
Aspect-Oriented QoS Modeling for Cyber-
Physical Systems

Lichen Zhang

Guangdong University of Technology, Guangzhou, China
Email: zhanglichen1962@163.com

Abstract—Cyber-physical systems (CPSs) are physical and
engineered systems whose operations are monitored. Cyber-
physical systems having quality-of-service (QoS)
requirements driven by the dynamics of the physical
environment in which they operate, the description, control,
management, consultation and guarantee of QoS are very
complex and challenging work, Quality of Service(QoS) is
directly related to system's performance. This paper
proposes an aspect-oriented QoS modeling method based on
UML and formal methods. We use an aspect-oriented
profile by the UML meta-model extension, and model the
crosscutting concerns by this profile. In this paper, we build
the aspect-oriented model for specifying Quality of Service
(QoS) based on the combination of UML and RTL. We
believe that the two types of notation, graphical (semi-
formal) and, respectively, formal, can efficiently
complement each other and provide the basis for an aspect-
oriented specification approach that can be both rigorous
and practical for QoS modeling. Two examples depict how
aspect-oriented methods can be used during QoS analysis
and design process.

Index Terms—QoS, Cyber Physical systems, Aspect-Oriented

I. INTRODUCTION

A cyber-physical system (CPS)[1] is a system
featuring a tight combination of, and coordination
between, the system’s computational and physical
elements. Today, a pre-cursor generation of cyber-
physical systems can be found in areas as diverse as
aerospace, automotive, chemical processes, civil
infrastructure, energy, healthcare, manufacturing,
transportation, entertainment, and consumer appliances.
The dependability of the software [1]has become an
international issue of universal concern, the impact of the
recent software fault and failure is growing, such as the
paralysis of the Beijing Olympics ticketing system and
the recent plane crash of the President of Poland.
Therefore, the importance and urgency of the digital
computing system's dependability began arousing more
and more attention. A digital computing system's
dependability refers to the integrative competence of the
system that can provide the comprehensive capacity
services, mainly related to the reliability, availability,
testability, maintainability and safety. With the increasing
of the importance and urgency of the software in any
domain, the dependability of the distributed real-time
system should arouse more attention.[2]

Fundamental limitations for Cyber-Physical Systems
(CPS) include[3][4]:

• Lack of good formal representations and tools
capable of expressing and integrating multiple viewpoints
and multiple aspects. This includes lack of robust formal
models of multiple abstraction layers from physical
processes through various layers of the information
processing hierarchy; and their cross-layer analyses.

• Lack of strategies to cleanly separate safety-critical
and non-safety-critical functionality, as well as for safe
composition of their functionality during humanin-the-
loop operation.

• Ability to reason about, and tradeoff between
physical constraints and QoS of the CPS.

Aspect-oriented programming (AOP) [5] is a new
software development technique, which is based on the
separation of concerns. Systems could be separated into
different crosscutting concerns and designed
independently by using AOP techniques.

When designing the system, aspects are analyzed and
designed separately from the system’s core functionality,
such as real-time, security, error and exception handling,
log, synchronization, scheduling, optimization,
communication, resource sharing and distribution. After
the aspects are implemented, they can be woven into the
system automatically. Using AOP techniques will make
the system more modular, and developers only design the
aspect without considering other aspects or the core
component.

Real-time feature is the most important aspect of the
cyber physical system, which determines the performance
of the system. So we describe the real-time feature as an
independent aspect according to the AOP techniques, and
design a time model to realize and manage the time
aspect in order to make the system easier to design and
develop and guarantee the time constraints.

The QoS of dependable cyber physical system is very
complex, currently the QoS research still hasn't a
completely and technical system, and there isn't any
solution meeting all the QoS requirements. We design the
QoS of dependable real-time system as a separate Aspect
using AOP, and proposed the classification of complex
QoS, divided into the timing, reliability and safety and
other sub-aspects. These sub-aspects inherit t members
and operations from the abstract QoSaspect. We design
each sub-aspects through aspect-Oriented modeling, to
ensure the Quality of dependable real-time system
meeting the requirements of the dependability.

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1083

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.5.1083-1093

This paper proposes an aspect-oriented QoS
specification method based on UML, mainly form an
aspect-oriented profile by the UML meta-model
extension, and model the crosscutting concerns by this
profile.

II. QOS OF CYBER PHYSICAL SYSTEMS

Cyber physical systems are characterized by their
stringent requirements for quality of service (QoS), such
as predictable end-to-end latencies, timeliness and
scalability. Delivering the QoS needs of cyber physical
systems entails the need to configure correctly, fine-tune
and provision the infrastructure used to host the cyber
physical systems, which crosscuts different layers of
middleware, operating systems and networks. These
tangled deployment and configuration concerns of cyber
physical systems requires integrating the principles of
Aspect-Oriented Software Design (AOSD) with MDD.
Cyber physical systems share the following
characteristics giving rise to tangled concerns in its
development and maintenance lifecycle[6]:

Heterogeneity. Large-scale cyber physical systems
often run on a variety of computing platforms that are
interconnected by different types of networking
technologies with varying QoS properties. The efficiency
and predictability of cyber physical systems built using
different infrastructure components varies according to
the type of computing platform and interconnection
technology.

Deeply embedded properties. cyber physical
systems are frequently composed of multiple embedded
subsystems. For example, an anti-lock braking software
control system forms a resource-constrained subsystem
that is part of a larger cyber physical application
controlling the overall operation of an automobile.

Simultaneous support for multiple QoS properties.
cyber physical software controllers are increasingly
replacing mechanical and human control of critical
systems. These controllers must simultaneously support
many challenging QoS constraints, including (1) real-
time requirements, such as low latency and bounded jitter,
(2) availability requirements, such as fault
propagation/recovery across boundaries, (3) security
requirements, such as appropriate authentication and
authorization, and (4) physical requirements, such as
limited weight, power consumption, and memory
footprint. For example, a distributed patient monitoring
system requires predictable, reliable, and secure
monitoring of patient health data that can be distributed in
a timely manner to healthcare providers.

Large-scale, network-centric operation. The scale
and complexity of cyber physical systems makes it
infeasible to deploy them in disconnected, standalone
configurations. The functionality of cyber physical
systems is therefore partitioned and distributed over a
range of networks. For example, an urban bio-terrorist
evacuation capability requires highly distributed
functionality involving networks connecting command
and control centers with bio-sensors that collect data from
police, hospitals, and urban traffic management systems.

Dynamic operating conditions. Operating conditions
for large-scale cyber physical systems can change
dynamically, resulting in the need for appropriate
adaptation and resource management strategies for
continued successful system operation. In civilian
contexts, for instance, power outages underscore the need
to detect failures in a timely manner and adapt in real-
time to maintain mission-critical power grid operations.
In military contexts, likewise, a mission mode change or
loss of functionality due to an attack in combat operations
requires adaptation and resource reallocation to continue
with mission-critical capabilities.

III. ASPECT-ORIENTED QOS MODELING

The integration of physical systems and processes
with networked computing has led to the emergence of a
new generation of engineered systems: Cyber-Physical
System s(CPS). Such systems use computations and
communication deeply embedded in and interacting with
physical processes to add new capabilities to physical
systems. These cyber-physical systems range from
miniscule (pace makers) to large-scale (the national
power-grid). Because computer-augmented devices are
everywhere, they are a huge source of economic leverage.
A CPS is a system in which computation/information
processing and physical processes are so tightly
integrated that it is not possible to identify whether
behavioral attributes are the result of computations
(computer programs), physical laws, or both working
together; Real/Continuous time models take physical
durations into account. These are important for doing
various time-related analyses (e.g., deadline matches) and,
in particular, for real-time scheduling as in RMA
approaches [6]. They are also used for modeling the
temporal characteristics of the physical environment or
system with which the embedded system is interacting
(usually before discretization).A real-time and embedded
modeling language for cyber physical systems needs
concepts for dealing with different models of time. In
order to meet the challenge of cyber-physical system
design, we need to realign abstraction layers in design
flows and develop semantic foundations for composing
heterogeneous models and modeling languages
describing different physics and logics. One of the
fundamental challenges in research related to CPSs is
accurate modeling and representation of these systems.
The main difficulty lies in developing an integrated
model that represents both cyber and physical aspects
with high fidelity. Among existing techniques, aspect-
oriented modeling is a suitable choice, as it can
encapsulate diverse attributes of cyber physical systems.
The control-centric nature of the programmatic QoS
adaptation extends beyond software concepts, e.g., issues
such as stability and convergence become paramount. In
cyber physical system, QoS is specified in software
parameters, which have a significant impact on the
dynamics of the overall physical system. Due to complex
and non-linear dynamics, it is hard to tune the QoS
parameters in an ad hoc manner without compromising

1084 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

the stability of the underlying physical system. The QoS
adaptation software is, in effect, equivalent to a controller
for a discrete, non-linear system. Sophisticated tools are
therefore needed to design, simulate, and analyze the QoS
adaptation software from a control system perspective.

Programmatic QoS adaptation approaches offer a
lower level of abstraction, i.e., textual code based. For
example, implementing a small change to CDL-based
adaptation policies requires manual changes that are
scattered across large portions of the cyber physical
system, which complicates ensuring that all changes are
applied consistently. Moreover, even small changes can
have far-reaching effects on the dynamic behavior due to
the nature of emergent crosscutting properties, such as
modifying the policy for adjusting communication
bandwidth across a distributed surveillance system.

QoS provisioning also depends on the performance
and characteristics of specific algorithms that are fixed
and cannot be modified, such as a particular scheduling
algorithm or a specific communication protocol. These
implementations offer fixed QoS and offer little
flexibility in terms of tuning the QoS. Consequently, any
QoS adaptation along this dimension involves structural
adaptation in terms of switching implementations at run-
time, which is highly complex, and in some cases
infeasible without shutting down and restarting
applications and nodes. Moreover, issues of state
management and propagation, and transient mitigation,
gain prominence amid such structural adaptations.
Programmatic QoS adaptation approaches often offer
little or no support for specifying such complex
adaptations.

Object-Oriented Programming (OOP) has been the
dominant programming methodology that is being used in
all kinds of software development today. The main focus
of OOP is to find a modular solution for a problem by
breaking down the system into a collection of classes that
encapsulates state and behavior. However, In Object-
Oriented Programming, crosscutting concerns are
elements of software that can not be cleanly captured in a
method or class. Accordingly, crosscutting concerns has
to be scattered across many classes and methods. OOP
fails to provide a robust and extensible solution to handle
these crosscutting concerns. AOP is a new modularity
technique that aims to cleanly separate the
implementation of crosscutting concerns. It builds on
Object-Orientation, and addresses some of the points that
are not addressed by OO. AOP provides mechanisms for
decomposing a problem into functional components and
aspectual components called aspects[7]. An aspect is a
modular unit of crosscutting the functional components,
which is designed to encapsulate state and behavior that
affect multiple classes into reusable modules. Distribution,
logging, fault tolerance, real-time and synchronization are
examples of aspects. The AOP approach proposes a
solution to the crosscutting concerns problem by
encapsulating these into an aspect, and uses the weaving

mechanism to combine them with the main components
of the software system and produces the final system. We
think that the phenomenon of handling multiple
orthogonal design requirements is in the category of
crosscutting concerns, which are well addressed by aspect
oriented techniques. Hence, we believe that system
architecture is one of the ideal places where we can apply
aspect oriented programming (AOP) methods to obtain a
modularity level that is unattainable via traditional
programming techniques. To follow that theoretical
conjecture, it is necessary to identify and to analyze these
crosscutting phenomena in existing system
implementations. Furthermore, by using aspect oriented
languages, we should be able to resolve the concern
crosscutting and to yield a system architecture that is
more logically coherent. It is then possible to quantify
and to closely approximate the benefit of applying AOP
to the system architecture.

UML is acquainted to be the industry-standard
modeling language for the software engineering
community, and it is a general purpose modeling
language to be usable in a wide range of application
domains. So it is very significant to research aspect-
oriented real-time system modeling method based on
UML[8]. However they didn’t make out how to model
real-time systems, and express real-time feature as an
aspect. In this section, we extend the UML, and present
an aspect-oriented method that model the real-time
system based on UML and Real-Time Logic (RTL)[9].
Real Time Logic is a first order predicate logic invented
primarily for reasoning about timing properties of real-
time systems. It provides a uniform way for the
specification of both relative and absolute timing of
events. Real-time logic (RTL), which is based on first-
order logic with restricted features, captures the timing
requirements of real-time systems. Real-Time Logic
provides a uniform way for the specification of relative
and uniform timing of events. It is an extension of integer
arithmetic without multiplication (Presburger arithmetic)
that adds a single uninterpreted binary occurrence
function, denoted by @, to represent the relationship
between events of a system, and their times of occurrence.
The equation @(e; i) = t states that the time of the i¡th
occurrence of event e is t: Let us denote with Z, N and
N+ the set of integers, positive integers, and strict
positive integers, respectively. The time occurrence
function is a mapping @: E £ N+ ! N, where E is a
domain of events, and such that @ is strictly
monotonically increasing in its second argument, i.e.,
@(E; i) <@(E; i+ 1), for any i 2 N+: It is supposed that
all events may occur infinitely often. There are no event
variables, or uninterpreted predicate symbols. So, RTL
formulas are boolean combinations of equality and
inequality predicates of standard integer arithmetic,
where the arguments of the relations are integer valued
expressions involving variables, constants, and
applications of the function symbol@. The correctness of
a real-time system can be achieved by Computing the

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1085

© 2012 ACADEMY PUBLISHER

satiability of an associated propositional formula[14]
Extended Real Time Logic (ERTL)[10] is a formalism
for the modeling and analysis of relative and absolute
timing properties of cyber physical systems (systems that
combine continuous variables and discrete event
dynamics). The extensions provided by ERTL enable the
modeling of system behaviour ranging from activities of
the physical entities that form part of the environment of
a computing system, to the temporal ordering of the
computational tasks of the computing system itself, thus
providing a formal notation that can be used in all stages
of software development.. The specification of the Object
Constraint Language (OCL) [11] is a part of the UML
specification, and it is not intended to replace existing
formal languages, but to supplement the need to describe
the additional constraints about the objects that cannot be
easily represented in graphical diagrams, like the
interactions between the components and the constraints
between the components’ communication . Since OCL is
an expression language, it can be checked without an
executable system. All these features turn out to be useful
in representing QoS properties, which can be represented
by the combination of precondition, post-condition and
invariant in OCL. The QoS attributes are represented by
the member variables of the class, and the QoS actions
are represented by the methods. They are checked at run
time, before and after the calls so that the change of the
QoS parameters of the system is monitored in a timely
basis.

As the QoS concern needs to be considered inmost
parts of the system, it is a cross-cutting concern.[12]
Cross-cutting concerns[30] are concerns that span
multiple objects or components. Cross-cutting concerns
need to be separated and modularized to enable the
components to work in different configurations without
having to rewrite the code. If the code for handling such a
concern is included in a component, it can make the
component tied to a specific configuration. This code will
typically be scattered all over the component
implementation and tangled with other code in the
component. Modularizing it will make it more robust for
change, and separating it totally from the component
implementation will save the component programmers
from having to implement it. Aspect oriented
programming is a new method for modularizing cross-
cutting concerns. By using AOP, concerns can be
modularized in an aspect and later weaved into the code.
Fig.1 shows aspect model of QoS framework.

Figure 1. Aspect model of QoS framework

IV. RELATED WORKS

Developing cyber physical systems is hard since it
requires a coordinated, physics-aware allocation of CPU
and network resources to satisfy their end-to-end quality-
of-service (QoS) requirements. Jaiganesh
Balasubramanian et al. make two contributions to address
these challenges[13]. First, Jaiganesh Balasubramanian et
al. present model-driven middleware called NetQoPE that
shields application developers from the complexities of
programming the lowerlevel CPU and network QoS
mechanisms by simplifying (1) the specification of per-
application CPU and per-flow network QoS requirements
subject to the physical constraints and dynamics, (2)
resource allocation and validation decisions (such as
admission control), and (3) the enforcement of per-flow
network QoS at runtime. Second, they empirically
evaluate how NetQoPE provides QoS assurance for CPS
applications. The results demonstrate that NetQoPE
provides flexible and non-invasive QoS configuration and
provisioning capabilities by leveraging CPU and network
QoS mechanisms without modifying application source
code.

The development of Distributed Real-Time and
Embedded (DRE) systems is often a challenging task due
to conflicting Quality of Service (QoS) constraints that
must be explored as trade-offs among a series of
alternative design decisions. The ability to model a set of
possible design alternatives, and to analyze and simulate
the execution of the representative model, offers great
assistance toward arriving at the correct set of QoS
parameters needed to satisfy the requirements for a
specific DRE system. Jeff Gray et al. present a model
driven approach for generating QoS adaptation in DRE
systems[14]. The approach involves the creation of high-
level graphical models representing the QoS adaptation
policies. The models are constructed using a domain-
specific modeling language - the Adaptive Quality

1086 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

Modeling Language – which presents a view-oriented
separation of common concerns. The proposed method
motivates the need for aspect weavers at the modeling
level, and provides a case study that is based on
bandwidth adaptation in video streaming of an Unmanned
Aerial Vehicle (UAV).

Carsten Köllman, Lea Kutvonen, Peter Linington,
Arnor Solberg presents an approach for managing several
dependability dimensions[15]. They use aspect oriented
and model driven development techniques to separate and
construct QoS independent models, and graph-based
transformation techniques to derive the corresponding
QoS specific models.

QoS-UniFrame[16] classifies quantifiable QoS
requirements into static and dynamic. Static QoS is
design-related, and dynamic QoS is substantially
influenced by the deployment environment. Many of the
static QoS requirements can be evaluated at component
assembly time, yet dynamic QoS requirements need
either simulators or virtual machines to monitor, predict,
and adapt the QoS concerns. However, several dynamic
QoS requirements can be assessed by referring to a
component’s previous state and observations, as stored in
a knowledge base at assembly time. Static and dynamic
QoS parameters may be further subclassified into strict
and non-strict, and orthogonal and non-orthogonal QoS.
Strict QoS requirements (e.g., hard deadlines) force DRE
systems to meet the requirements. Otherwise, the system
will be incorrect because it cannot meet its QoS. Non-
strict QoS requirements (e.g., soft deadlines) allow
margins of error when meeting QoS requirements. The
performance of the system will be degraded according to
the magnitude that non-strict QoS requirements are not
assured. Orthogonal QoS implies that its adaptation will
not influence other QoS, yet non-orthogonal QoS
substantially affects other QoS directly or indirectly.
According to the hierarchy of classification, QoS-
UniFrame separates static and dynamic QoS into a two-
level assurance process.

Bikash Sabata et al. specify QoS as a combination of
metrics and policies[17]. QoS metrics are used to specify
performance parameters, security requirements and the
relative importance of the work in the system. They
define three types of QoS performance parameters:
Timeliness, Precision, and Accuracy. QoS policies
capture application-specific policies that govern how an
application is treated by the resource manager. Examples
of such policies are management policies and the levels
of service.

Mohammad Mousavi et al. present an extension to the
GAMMA formalism[18], which they name
AspectGAMMA[18], and we show how non-
computational aspects can be expressed separately from
the computation in this framework. They discuss the main
characteristics of an aspect-oriented formal specification
framework, which is based on a multiset transformation
language called GAMMA, a formalism based on multiset
rewriting they illustrate how having a tailor-made
formalism for each aspect that is abstracted from other
aspects is a key benefit of such a formal design

framework. To clarify the discussions, they sketch an
architecture specification and design method for reactive
distributed real-time embedded systems. In the approach
they describe in their paper, they propose separating the
concerns of computation, coordination, timing, and
distribution, through different simple and abstract
notations for these aspects. They also describe a weaving
process that maps all these different aspects to a single
semantic domain. The method is based on a formal
semantics that should ultimately enable automated
reasoning about designs. The idea exploited in this
method can be extended to other aspects, and extended
with more complex weaving criteria.

Lynne Blair proposes multi-paradigm approach to
formal specification and shows how this approach can be
successfully used in the specification of distributed
multimedia systems[26]. He takes an example, a
published description of an algorithm to establish the
initial synchronization of distributed stored media
streams that avoids the need for large buffers (e.g.if the
locations of the media sources are widely distributed). He
shows how this algorithm can be specified using a
combination of real-time temporal logic and timed
automata. He then describes how the different
specifications (languages) can be combined in order to
analyze the overall behaviour[19].

Jochen Hoenicke uses a combination of three
techniques for the specification of processes, data and
time: CSP, Object-Z and Duration Calculus[20]. The
basic building block in our combined formalism CSP-
OZ-DC is a class. First, the communication channels of
the class are declared. Every channel has a type which
restricts the values that it can communicate. There are
also local channels that are visible only inside the class
and that are used by the CSP, Z, and DC parts for
interaction. Second, the CSP part follows; it is given by a
system of (recursive) process equations. Third, the Z part
is given which itself consists of the state space, the Init
schema and communication schemas. For each
communication event a corresponding communication
schema specifies in which way the state should be
changed when the event occurs. Finally, below a
horizontal line the DC part is stated. The combination is
used to specify parts of a novel case study on radio
controlled railway crossings. Johannes Faber formally
specifies a part of the European Train Control System
(ETCS) with the specification language CSPOZ-DC
treating the handling of emergency messages.

Hybrid systems are models for complex physical
systems and are defined as dynamical systems with
interacting discrete transitions and continuous evolutions
along differential equations. With the goal of developing
a theoretical and practical foundation for deductive
verification of hybrid systems, Andre Platzer introduces a
dynamic logic for hybrid programs, which is a program
notation for hybrid systems. As a verification technique
that is suitable for automation, he introduces a free
variable proof calculus with a novel combination of real-
valued free variables and Skolemisation for lifting
quantifier elimination for real arithmetic to dynamic

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1087

© 2012 ACADEMY PUBLISHER

logic. The calculus is compositional, i.e., it reduces
properties of hybrid programs to properties of their parts.
The main result proves that this calculus axiomatises the
transition behaviour of hybrid systems completely
relative to differential equations. In a case study with
cooperating traffic_ agents of the European Train Control
System, the case study show that our calculus is well-
suited for verifying realistic hybrid systems with
parametric system dynamics[21][22][23].

B. Mahony and J.S. Dong propose a timed,
multithreaded object modeling notation for specifying
real-time, concurrent, and reactive systems. The notation
Timed Communicating Object Z (TCOZ) builds on
Object-Z's strengths in modeling complex data and
algorithms, and on Timed CSP's strengths in modeling
process control and real-time interactions. TCOZ is novel
in that it includes timing primitives, properly separates
process control and data/algorithm issues and supports
the modeling of true multi-threaded concurrency. TCOZ
is particularly well suited for specifying complex systems
whose components have their own thread of control. The
expressiveness of the notation is demonstrated by a case
study in specifying a multi-lift system that operates in
real-time[24][25].

Sandeep Neema et al. present a model-driven
approach for generating quality-of-service (QoS)
adaptation in Distributed Real-Time Embedded (DRE)
Systems. The approach involves the creation of high-
level graphical models representing the QoS adaptation
policies. The models are constructed using a domain-
specific modeling language – the Adaptive Quality
Modeling Language (AQML). Multiple generators have
been developed using the Model-Integrated Computing
(MIC) framework to create low-level artifacts for
simulation and implementation of the adaptation policies
that are captured in the models. A simulation generator
tool synthesizes artifacts for Matlab® Simulink
®/Stateflow® (a popular commercial tool), providing the
ability to simulate andanalyze the QoS adaptation policy.
An implementation generator creates artifacts for Quality
Objects (QuO), a QoS adaptation software infrastructure
developed at BBN, for execution of QoS adaptation in
DRE systems. A case study in applying this approach to
an Unmanned Aerial Vehicle – Video Streaming
application is presented. This approach has goals that are
similar to those specified in the OMG’s Model- Driven
Architecture initiative[26].

Although UML is a general purpose modeling
language, it contains extensibility mechanisms that can be
used to tailor it to specific domains (QoS information
specification, for instance). These extensibility
mechanisms can be understood as indirect modification,
at the model level, of the UML meta-model [8.The
standard extensibility mechanisms of UML are
stereotypes, tagged values and constraints. These
extensibility mechanisms are called “lightweight
extensibility mechanisms” in contrast to the direct
manipulation of the UML “meta-model” that can be
interpreted as “heavyweight extensibility mechanisms”
(addition of new meta-classes, meta-associations, etc.). In

order to give support to the gradual adoption of
“standard” UML extensions, OMG has introduced the
concept of “UML profile” which, in spite of the lack of a
normative definition, has already been used in several
OMG technical groups. A “profile” might be defined as a
“specification that specializes one or several standard
meta-models, called “reference meta-models”. OMG
defines two UML profiles in order to use this modeling
language for the specification of QoS information related
to distributed object-based applications and for the
modeling of mechanisms for monitoring the specified
QoS information. A QoS characteristic represents some
aspect of the QoS of a system, service or resource that
can be identified and quantified. A QoS statement
expresses some QoS by constraining values of QoS
characteristics. A QoS relation specifies the mutual
obligation of an object and its environment with respect
to QoS. These concepts are related to the UML meta-
model in order to define a UML profile for QoS[27][28].

V. CASE STUDY ONE: ASPECT-ORIENTED QOS
MODELING OF FIRE ALARM SYSTEMS

An automatic fire alarm system is designed to detect
the unwanted presence of fire by monitoring
environmental changes associated with combustion. In
general, a fire alarm system is either classified as
automatically actuated, manually actuated, or both.
Automatic fire alarm systems can be used to notify
people to evacuate in the event of a fire or other
emergency, to summon emergency services, and to
prepare the structure and associated systems to control
the spread of fire and smoke.

QoSConstraint Q1,Q2, Q5 of the fire alarm system
is expressed as follows with formal technique RTL[9]:

[Q1]: ij@(data.collect,j)-
@(stop,i)COLLECT_MIN_TIME@(data.open,
j) -@ (stop,i)COLLECT_MAX_TIME
[Q2]: ij@(data.process,j)-
@(stop,i)DATA_PROCESS_MIN_TIME @
(data. process, j)-
@(stop,i)COLLECT_MAX_TIME
[Q5]: ij@(alarm.process.,j)-
@(command.send,i)ALARM_PROCESS_ MINTI
ME @(alarm.process,j)-
@(command.send,i)ALARM_PROCESS_MAXTI
ME

QoSConstraint Q3 and Q4 of the fire alarm system is
expressed as follows with XML[12]:
[Q3]: <QoS type=”Level”>
 <Firelevel val = “FIRE_MAX_LEVEL”/>
 </QoS>
[Q4]: <QoS type=”Contraint”>
 <frame_rate val =
“FRAME_RATE_CONSTRAINT”/>
 <audio_sample_rate val =
“FRAME_RATE_CONSTRAINT”/>
 </QoS>

1088 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

We separate QoS from real-time fire system as an
aspect, the aspect-oriented model of QoS of real-time fire
system is shown as Fig.2.

Figure 2. QoS aspect-oriented model of Fire real-time system

We use QoSAspect to express QoS of real-time fire
alarm system. The class diagram of Fire Real-time
System with the aspect-oriented extension is shown as
Fig.3.

Figure 3. Class Diagram of Fire Real-time System

 The QoS Aspect Weaving Diagram of real-time fire
alarm system is shown as Fig.4.

Figure 4. QoS Aspect Weaving Diagram of Fire Real-time System

VI. CASE STUDY TWO: ASPECT-ORIENTED QOS
MODELING OF ELEVATOR SYSTEM

To satisfy the requirements of AOSD modeling cyber
physical systems, UML should be extended by
introducing a new stereotype called <<aspect>>. The
<<aspect>>is a stereotype for the base class <<class>>
that is part of the <<classifier>> element , in order to
make sure that <<aspect>> has the same behavior as class.
Real-time feature is described as an instance of
<<aspect>> and called TimeAspect as shown in Fig.5.

Figure 5. Relationship of class, classifier and <<aspect>>

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1089

© 2012 ACADEMY PUBLISHER

The time aspect of real-time systems can be designed
independently and expressed as a time aspect model. The
time aspect model can be defined and designed based on
the general time model in Fig.6.

Figure 6. Time Aspect Model

An elevator control system[24][29] illustrates the

development process including static structure, dynamic
behaviors and the weaving of time aspect by integration
of Informal Specification and formal Specification with
aspect-oriented approach. We consider that every floor
has a pair of direction lamps indicating that the elevator is
moving up or down. There is only one floor button and
one direction lamp in the top floor and the bottom floor.
Every floor has a sensor to monitor whether the elevator
is arriving the floor.
We consider that the elevator is required to satisfy the
following timing constraints:
[T1] After the elevator has stopped at a particular floor,

the elevator’s door will open no sooner than
OPEN_MIN_TIME and no later than
OPEN_MAX_TIME.

[T2] After the elevator has stopped at a given floor the
elevator’s door will normally stay open for a
STAY_OPEN_NORMAL_TIME. However, if the
CloseDoorButton on board of the elevator is pressed
before this timeout expires, the door will close but no
sooner than STAY_OPEN_MIN_TIME.

[T3] After the door is closed, the movement of the
elevator can resume, but no sooner than
CLOSE_MIN_TIME, and no later than
CLOSE_MAX_TIME.

Separation of Concerns From Elevator System
Several concerns can be separated from the elevator

control system, such as time aspect, control aspect, and
concurrency aspect. The development process of the
elevator control system is shown as Fig.7. However, in
this paper we only simply consider the time aspect, and
will complete other aspects in our future work.

Figure 7. The Development Process of The Elevator Control System

Structural Description Using Class Diagrams

The real-time feature of real-time systems can be
modeled using UML by extending stereotypes, tagged
values, and constraints before. For example, timing
constraints can be added on the class to express the time
feature in class diagram. But the implementation of the
time feature were still scattered throughout, resulting in
tangled code that was hard to develop and maintain. So
we describe the real-time feature as an independent
aspect according to the AOP techniques, and design a
time model to realize and manage the time aspect in order
to make the system easier to design and develop and
guarantee the time constraints.

We separate the real-time feature as a TimeAspect,
which is an instance of <<aspect>> in the elevator control
system. The TimeAspect crosscuts the core functional
class by stereotype <<crosscut>> in class diagram. Also
timing constraints can be attached to the TimeAspect
explicitly. The elevator control system class diagram is
shown in Fig.8.

 Figure 8. The Elevator Control System Class Diagram

Behavioral Description

UML has five behavioral diagrams to describe the
dynamic aspects of a system as representing its changing

1090 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

parts. Use case diagram organizes the behaviors of the
system. Sequence diagram focuses on the time ordering
of messages. Collaboration diagram emphasizes on the
structural organization of objects that send and receive
messages. Statechart diagram focuses on the changing
state of a system driven by events. Activity diagram
focuses on the flow of control from activity to activity
messages. Use case diagram, collaboration diagram, and
sequence diagram belong to Inter-Object behavior
diagrams. While statechart diagram belong to Intra-
Object behavior diagrams. The time behavior is depicted
by extending timing marks in the statechart traditionally.
can model the intra-object aspectual behaviors well in the
object-oriented programming paradigm. However,
current specification of statecharts doesn’t support
aspect-oriented modeling. To support aspect-orientation
within the context of statecharts, we need to provide a
mechanism by which the modeler can express these
aspects. Statecharts modeling aspects should consider the
association between aspects and transitions instead of
states. Orthogonal regions, which are shown as dashed
lines in statecharts, combine multiple simultaneous
descriptions of the same object. The aspects can be
expressed as objects, which have their own sub-states.
Interactions between regions occur typically through
shared variables, awareness of state changes in other
regions and message passing mechanisms such as
broadcasting, and propagating events .

Collaboration diagram emphasizes on the structural
organization of objects that send and receive messages. A
collaboration diagram shows a set of objects, links among
those objects, and messages sent and received by those
objects. It shows classifier roles and the association roles.
A classifier role is a set of features required by the
collaboration. Classifier roles for core classes implement
the core features required by the system. Classifier roles
for aspects are services required by the core classes which
are otherwise tangled with the roles of the core functional
features . The time aspect is time service required by the
core classes in real-time systems.

The elevator control system expresses the time
features as an object of TimeAspect. The behavior of the
time object interacting on other objects of the system is
shown in Fig. 9.

The statecharts of the elevator control system is
shown in Fig.10. Timing behaviors are described by the
advanced features of statecharts, and the time concern is
achieved implicit weaving with the core functionality of
the system. Statecharts refine the model and aspects
codes can be generated automatically by existing CASE
tools.

Weaving of Time-Aspect

The time aspect can be woven into the real time
system by using the UML’s statecharts, as statecharts
refine the model. Libraries of core and time aspect
statecharts can be developed concurrently and
independently, and combined only when needed for a
particular application.

Figure 9. Collaboration Diagram of The Elevator Control System

Figure 10. Statechart of the Elevator Control System

In this paper, we weave the time aspect with high-

level declarations about how an event in the time
statechart can be treated like a completely different event
in the core statechart. The weaving framework permits
statecharts design to be translated into skeleton code for a
class. The time aspect and core statecharts objects may be
joined to create orthogonal regions. In addition, the time
aspect statechart can be woven by specifying which
events shall be reinterpreted to have meaning in other
statechart. The declarations of events reinterpretation of
the elevator example can be described as follows
according to the timing constraints:
[1] If the core statechart is in the ‘ElevatorStopping’ state

and a ‘openDoor’ event is introduced, and if the time
aspect statechart is in the state ‘InitState’ satisfying
‘t>=Min_Time&&t<=Max_Time’. Then the time
aspect statechart transfers to the ‘Normal’ state, the

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1091

© 2012 ACADEMY PUBLISHER

core statechart treats the ‘openDoor’ event exactly
and transfers to the ‘DoorOpening’ state.

[2] If the core statechart is in the ‘DoorOpening’ state and
a ‘closeDoor’ event is introduced, and if the time
aspect statechart is in the state ‘InitState’ satisfying
‘t>=Min_Time’. Then the time aspect statechart
transfers to the ‘Normal’ state, the core statechart
treats the ‘closeDoor’ event exactly and transfers to
the ‘DoorClosing’ state.

[3] If the core statechart is in the ‘DoorOpening’ state and
no any event is introduced, and if the time aspect
statechart is in the state ‘Normal’ satisfying
‘t>Max_Time’. Then the time aspect statechart
transfers to the ‘TimeOut’ state, the core statechart
transfers to the ‘DoorClosing’ state.

[4] If the core statechart is in the ‘ReadyMove’ state and a
‘down(up)’ event is introduced, and if the time aspect
statechart is in the state ‘InitState’ satisfying
‘t>=Min_Time&&t<=Max_Time’. Then the time
aspect statechart transfers to the ‘Normal’ state, the
core statechart treats the ‘down(up)’ event exactly
and transfers to the ‘Elevator Starting Down(Elevator
Starting Up)’ state.

The time aspect and core statecharts will only make the
transitions based on the declarations defined above. So it
makes sure that the system will implement strictly relying
on the timing constraints and guarantee the real time
feature. Weaving the time aspect of the elevator system is
shown in Fig.10. We extend the reinterpretation function
so that an aspect can be woven into other aspects or core
classes. In the example above, weaving can be specified
using a reference to the core ‘statechart’ object and a
reference to the aspect ‘statechart’ object:

AspectID= core.crosscutBy(TimeAspect);
This specifies how an aspect is woven into other aspects
or core classes. Every weaving of aspect has unique
AspectID. When aspects are weaving, methods will be
called to map events in the core and aspect statecharts.
The declarations will hold which events need to be
reinterpreted. These details will be filled in while a
specific aspect is woven. The declarations above are
equivalent to the expressions as follows:
[1]. reinterpretEvent (core,”ElevatorStopping”,”openDoo

r”,”InitState”,”start/t>=OPEN_MIN_TIME&&t<=O
PEN_MAX_TIME”,AspectID,Statechart.PREHAN
DLE);

[2]. reinterpretEvent (core,”DoorOpening”,”button”,”Init
State”,”start/t>=STAY_OPEN_MIN_TIME”,Aspect
ID,Statechart.PREHANDLE);

[3]. reinterpretEvent (core,”DoorOpening”,” ”,”Norma
l”,”start/t>STAY_OPEN_NORMAL_TIME”,Aspec
tID,Statechart.PREHANDLE);

[4]. reinterpretEvent (core,”ReadyMove”,”down(up)”,”In
itState”,”start/t>=CLOSE_MIN_TIME&&t<= CLO
SE_MAX_TIME”,AspectID,Statechart.PREHAND
LE);

The time aspect can be woven into the real time

system by using the UML’s statecharts as shown in
Fig.11.

Figure.11. Weaving the Time Aspect

VII. CONCLUSION

In this paper, we presented an aspect-oriented model
for specifying Quality of Service (QoS) based on the
combination of UML and RTL. Two types of notation,
graphical (semi-formal) and, respectively, formal, can
efficiently complement each other and provide the basis
for an aspect-oriented specification approach that can be
both rigorous and practical for QoS modeling. Two
examples depicted how aspect-oriented methods can be
used during QoS analysis and design process.

Future works will focus an automatic weaver for
aspect oriented model of QoS.

ACKNOWLEDGMENT

This work is supported by the Major Program of
National Natural Science Foundation of China under
Grant No.90818008, National Natural Science
Foundation of China under Grant No. 61173046 and
Natural Science Foundation of Guangdong province
under Grant No.S2011010004905.

REFERENCES

[1] Edward A. Lee, Sanjit A. Seshia, Introduction to
Embedded Systems, A Cyber-Physical Systems Approach,
Published by authors, First Edition, 2011, 978-0-557-
70857-4G.

[2] Lui Sha, Sathish Gopalakrishnan, Xue Liu and Qixin
Wang: Cyber-Physical Systems: A New Frontier. ISBN
978-0-387-88734-0, Springer，2009

[3] Wolf.W. Cyber-physical Systems. Computer,Volume: 42
Issue: 3,88-89,2009

[4] Edward A.Lee. Cyber Physical Systems Design
Challenges. Object Oriented Real-Time Distributed

1092 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

Computing (ISORC), 2008.11th IEEE International
Symposium. January 23,2008.

[5] Aspect-Oriented Software Development. http: //aosd.net/.
[6] Aniruddha Gokhale and Jeff Gray, An Integrated Aspect-

oriented Model-driven Development Toolsuite for
Distributed Real-time and Embedded Systems, Workshop
on Aspect-Oriented Modeling Workshop, held at AOSD
2005, Chicago, IL, March 2005

[7] Carsten Köllman ; Lea Kutvonen ; Peter Linington ; Arnor
Solberg, An aspect-oriented approach to manage Qos
dependability dimensions in model driven development,
International Workshop on Model-Driven Enterprise
Information Systems, p85-94, 2007

[8] Aldawud, T. Elrad, and A. Bader. A UML Profile for
Aspect Oriented Modeling, Workshop on AOP, 2001.

[9] Farnam Jahanian, Aloysius K. Mok.Safety Analysis of
Timing Properties in Real-Time Systems. IEEE Trans.
Software Eng. 12(9): 890-904 (1986)

[10] R. de Lemos and J. Hall. ERTL: An extension to RTL for
requirements analysis for hybrid systems. Technical report,
Department of Computing Science, University of
Newcastle upon Tyne, UK., 1995.

[11] UML2.0 OCL Specification. http:
//www.comp.nus.edu.sg/~yangfei/HYP/UML2.0ocl.pdf

[12] Jeff Gray, Ted Bapty, and Sandeep Neema, Aspectifying
Constraints in Model-Integrated Computing, Workshop on
Advanced Separation of Concerns in Object-Oriented
Systems, held at OOPSLA 2000, Minneapolis, MN,
October 2000

[13] Jaiganesh Balasubramanian et al.,A Model-driven
QoS Provisioning Engine for Cyber Physical
Systems, http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
.151.1140&rep=rep1&type=pdf)

[14] Jeff Gray, Sandeep Neema, Jing Zhang, Yuehua Lin, Ted
Bapty, Aniruddha Gokhale, and Douglas C. Schmidt,
“Concern Separation for Adaptive QoS Modeling in
Distributed Real-Time Embedded Systems,” Behavioral
Modeling for Embedded Systems and Technologies:
Applications for Design and Implementation, edited by Joa
M. Fernandes and Luis Gomes, 2009.

[15] Carsten Köllman ; Lea Kutvonen ; Peter Linington ; Arnor
Solberg, An aspect-oriented approach to manage Qos
dependability dimensions in model driven development,
International Workshop on Model-Driven Enterprise
Information Systems, p85-94, 2007

[16] QoSUniFrame.http:
//www.cis.uab.edu/liush/QosUniFrame.htm.

[17] Bikash Sabata et al., Taxonomy for QoS Specifications, the
proceedings of WORDS ‘97, February 5-7, 1997 in
Newport Beach, California

[18] M.R. Mousavi, G. Russello, M. Chaudron, M. Reniers, T.
Basten, A. Corsaro, S. Shukla, R. Gupta, D. Schmidt,
Using Aspect-GAMMA in the Design of Embedded
Systems, Proceedings of the Seventh IEEE
International Workshop on High Level Design,
Verification and Test (HLDVT'02), Cannes, France, pp.
69--75, IEEE CS, October 2002

[19] Blair L., The Role of Temporal Logic and Time
Automata in Distributed Multimedia Systems,
Proceedings of Modal & Temporal Logic Based
Planning for Open Networked Multimedia Systems
(PONMS '99), Cape Cod, MA, November 5-7, pp 1-
7, 1999

[20] Jochen Hoenicke.Specification of Radio Based Railway
Crossings with the Combination of CSP, OZ, and DC. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.43
94.

[21] André Platzer. Differential dynamic logic for hybrid
systems. Journal of Automated Reasoning, 41(2), pp 143-
189, 2008.

[22] André Platzer. Differential dynamic logic for verifying
parametric hybrid systems. LNCS 4548, pp 216-232.
Springer, 2007.

[23] André Platzer,Logical Analysis of Hybrid Systems:
Proving Theorems for Complex Dynamics.
Springer, 2010. 426 p. ISBN 978-3-642-14508-7.

[24] B. Mahony and J.S. Dong. Timed Communicating
Object Z. IEEE Transactions on Software
Engineering, 26(2): 150-177, Feb 2000

[25] B. P. Mahony and J.S. Dong. Blending Object-Z and
Timed CSP: An introduction to TCOZ. ICSE'98, April
1998.

[26] Sandeep Neema,Proceedings of the 1st ACM
SIGPLAN/SIGSOFT conference on Generative
Programming and Component Engineering, 2002)

[27] OMG, “UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms,” Request
forProposal, ad/02-01-07, January, 2002.

[28] OMG, “UML Profile for Schedulability, Performance, and
Time Specification,” Final Adopted Specification, ptc/02-
03-02, March, 2002.

[29] Carsten Suhl, An Integration of Z and Timed CSP for
Specifying Real-Time Embedded Systems, Ph.D thesis,
Technischen Universitat Berlin, 2002

[30] Wehrmeister, M.A., Freitas, E.P., and Pereira, C.E., et al.,
"An Aspect-Oriented Approach for Dealing with Non-
Functional Requirements in a Model-Driven Development
of Distributed Embedded Real-Time Systems ", 10th IEEE
International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, Santorini
Island, Greece, May7-9, 2007, IEEE Computer Society,
pp.428-432.

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1093

© 2012 ACADEMY PUBLISHER

