
Percentage Aggregation Functions by Extending
SQL

Jie Xiao

Department of Information Science & Engineering,
Hunan First Normal University, Changsha, 410205, China

Email: xiaoflyfox@163.com

Yan Zhu
Department of Electronics and Information Engineering,

Loudi Vocational and Technical College, Loudi, 417000, China

JinLing Luo
Department of Electronics and Information Engineering,

Loudi Vocational and Technical College, Loudi, 417000,China

FenShi Zeng
Department of Information Science & Engineering,

Hunan First Normal University, Changsha, 410205, China

Abstract—Current SQL aggregation functions have evident
limitations for computing percentages, for which this paper
proposes two SQL aggregation functions. The two novel
aggregation functions are easy to use, which have wide
applicability and can be efficiently evaluated. They may be
used as a framework to study percentage queries and to
generate efficient SQL code. Experiments compare our
proposed percentage aggregations against queries using
OLAP aggregations. The results show that both proposed
aggregations are significantly faster than existing OLAP
aggregate functions.

Index Terms—Relation database, SQL, Query process,
Aggregate function, Percentage aggregation

I. INTRODUCTION

As a standard interface accessing relational database,

SQL is a very easy understanding relational database
query language. SQL offers users some aggregation
functions such as sum, avg, count, max and min functions.
The percentage is often used in data analysis to help
understand and compare the number of statistical
information. However, when calculate the percentage,
current SQL aggregation functions are very cumbersome
and inefficient.

Aggregation function has a wide range of applications
in the OLAP and data mining environment. Some of
current documents have been extended the computing of
aggregation functions, and one of the important
extensions is the cube operation [1]. At present, the

Transact-SQL of SQL Server proposes new relationship
operators: the PIVOT and UNPIVOT, which have
improved communication skills. PIVOT lines out for the
rotation, and implements polymerization at the same time.
Based on given pivot tables, it generates an output table
with a pivot out of the only value that corresponds to each
set of the output table. While UNPIVOT is contrary to the
implementation of the operation. The literature [2-4] is
the first study researched on the percentage of
aggregation function, but its syntax form is not easy to
understand, of which the gathering function has a poor
scalability; what’ more, when gathered on the property
and a second gathering, it adopts a number of properties
not in line with the percentage of the characteristics of
aggregation, but it can not be carried out on the property
for more than three times of gathering. The literature [5]
gave an OLAP solution, but it can not effectively extend
the slice data. The literature [6] proposed a new SQL
generator based on current SQL generator lacking of
comprehensive error detection and good scalability, but it
ignored to consider the aggregation functions.

In this paper, the proposed two kinds of percentage
aggregation functions can be used to generate SQL code;
it is also an expansion of current SQL aggregation
functions, which provides a new train of thought for
commercial databases.

II. AGGREGATION FUNCTIONS

Assume that T is a relation, id is T‘s primary key,

there are n-classification of property, agg is the property
value. That for T (id, d1, d2,..., dn, agg), classification of
property d1, d2, ..., dn group gathered for the numerical
expressions A. Take T as an n-dimensional cube, the
classification of property (Victoria) for the group

A Project Supported by Scientific Research Fund of Hunan
Provincial Education Department(09C232)

Biography: Jie Xiao(1974-), male, lecturer, postgraduate, Main
Field: database

E-mail:xiaoflyfox@163.com

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1099

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.5.1099-1102

gathered numerical attribute agg. As the percentage
emphasizes on proportion, common aggregation mainly
use the sum (). (The following will only relate to sum ()).
Here, T is also a provisional list table to view or query.

This article will use the following example of a table
for analysis. Table sales (id, province, city, sale_date,
quantity) respectively mean the main keys, provinces,
cities, quantity and the date of sale.

Table 1 Sales

id province city sale_date quantity
1 p1 c1 2005/01/01 80
2 p1 c1 2005/02/01 50
3 p1 c1 2006/01/01 40
4 p1 c2 2006/01/01 30
5 p2 c3 2005/01/01 50
6 p2 c3 2006/01/01 80
7 p2 c4 2006/01/01 70

A. Vertical gathered percentage

This article employs the following form to show
aggregation functions query:

SELECT sum (agg), d1, d2, …, dk-1 , Vpct (dk)
FROM T WHERE <condition> GROUP BY d1 ,

d2,…,dk;
Which different from general SQL is that the above

statement has a "Vpct (dk)" , of which 1 ≤ k ≤ n said the
group out, it can be used to calculate the percentage dk in
d1, d2, ..., dk-1 . Vpct () aggregation function has the
following rules:

• Because of 2 aggregation groups, the GROUP BY
statement must be exists;

• d1, d2, ..., dk and Vpct (Dk) of the group set out in
the order must be strictly limited, because the
percentage function is calculated based on dk’
properties;

• Could base on the same GROUP BY statements
with other SQL aggregation functions;

• The return interval of Vpct () is in the range of
values [0,1] or null (in addition to being 0 or when
be operated by blank value);

• If (d1, d2, ..., dk) has only an element, then the
above statement equivalent to:

SELECT sum (agg), Vpct(dk) FROM T WHERE
<condition> GROUP BY dk;

To deal with the null operation and in addition to the
operation were 0 of Vpct (), the method used is to make
Vpct () in line with sum (). If sum () = 0, then Vpct () = 0;
such sum () is null, Vpct () is also empty.

As the user needs a small result sets in general, so this
paper employs putting the result setting into the middle of
the provisional table that calculated to produce the final
result set. The specific calculation method is shown in
Figure 1.

Because there is connection operation to the
properties of d1, d2, ..., dn, so property index to d1, d2, ...,
dn could improve the executive performance. However, to
maintain the index will consume more system resources.

Therefore, in order to get each county (district) in the
city's proportion of sales inquiries of Table 1, e.g.. Q1,
thus can get the results as in Table 2.

Figure 1 Percentage of vertical aggregation

Q1: SELECT sum (quantity), province, Vpct (city)

FROM sales
GROUP BY province, city;
Similarly, to inquiry to sales ratio of each province

can use the fifth rule, thus get result {(p1, 0.5), (p2, 0.5)}.

Table 2 the results gathered of Vpct(city)
province city quantity

p1 c1 85%
p1 c2 15%
p2 c3 65%
p2 c4 35%

B. The aggregation of the level of percentage

B.1 Basic form

This paper employs the following forms to represent
the level of aggregation function query:

SELECT sum (agg), d1,d2,…,dk-1,Hpct(dk)
FROM T
WHERE <condition>
GROUP BY d1,d2,…,dk;

Hpct () is similar to Vpct (), it has the following rules:
• Because of 2 aggregation groups, the GROUP BY

statement is necessary;
• Could base on the same GROUP BY statements

with other SQL aggregation functions;
• The return interval of Vpct () is in the range of

values [0,1] (the sum of tuple attribute value is 1),
or null (in addition to being 0 or when be operated
by blank value);

• Limit (d1, d2, ..., dk) more than one element
Similarly, as the user needs a small result sets in

general, so it also employs putting the result setting into

Input: SELECT sum (agg), d1,d2,…,dk-1 ,Vpct(dk)
FROM T

WHERE <condition>
GROUP BY d1,d2,…,dk;

1. Establish a provisional table Tk (d1, d2, ... , dk, agg),
computing division agg’s gathering value of d1, d2, ..., dk in
table T, and insert the gathered results into Tk.

2. If k = 1, no group gathered outcome called total, the
provisional table update agg = agg / total, which will be the
final set, thus end the algorithm; or establishing the
provisional table Tk-1 (d1, d2, ..., dk -1, agg), computing
division agg’s gathering value of d1, d2, ..., dk in table T, and
insert the gathered results into Tk-1.

3. Considering the value of 0, make the two different results
that born in the above calculation process divide and get
percentage. To avoid the creation of provisional table, there
must be update operation of provisional table Tk. It can
employ the following statement form:

UPDATE Tk SET agg =(
CASE WHEN Tk-1.agg <> 0 THEN

Tk.agg/Tk-1.agg
ELSE NULL END)

WHERE Tk-1.d1= Tk.d1, Tk-1.d2= Tk.d2,…,
Tk-1.d k-1= Tk.d k-1;

Output: percentage of dk in vertical division property.

1100 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

the middle of the provisional table that calculated to
produce the final result set. The main problem of the
percentage of the level of aggregation is that dk has only
one element in (v1, v2,..., vi). However, if the value of
the match in CASE statement has been made, then they
should stop comparison. In fact, database query optimizer
does not optimize the mechanism to identify and stop
comparison. Therefore, using another method to avoid the
CASE statement’s invalid comparison is necessary. The
specific calculation method is shown in Figure 2.

Figure 2 Percentage of horizontal aggregation

This method has overcome the shortcoming of

re-comparison, but it need to repeatedly scan Table T, so
disk I/O will have a heavier loading. However, as for
mass data, the queried middle-result set (temporary table)
usually is very small; so the loading of disk I/O can be
ignored.

Therefore, in order to get each province’s annual sales
ratio of Table 1, e.g..Q1, thus can get the results as Table
3.
Q2: SELECT sum (quantity), Hpct(province)

FROM sales
GROUP BY province;

Table 3 the results gathered of Hpct (city)
province 2005 2006 total

p1 65% 35% 200
p2 25% 75% 200

B.2 Extending form

It often needs comparison over the same period in

practical statistics, such as over the same period last year,
over the same period last month and so on. This article
employs the following forms to represent the level of
aggregation function extending:

SELECT AGG (v), d1,d2,…,dk-1,Cps(E(dk),n)
FROM T
WHERE <condition>
GROUP BY d1, d2,…, E(dk);

Among which AGG is a general aggregation function,
Cps is the same period-comparison function, E(dk) is a
time expression of dk, n is the number of compared times
over the same period.

Cps () aggregation function has the following rules:
• Because of 2 aggregation groups, the GROUP BY

statement is necessary;
• Could base on the same GROUP BY statements

with other SQL aggregation functions;
• dk limit in {d1,d2,…,dk} can be said the date or

time.
The calculation method is shown in the following:

Figure 3 Expanding of the level of aggregation

III. EXPERIMENT EVALUATION

The experiment environment is: Intel Celeron 2.53
Ghz, Memory 512MB, Windows XP professional, SQL
Server2005. Based on the percentage of the proposed
gathering function, it can adopt JAVA for a given query
to generate SQL code. As for the given sales table, it can
use generate mass date Data factory 5.2 to generate 0.5G
data. Among which the number of non-repetition of the
attribute is province:32,city:100,year(sale_data):5.

Because each query use the same parameters to
produce the same results, so their difference is the
generated SQL query code leads to a different evaluation
of the inquiry. SQL / OLAP query will adopt sum ()
function and window OVER/PARTITION BY statement
[7], under these circumstances optimizer group gathered
data can use the provisional table and index, and then
adopt the same group of properties and property values to
compare with SQL / OLAP. Inquiries are divided into 3
kinds: case 1 (d1 ... dn: sale_date; d1 ... dk: sale_date);
case 2 (d1 ... dn: province, sale_date; d1 ... dk: sale_date);

Input：SELECT sum (agg), d1,d2,…,dk-1,Hpct(dk)
FROM T
WHERE <condition>
GROUP BY d1, d2,…,dk;

1. If (d1, d2, ..., dk) has only one element, then end the
algorithm, otherwise, eliminate duplication of dk’s
properties that meets the tuple of condition <condition> in
Table T, so next there are i non –repetition values(v1, v2 , ..., v
i), of which i ≥ 1. In theory, the maximum value of i is the
total groups of tuple. But in fact, under limited conditions,
non- repetition values are generally very small, take the
annual 12 months for instance.

2. Establish a provisional table Tagg(d1,d2,…,dk-1,v1,v2,…,vi,total),
computing division agg’s gathering value of d1, d2, ..., dk in
table T, make the i non-repetition values be the different
conditions cycle i times, then insert the gathered results into
Tk, calculate the percentage of value at last.
FOR m=1 TO i DO

INSERT INTO Tagg (d1,d2,…,dk-1,vm)
SELECT d1,d2,…,dk-1,sum (

CASE WHEN agg IS NULL THEN 0
ELSE agg END),

FROM T
WHERE dk = vm AND <condition>
GROUP BY d1,d2,…,dk-1 ;

ENDDO
INSERT INTO Tagg

SELECT d1,d2,…,dk-1, sum (v1)/∑
=

i

1m

sum (vm),…,

sum (vi) /∑
=

i

1m

sum (vm), ∑
=

i

1m

sum (vm)

FROM Tagg ;
Output: the percentage of dk in level division property.

Calculate the vmax of E (dk) in Table T (T meets the
conditions of <condition>), and establish provisional Table
Tc (d1,d2,…,dk,v1,…, vmax,total), then calculate the gathered
value of d1,d2,…,dk in Table T in groups, inset the gathered
results into the provisional table at last.

INSERT INTO Tagg
SELECT d1,d2,…,dk-1,

AGG (CASE WHEN E(dk)＝vmax-n+1
THEN agg ELSE 0 END),
…

AGG (CASE WHEN E(dk)= vmax
THEN agg ELSE 0 END)

FROM T
WHERE <condition>

GROUP BY d1, d2,…,dk-1 ;

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1101

© 2012 ACADEMY PUBLISHER

case 3 (d1 ... dn: province, city, sale_date; d1 ... dk:
sale_date).

Figure 4 shows the comparison between the method
which this paper employed and the query execution time
of SQL/OLAP. It can be seen that the gathering method
this paper given is significantly better than that of
SQL/OLAP. As a result, even if the SQL/OLAP can be a
simple form to calculate percentage, the implementation
of the performance is inefficient.

Figure 4 Comparison of the execution time

VI. CONCLUSION

This paper gives two sorts of aggregation functions

being used to calculate the percentage (horizontal and
vertical gathered percentage). They can be used as a
framework to study the percentage of inquiries to give
method to generate SQL code. Experiments have studied
the percentage gathering methods and the executive
performance of SQL/OLAP gathering methods. They
show that these two methods in terms of performance

have significant improvement than SQL/OLAP gathering
methods. In order to get a better optimization, the next
step of the work need combine the horizontal and vertical
percentage aggregations under a same query. In addition,
it is necessary to make a research that under the
circumstance users parallel to submit the percentage of
inquiries; and then organize different physical storage and
index design to optimize the query.

REFERENCES

[1] Zaharioudakis M, Cochrane M, Lapis R, et al. Answering

complex SQL queries using automatic summary tables. In
ACM SIGMOD Conference[C]. New York: ACM Press,
2000, 105-116.

[2] C. Ordonez. Statistical model computation with UDFs. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 2010,22.

[3] Ordonez C.Vertical and horizontal percentage
aggregations.In ACM SIGMOD conference[C]. New York:
ACM Press, 2004, 866-871.

[4] C. Ordonez and S. Pitchaimalai. Bayesian classifiers
programmed in SQL. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 2010,22(1):139-144.

[5] Xiang Jun,Lei Ying jie. Design and implementation of
medical care data processing based on online analytical
processing. Computer Engineering and Design,
2006,27(3):485-489.

[6] Hu Hong Yin,He Cheng Wan,Yao Feng. Design and
implementation of SQL builder. Computer Engineering
and Design, 2006,27(11):2024-2027.

[7] ISO-ANSI [EB/OL]. Amendment 1: On-Line Analytical
Processing, ANSI:SQL/OLAP[S], 2003.

1102 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

