Figure 11-(1) as an example: 

 
Figure 14.  A PAD generating from figure 

Execute code line-8, construct a hashtable. Here node 
“End” and “Convergence” will not be put into. Then 
execute code line-9, create a Begin block, take code 0001 
and begin block as inputs to start recursion 
ConvertToPAD. Then execute [C1], by code 0001 we 
can get node object G into CurrentNode, execute [C1-2] 
to create a new block, then G goes into [C3], [C8], 
execute [C8-1] to generate the first sub-node code as 
00010000, set the type loop to current block, then 
execute [C8-2], append G at Begin node, execute 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1117

© 2012 ACADEMY PUBLISHER



[C9](recursion 1). Continue to execute [C1], by code 
00010000 we can get node object F1, F1 goes into [C3], 
[C8], then execute [C8-1], generate the first sub-node 
code 000100000000, execute [C8-2], append F1 at G, 
then execute [C9](recursion 2). Continue to execute 
[C1], get F, goes into [C2], generate code 
000100000001, execute [C2-1], and append F at the list 
of its father F1. Execute [C2-2](recursion 3), execute 
[C1], then return to [C2-2](recursion 3), and continue 
return to C[9](recursion 2). Execute [C8-3] to generate 
code 0002, execute [C10](recursion 5), and then return to 
[C10](recursion 5). The PAD generated is as shown in 
figure 14.  

When the execution is completed, we can get a PAD 
from Figure 5, which has the same semantics with figure 
4. 

After testing, the other 11 kinds of structures can be 
converted into PAD with the semantic equivalence, each 
recursion can be called and returned correctly. 

VII.  GENERATION OF CODE FROM PAD 

The depth-first strategy is also used here. First define 
string TempCode, then pass it into CodeGenerate() 
fucntion, if encounter a process block, then append the 
program segment to TempCode; if encounter selection or 
loop blocks, then define a new string to store the 
program inside, recursively traverse the sub-nodes 
inside, and append that string to TempCode when return. 

(1) : 
(2) : 
(3) : 
(4) : 
(5) : 
(6) : 
(7) : 
(8) : 
(9) : 
(10) : 
(11) : 
(12) : 
(13) : 
(14) : 
(15) : 
(16) : 
(17) : 
(18) : 
(19) : 
(20) : 
(21) : 
(22) : 
(23) : 
(24) : 
(25) : 
(26) : 
(27) : 
(28) : 
(29) : 
(30) : 
(31) : 
(32) : 
(33) : 
(34) : 
(35) :  
(36) : 
(37) : 
(38) : 
(39) : 
(40) : 

/******************************************************* 
Function: Generate program code from PAD. 
Input: PAD. 
Output: Program code. 
******************************************************/ 
String TempCode;  /*When pass it into a function, all the operation to it whith that function will effect the original value, as it is 
address pass*/ 
CodeGenerate(beginBlock, TempCode); 
PrintAndFormatCode(TempCode);    /*output and format the code*/ 
CodeGenerate(Block CurrentBlock, String CurrentCode) 
{ 

if(CurrentBlock.NodeType is Process)  CurrentCode.Append(CurrentBlock.codeBlock); 
else if(CurrentBlock.NodeType is Selection)  
{ 
     
    Generate branch code as SelectionCode;     
    for every SubNode in CurrentBlock.SubNodeList do  

{     
    Generate branch code branchCode; 
    String branchBody; 

CodeGenerate(SubNode, branchBody); 
Insert branchBody into branchCode; 
SelectionCode.Append(branchCode); 

        } 
        CurrentBlock.Append(SelectionCode); 

} 
else if(CurrentBlock.NodeType is HeadPtr)  /*If type is HeadPtr, then process the sub-nodes*/ 
{ 
    for every SubNode in CurrentBlock.SubNodeList do CodeGenerate(SubNode, CurrentCode); 
} 
else if(CurrentBlock.NodeType is Loop) 
{ 
    Generate loop code as loopCode;  
    String loopBody;    
    for every SubNode in CurrentBlock.SubNodeList do CodeGenerate(SubNode, loopBody); 
    insert loopBody into loopCode;  
    CurrentBlock.Append(loopCode); 
} 
else return; 

} 
As the program code in TempCode is unformatted, so 

a third part tool should be called to format that file when 
they are written into a text file, here we used Codeblocks 
to do that. 

VIII.  RESOURCE SELECTION MODEL 

We developed a integrated develop platform based on 
Eclipse platform and Graphical Editor Framework 
(GEF), including flowchart modeling and automatic 
generation of code, to verify the effectiveness of the 
proposed algorithms. The overall system interface is as 
shown in Figure 15. 

We construct a model to test various complex nested 
structures, including the case of sub-flowchart nest. As 
shown in figures 15, there are totally five structures: 
switch, for, while, do-while, and if-else. The outer is 
case, in its first branch we create two sub-flowchart, the 
type of automatic code generation is source-block (all the 
code generated will be put in the original place) and 
function-call (all the code generated will be put in 
function, in the original place there will be put a function 
call statement). 
The left figure in figure 16 is a sub-flowchart of source-
block type (while nests while), the right one is function-
call (do-while nests do-while). 

1118 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



 
Figure 15.  Overall interface of integrated development platform 

The code is automatically generated as shown below. 

  
Figure 16.  Sub-flowcharts nested 

/*Task_1.c*/ 
#include "Task_2.h" 
#include "sub_flowchart_fun_call.h" 
void Task_2() 
{ 
    unsigned int inner_var; 

unsigned int inner_var2 = 44; 
int i=10; 

    switch ( inner_var ) 
    { 
    case 3 : 
    { 
        for ( inner_var = 0 ; inner_var < 10 ; inner_var ++ ) 
        { 
            printf("this is a for condition"); 
        } 
        break; 
    } 
    case 2 : 
    { 
        while ( inner_var < 0 ) 
        { 
            printf("this is a while condition"); 
        } 
        break; 
    } 
    case 1 : 
    { 
        do 

       {
            printf("this is a do_while condition"); 
        } while ( inner_var < 0  ); 
        break; 
    } 
    case 0 : 
    { 
        if ( inner_var2 > 0 ) 
        { 
            while (1) /* Generated by sub-flowchart, the type is source-
block */ 
            { 
                while (i--) 
                { 
                    printf("this is a sub-flowchart"); 
                } 
            } 
        } 
        else 
        { 
            sub_flowchart_fun_call();/*Generated by sub-flowchart, the 
type is function-call */ 
        } 
        break; 
    } 
    } 

} 
/*sub_flowchart_fun_call.h*/
#ifndef sub_flowchart_fun_call_h 
#define sub_flowchart_fun_call_h 
#include "GLOBALHEAD.h" 
void  sub_flowchart_fun_call (  ); 
#endif
/* sub_flowchart_fun_call.c*/
#include "sub_flowchart_fun_call.h" 
void sub_flowchart_fun_call (  ) 
{ 
    int i=10; 
    do 
    { 
        do 
        { 
            printf("this is sub_flowchart function call"); 
        } while (i--); 
    } while (1); 
}

IX.  CONCLUSIONS 

We proposed a structure identification algorithm for 
structured flowchart. The effectiveness of the proposed 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1119

© 2012 ACADEMY PUBLISHER



algorithm is checked using an exhaustive method, i.e., 
twelve structures can be identified, then a algorithm can 
be used to convert a flowchart identified to PAD, and 
generate code from PAD using recursion algorithm. The 
technologies and algorithms are used in a integrated 
development platform, we develop a weapon system 
based on the platform to verify the effectiveness of the 
proposed algorithm. 

 

REFERENCES 
[1] Zhang Tian, Zhang Yan, Yu Xiao-Feng etal. MDA Based 

Design Patterns Modeling and Model Transformation. 
Journal of Software. 2008,19(9):2203-2217 

[2] L V Rui-feng, WANG Gang, WEN Xiao-xian etal. 
Process model ing method of calculation independent 
model level based on MDA. Computer Integrated 
Manufacturing Systems, 2008,14(5):868-874 

[3] S. Needham. OMG Unified Modeling Language 
Specification. Object Management Group. 2003: 275-293 

[4] S. Sendall and W. Kozaczynski. Model Transformation: 
The Heart and Soul of Model-Driven Software 
Development. IEEE Software,2003,9:42–45 

[5] Zhao Zhikun, Sheng Qiujian, Shi Zhongzhi. An execution 
semantics of UML activity view for workflow modeling. 
Journal of Computer Research and Development. 2005: 
300-307 

[6] R. Eshuis, R. Wieringal. A formal semantics for UML 
activity diagrams. University of Twente, Tech Rep. 2001: 
201-204 

[7] Jiang Hui, Lin Dong, Xie Xiren. The formal semantics of 
UML state machine. Journal of Software. 2002: 2244-
2250 

[8] Y. Futamura, T. Kawai, H. Horikoshi etal. Development 
of computer programs by problem analysis 
Diagram(PAD). International Conference on Software 
Engineering archive Proceedings of the 5th international 
conference on Software engineering. San Diego, 
California, United States, 1981: 325-332 

[9] Kei Kato, Toyohide Watanabe. Structure-Based 
Categorization of Programs to Enable Awareness About 
Programming Skills. Lecture Notes in Computer 
Science,2006, Volume 4253/2006:827-834 

[10] D. Harel. Statecharts: A Visual Formalism for Complex 
Systems. Science of Computer Programming. 2007 

[11] SHEN Jian-Le, WANG Lin-Zhang, LI Xuan-Dong etal. 
An Approach to Generate Scenario Test Cases Based on 
UML Sequence Diagrams. Computer Science, 
2004,31(8):1-6 

[12] Thomas J. Ostrand, Marc J. Balcer. The Category-
Partition Method for Specifying and Generating 
Functional Tests. Communication of ACM. 2006: 31-67 

[13] S. Raman, N. Sivashankar, W. Stuart. HIL Simulators for 
Powertrain Control System Software Development. 
American Controls Conference. 2009 23-32 

[14] Hemlata Dakhore, Anjali Mahajan. Generation of C-Code 
Using XML Parser: http://www.rimtengg.com/iscet/ 
proceedings/ pdfs/advcomp/149.pdf 

[15] Martin C. Carlisle, Terry A. Wilson, Jeffrey W. 
Humphries, etal. Raptor: introducing programming to non-
majors with flowcharts. Journal of Computing Sciences in 
Colleges. 2004,19(4) 1-6 

[16] Tia Watts . The SFC editor: a graphical tool for algorithm 
development. J. Comput. Small Coll.2004, 20(2), 73-85 

[17] Kanis Charntaweekhun, Somkiat Wangsiripitak. Visual 
Programming using Flowchart. ISCIT1 2006, IEEE 
Computer World: 1-4 

[18] I. Nassi, B. Shneiderman. Flowchart techniques for 
structured programming. ACM SIGPLAN Notices, 
1973,8(8):12-26 

[19] James F. Gimpel. Contour: a method of preparing 
structured flowcharts. ACM SIGPLAN Notices. 
1980,15(10):35-41 
 
 

 

Xiang-Hu Wu is a professor in school of 
Computer Science and Technology of 
Harbin Institute of Technology (HIT). He is 
a advanced member of CCF. His research 
interests include grid computing and 
embedded computing. 
 
 

 

Ming-Cheng Qu is a Ph.D. in school of 
Computer Science and Technology of 
Harbin institute of technology (HIT). He 
received his BS and MS degree from HIT. 
His research interests include grid 
computing etc 
 

 

1120 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER




