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Abstract—Cyber-physical systems (CPSs) are physical and 
engineered systems whose operations are monitored. Cyber-
physical systems having quality-of-service (QoS) 
requirements driven by the dynamics of the physical 
environment in which they operate, the description, control, 
management,  consultation and  guarantee of QoS are very 
complex and challenging work, Quality of Service(QoS) is 
directly related to system's performance. This paper 
proposes an aspect-oriented QoS modeling method based on 
UML and formal methods. We use an aspect-oriented 
profile by the UML meta-model extension, and model the 
crosscutting concerns by this profile. In this paper, we build 
the aspect-oriented model for specifying Quality of Service 
(QoS) based on the combination of UML and RTL. We 
believe that the two types of notation, graphical (semi-
formal) and, respectively, formal, can efficiently 
complement each other and provide the basis for an aspect-
oriented specification approach that can be both rigorous 
and practical for QoS modeling.  Two examples depict how 
aspect-oriented methods can be used during QoS analysis 
and design process.  
 
Index Terms—QoS, Cyber Physical systems, Aspect-Oriented 
 

I.  INTRODUCTION 

A cyber-physical system (CPS)[1] is a system 
featuring a tight combination of, and coordination 
between, the system’s computational and physical 
elements. Today, a pre-cursor generation of cyber-
physical systems can be found in areas as diverse as 
aerospace, automotive, chemical processes, civil 
infrastructure, energy, healthcare, manufacturing, 
transportation, entertainment, and consumer appliances. 
The dependability of the software [1]has become an 
international issue of universal concern, the impact of the 
recent software fault and failure is growing, such as the 
paralysis of the Beijing Olympics ticketing system and 
the recent plane crash of the President of Poland. 
Therefore, the importance and urgency of the digital 
computing system's dependability began arousing more 
and more attention. A digital computing system's 
dependability refers to the integrative competence of the 
system that can provide the comprehensive capacity 
services, mainly related to the reliability, availability, 
testability, maintainability and safety. With the increasing 
of the importance and urgency of the software in any 
domain, the dependability of the distributed real-time 
system should arouse more attention.[2] 

Fundamental limitations for Cyber-Physical Systems 
(CPS) include[3][4]:  

• Lack of good formal representations and tools 
capable of expressing and integrating multiple viewpoints 
and multiple aspects. This includes lack of robust formal 
models of multiple abstraction layers from physical 
processes through various layers of the information 
processing hierarchy; and their cross-layer analyses. 

• Lack of strategies to cleanly separate safety-critical 
and non-safety-critical functionality, as well as for safe 
composition of their functionality during humanin-the-
loop operation. 

• Ability to reason about, and tradeoff between 
physical constraints and QoS of the CPS. 

Aspect-oriented programming (AOP) [5] is a new 
software development technique, which is based on the 
separation of concerns. Systems could be separated into 
different crosscutting concerns and designed 
independently by using AOP techniques.  

When designing the system, aspects are analyzed and 
designed separately from the system’s core functionality, 
such as real-time, security, error and exception handling, 
log, synchronization, scheduling, optimization, 
communication, resource sharing and distribution. After 
the aspects are implemented, they can be woven into the 
system automatically. Using AOP techniques will make 
the system more modular, and developers only design the 
aspect without considering other aspects or the core 
component.  

Real-time feature is the most important aspect of the 
cyber physical system, which determines the performance 
of the system. So we describe the real-time feature as an 
independent aspect according to the AOP techniques, and 
design a time model to realize and manage the time 
aspect in order to make the system easier to design and 
develop and guarantee the time constraints. 

The QoS of dependable cyber physical system is very 
complex, currently  the QoS research still hasn't a 
completely and technical system, and there isn't any 
solution meeting all the QoS requirements. We design the 
QoS of dependable real-time system as a separate Aspect 
using AOP, and proposed the classification of complex 
QoS, divided into the timing, reliability and safety and 
other sub-aspects. These sub-aspects inherit t members 
and operations from the abstract QoSaspect. We design 
each sub-aspects through aspect-Oriented modeling, to 
ensure the Quality of dependable  real-time system 
meeting the requirements of the dependability. 
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This paper proposes an aspect-oriented QoS 
specification method based on UML, mainly form an 
aspect-oriented profile by the UML meta-model 
extension, and model the crosscutting concerns by this 
profile. 

II.  QOS OF CYBER PHYSICAL SYSTEMS 

Cyber physical systems are characterized by their 
stringent requirements for quality of service (QoS), such 
as predictable end-to-end latencies, timeliness and 
scalability. Delivering the QoS needs of cyber physical 
systems entails the need to configure correctly, fine-tune 
and provision the infrastructure used to host the cyber 
physical systems, which crosscuts different layers of 
middleware, operating systems and networks. These 
tangled deployment and configuration concerns of cyber 
physical systems requires integrating the principles of 
Aspect-Oriented Software Design (AOSD) with MDD. 
Cyber physical systems share the following 
characteristics giving rise to tangled concerns in its 
development and maintenance lifecycle[6]:  

Heterogeneity. Large-scale  cyber physical systems 
often run on a variety of computing platforms that are 
interconnected by different types of networking 
technologies with varying QoS properties. The efficiency 
and predictability of cyber physical systems built using 
different infrastructure components varies according to 
the type of computing platform and interconnection 
technology. 

Deeply embedded properties. cyber physical 
systems are frequently composed of multiple embedded 
subsystems. For example, an anti-lock braking software 
control system forms a resource-constrained subsystem 
that is part of a larger cyber physical application 
controlling the overall operation of an automobile. 

Simultaneous support for multiple QoS properties. 
cyber physical software controllers are increasingly 
replacing mechanical and human control of critical 
systems. These controllers must simultaneously support 
many challenging QoS constraints, including (1) real-
time requirements, such as low latency and bounded jitter, 
(2) availability requirements, such as fault 
propagation/recovery across boundaries, (3) security 
requirements, such as appropriate authentication and 
authorization, and (4) physical requirements, such as 
limited weight, power consumption, and memory 
footprint. For example, a distributed patient monitoring 
system requires predictable, reliable, and secure 
monitoring of patient health data that can be distributed in 
a timely manner to healthcare providers. 

Large-scale, network-centric operation. The scale 
and complexity of  cyber physical systems makes it 
infeasible to deploy them in disconnected, standalone 
configurations. The functionality of cyber physical 
systems is therefore partitioned and distributed over a 
range of networks. For example, an urban bio-terrorist 
evacuation capability requires highly distributed 
functionality involving networks connecting command 
and control centers with bio-sensors that collect data from 
police, hospitals, and urban traffic management systems. 

Dynamic operating conditions. Operating conditions 
for large-scale cyber physical systems can change 
dynamically, resulting in the need for appropriate 
adaptation and resource management strategies for 
continued successful system operation. In civilian 
contexts, for instance, power outages underscore the need 
to detect failures in a timely manner and adapt in real-
time to maintain mission-critical power grid operations. 
In military contexts, likewise, a mission mode change or 
loss of functionality due to an attack in combat operations 
requires adaptation and resource reallocation to continue 
with mission-critical capabilities. 
 

III.  ASPECT-ORIENTED QOS MODELING  

The integration of physical systems and processes 
with networked computing has led to the emergence of a 
new generation of engineered systems:  Cyber-Physical 
System s(CPS). Such systems use computations and 
communication deeply embedded in and interacting with 
physical processes to add new capabilities to physical 
systems. These cyber-physical systems range from 
miniscule (pace makers) to large-scale (the national 
power-grid). Because computer-augmented devices are 
everywhere, they are a huge source of economic leverage. 
A CPS is a system in which computation/information 
processing and physical processes are so tightly 
integrated that it is not possible to identify whether 
behavioral attributes are the result of computations 
(computer programs), physical laws, or both working 
together; Real/Continuous time models take physical 
durations into account. These are important for doing 
various time-related analyses (e.g., deadline matches) and, 
in particular, for real-time scheduling as in RMA 
approaches [6]. They are also used for modeling the 
temporal characteristics of the physical environment or 
system with which the embedded system is interacting 
(usually before discretization).A real-time and embedded 
modeling language for cyber physical systems needs 
concepts for dealing with different models of time. In 
order to meet the challenge of cyber-physical system 
design, we need to realign abstraction layers in design 
flows and develop semantic foundations for composing 
heterogeneous models and modeling languages 
describing different physics and logics. One of the 
fundamental challenges in research related to CPSs is 
accurate modeling and representation of these systems. 
The main difficulty lies in developing an integrated 
model that represents both cyber and physical aspects 
with high fidelity. Among existing techniques, aspect-
oriented modeling is a suitable choice, as it can 
encapsulate diverse attributes of cyber physical systems. 
The control-centric nature of the programmatic QoS 
adaptation extends beyond software concepts, e.g., issues 
such as stability and convergence become paramount. In 
cyber physical system, QoS is specified in software 
parameters, which have a significant impact on the 
dynamics of the overall physical system. Due to complex 
and non-linear dynamics, it is hard to tune the QoS 
parameters in an ad hoc manner without compromising 
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the stability of the underlying physical system. The QoS 
adaptation software is, in effect, equivalent to a controller 
for a discrete, non-linear system. Sophisticated tools are 
therefore needed to design, simulate, and analyze the QoS 
adaptation software from a control system perspective. 

Programmatic QoS adaptation approaches offer a 
lower level of abstraction, i.e., textual code based. For 
example, implementing a small change to CDL-based 
adaptation policies requires manual changes that are 
scattered across large portions of the cyber physical 
system, which complicates ensuring that all changes are 
applied consistently. Moreover, even small changes can 
have far-reaching effects on the dynamic behavior due to 
the nature of emergent crosscutting properties, such as 
modifying the policy for adjusting communication 
bandwidth across a distributed surveillance system. 

QoS provisioning also depends on the performance 
and characteristics of specific algorithms that are fixed 
and cannot be modified, such as a particular scheduling 
algorithm or a specific communication protocol. These 
implementations offer fixed QoS and offer little 
flexibility in terms of tuning the QoS. Consequently, any 
QoS adaptation along this dimension involves structural 
adaptation in terms of switching implementations at run-
time, which is highly complex, and in some cases 
infeasible without shutting down and restarting 
applications and nodes. Moreover, issues of state 
management and propagation, and transient mitigation, 
gain prominence amid such structural adaptations. 
Programmatic QoS adaptation approaches often offer 
little or no support for specifying such complex 
adaptations. 

Object-Oriented Programming (OOP) has been the 
dominant programming methodology that is being used in 
all kinds of software development today. The main focus 
of OOP is to find a modular solution for a problem by 
breaking down the system into a collection of classes that 
encapsulates state and behavior. However, In Object-
Oriented Programming, crosscutting concerns are 
elements of software that can not be cleanly captured in a 
method or class. Accordingly, crosscutting concerns has 
to be scattered across many classes and methods. OOP 
fails to provide a robust and extensible solution to handle 
these crosscutting concerns. AOP is a new modularity 
technique that aims to cleanly separate the 
implementation of crosscutting concerns. It builds on 
Object-Orientation, and addresses some of the points that 
are not addressed by OO. AOP provides mechanisms for 
decomposing a problem into functional components and 
aspectual components called aspects[7]. An aspect is a 
modular unit of crosscutting the functional components, 
which is designed to encapsulate state and behavior that 
affect multiple classes into reusable modules. Distribution, 
logging, fault tolerance, real-time and synchronization are 
examples of aspects. The AOP approach proposes a 
solution to the crosscutting concerns problem by 
encapsulating these into an aspect, and uses the weaving 

mechanism to combine them with the main components 
of the software system and produces the final system. We 
think that the phenomenon of handling multiple 
orthogonal design requirements is in the category of 
crosscutting concerns, which are well addressed by aspect 
oriented techniques. Hence, we believe that system 
architecture is one of the ideal places where we can apply 
aspect oriented programming (AOP) methods to obtain a 
modularity level that is unattainable via traditional 
programming techniques. To follow that theoretical 
conjecture, it is necessary to identify and to analyze these 
crosscutting phenomena in existing system 
implementations. Furthermore, by using aspect oriented 
languages, we should be able to resolve the concern 
crosscutting and to yield a system architecture that is 
more logically coherent. It is then possible to quantify 
and to closely approximate the benefit of applying AOP 
to the system architecture. 

UML is acquainted to be the industry-standard 
modeling language for the software engineering 
community, and it is a general purpose modeling 
language to be usable in a wide range of application 
domains. So it is very significant to research aspect-
oriented real-time system modeling method based on 
UML[8]. However they didn’t make out how to model 
real-time systems, and express real-time feature as an 
aspect. In this section, we extend the UML, and present 
an aspect-oriented method that model the real-time 
system based on UML and Real-Time Logic (RTL)[9]. 
Real Time Logic is a first order predicate logic invented 
primarily for reasoning about timing properties of real-
time systems. It provides a uniform way for the 
specification of both relative and absolute timing of 
events. Real-time logic (RTL), which is based on first-
order logic with restricted features, captures the timing 
requirements of real-time systems. Real-Time Logic 
provides a uniform way for the specification of relative 
and uniform timing of events. It is an extension of integer 
arithmetic without multiplication (Presburger arithmetic) 
that adds a single uninterpreted binary occurrence 
function, denoted by @, to represent the relationship 
between events of a system, and their times of occurrence. 
The equation @(e; i) = t states that the time of the i¡th 
occurrence of event e is t:  Let us denote with Z, N and 
N+ the set of integers, positive integers, and strict 
positive integers, respectively. The time occurrence 
function is a mapping @:  E £ N+ ! N, where E is a 
domain of events, and such that @ is strictly 
monotonically increasing in its second argument, i.e., 
@(E; i) <@(E; i+ 1), for any i 2 N+:  It is supposed that 
all events may occur infinitely often. There are no event 
variables, or uninterpreted predicate symbols. So, RTL 
formulas are boolean combinations of equality and 
inequality predicates of standard integer arithmetic, 
where the arguments of the relations are integer valued 
expressions involving variables, constants, and 
applications of the function symbol@. The correctness of 
a real-time system can be achieved by Computing the 
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satiability of an associated propositional formula[14] 
Extended Real Time Logic (ERTL)[10] is a formalism 
for the modeling and analysis of relative and absolute 
timing properties of cyber physical systems (systems that 
combine continuous variables and discrete event 
dynamics). The extensions provided by ERTL enable the 
modeling of system behaviour ranging from activities of 
the physical entities that form part of the environment of 
a computing system, to the temporal ordering of the 
computational tasks of the computing system itself, thus 
providing a formal notation that can be used in all stages 
of software development.. The specification of the Object 
Constraint Language (OCL) [11] is a part of the UML 
specification, and it is not intended to replace existing 
formal languages, but to supplement the need to describe 
the additional constraints about the objects that cannot be 
easily represented in graphical diagrams, like the 
interactions between the components and the constraints 
between the components’ communication . Since OCL is 
an expression language, it can be checked without an 
executable system. All these features turn out to be useful 
in representing QoS properties, which can be represented 
by the combination of precondition, post-condition and 
invariant in OCL. The QoS attributes are represented by 
the member variables of the class, and the QoS actions 
are represented by the methods. They are checked at run 
time, before and after the calls so that the change of the 
QoS parameters of the system is monitored in a timely 
basis. 

As the QoS concern needs to be considered inmost 
parts of the system, it is a cross-cutting concern.[12] 
Cross-cutting concerns[30] are concerns that span 
multiple objects or components. Cross-cutting concerns 
need to be separated and modularized to enable the 
components to work in different configurations without 
having to rewrite the code. If the code for handling such a 
concern is included in a component, it can make the 
component tied to a specific configuration. This code will 
typically be scattered all over the component 
implementation and tangled with other code in the 
component. Modularizing it will make it more robust for 
change, and separating it totally from the component 
implementation will save the component programmers 
from having to implement it. Aspect oriented 
programming is a new method for modularizing cross-
cutting concerns. By using AOP, concerns can be 
modularized in an aspect and later weaved into the code. 
Fig.1 shows aspect model of QoS framework. 

 
Figure 1.  Aspect model of QoS framework 

 

IV.  RELATED WORKS 

Developing cyber physical systems is hard since it 
requires a coordinated, physics-aware allocation of CPU 
and network resources to satisfy their end-to-end quality-
of-service (QoS) requirements.  Jaiganesh 
Balasubramanian et al. make two contributions to address 
these challenges[13]. First, Jaiganesh Balasubramanian et 
al. present model-driven middleware called NetQoPE that 
shields application developers from the complexities of 
programming the lowerlevel CPU and network QoS 
mechanisms by simplifying (1) the specification of per-
application CPU and per-flow network QoS requirements 
subject to the physical constraints and dynamics, (2) 
resource allocation and validation decisions (such as 
admission control), and (3) the enforcement of per-flow 
network QoS at runtime. Second, they empirically 
evaluate how NetQoPE provides QoS assurance for CPS 
applications. The results demonstrate that NetQoPE 
provides flexible and non-invasive QoS configuration and 
provisioning capabilities by leveraging CPU and network 
QoS mechanisms without modifying application source 
code. 

The development of Distributed Real-Time and 
Embedded (DRE) systems is often a challenging task due 
to conflicting Quality of Service (QoS) constraints that 
must be explored as trade-offs among a series of 
alternative design decisions. The ability to model a set of 
possible design alternatives, and to analyze and simulate 
the execution of the representative model, offers great 
assistance toward arriving at the correct set of QoS 
parameters needed to satisfy the requirements for a 
specific DRE system. Jeff Gray et al. present a model 
driven approach for generating QoS adaptation in DRE 
systems[14]. The approach involves the creation of high-
level graphical models representing the QoS adaptation 
policies. The models are constructed using a domain-
specific modeling language - the Adaptive Quality 
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Modeling Language – which presents a view-oriented 
separation of common concerns. The proposed method 
motivates the need for aspect weavers at the modeling 
level, and provides a case study that is based on 
bandwidth adaptation in video streaming of an Unmanned 
Aerial Vehicle (UAV).  

Carsten Köllman, Lea Kutvonen, Peter Linington, 
Arnor Solberg presents an approach for managing several 
dependability dimensions[15]. They use aspect oriented 
and model driven development techniques to separate and 
construct QoS independent models, and graph-based 
transformation techniques to derive the corresponding 
QoS specific models. 

QoS-UniFrame[16] classifies quantifiable QoS 
requirements into static and dynamic. Static QoS is 
design-related, and dynamic QoS is substantially 
influenced by the deployment environment. Many of the 
static QoS requirements can be evaluated at component 
assembly time, yet dynamic QoS requirements need 
either simulators or virtual machines to monitor, predict, 
and adapt the QoS concerns. However, several dynamic 
QoS requirements can be assessed by referring to a 
component’s previous state and observations, as stored in 
a knowledge base at assembly time. Static and dynamic 
QoS parameters may be further subclassified into strict 
and non-strict, and orthogonal and non-orthogonal QoS. 
Strict QoS requirements (e.g., hard deadlines) force DRE 
systems to meet the requirements. Otherwise, the system 
will be incorrect because it cannot meet its QoS. Non-
strict QoS requirements (e.g., soft deadlines) allow 
margins of error when meeting QoS requirements. The 
performance of the system will be degraded according to 
the magnitude that non-strict QoS requirements are not 
assured. Orthogonal QoS implies that its adaptation will 
not influence other QoS, yet non-orthogonal QoS 
substantially affects other QoS directly or indirectly. 
According to the hierarchy of classification, QoS-
UniFrame separates static and dynamic QoS into a two-
level assurance process.  

Bikash Sabata et al. specify QoS as a combination of 
metrics and policies[17]. QoS metrics are used to specify 
performance parameters, security requirements and the 
relative importance of the work in the system. They 
define three types of QoS performance parameters:  
Timeliness, Precision, and Accuracy. QoS policies 
capture application-specific policies that govern how an 
application is treated by the resource manager. Examples 
of such policies are management policies and the levels 
of service.  

Mohammad Mousavi et al. present an extension to the 
GAMMA formalism[18], which they name 
AspectGAMMA[18], and we show how non-
computational aspects can be expressed separately from 
the computation in this framework. They discuss the main 
characteristics of an aspect-oriented formal specification 
framework, which is based on a multiset transformation 
language called GAMMA, a formalism based on multiset 
rewriting  they  illustrate how having a tailor-made 
formalism for each aspect that is abstracted from other 
aspects is a key benefit of such a formal design 

framework. To clarify the discussions, they sketch an 
architecture specification and design method for reactive 
distributed real-time embedded systems. In the approach 
they describe in their paper, they propose separating the 
concerns of computation, coordination, timing, and 
distribution, through different simple and abstract 
notations for these aspects. They  also describe a weaving 
process that maps all these different aspects to a single 
semantic domain. The method is based on a formal 
semantics that should ultimately enable automated 
reasoning about designs. The idea exploited in this 
method can be extended to other aspects, and extended 
with more complex weaving criteria. 

Lynne Blair proposes multi-paradigm approach to 
formal specification and shows how this approach can be 
successfully used in the specification of distributed 
multimedia systems[26]. He takes an example, a 
published description of an algorithm to establish the 
initial synchronization of distributed stored media 
streams that avoids the need for large buffers (e.g.if the 
locations of the media sources are widely distributed). He 
shows how this algorithm can be specified using a 
combination of real-time temporal logic and timed 
automata. He then describes how the different 
specifications (languages) can be combined in order to 
analyze the overall behaviour[19]. 

Jochen Hoenicke uses a combination of three 
techniques for the specification of processes, data and 
time:  CSP, Object-Z and Duration Calculus[20]. The 
basic building block in our combined formalism CSP-
OZ-DC is a class. First, the communication channels of 
the class are declared. Every channel has a type which 
restricts the values that it can communicate. There are 
also local channels that are visible only inside the class 
and that are used by the CSP, Z, and DC parts for 
interaction. Second, the CSP part follows; it is given by a 
system of (recursive) process equations. Third, the Z part 
is given which itself consists of the state space, the Init 
schema and communication schemas. For each 
communication event a corresponding communication 
schema specifies in which way the state should be 
changed when the event occurs. Finally, below a 
horizontal line the DC part is stated. The combination is 
used to specify parts of a novel case study on radio 
controlled railway crossings. Johannes Faber formally 
specifies a part of the European Train Control System 
(ETCS) with the specification language CSPOZ-DC 
treating the handling of emergency messages. 

Hybrid systems are models for complex physical 
systems and are defined as dynamical systems with 
interacting discrete transitions and continuous evolutions 
along differential equations. With the goal of developing 
a theoretical and practical foundation for deductive 
verification of hybrid systems, Andre Platzer introduces a 
dynamic logic for hybrid programs, which is a program 
notation for hybrid systems. As a verification technique 
that is suitable for automation, he introduces a free 
variable proof calculus with a novel combination of real-
valued free variables and Skolemisation for lifting 
quantifier elimination for real arithmetic to dynamic 
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logic. The calculus is compositional, i.e., it reduces 
properties of hybrid programs to properties of their parts. 
The main result proves that this calculus axiomatises the 
transition behaviour of hybrid systems completely 
relative to differential equations. In a case study with 
cooperating traffic_ agents of the European Train Control 
System,  the  case study show that our calculus is well-
suited for verifying realistic hybrid systems with 
parametric system dynamics[21][22][23]. 

B. Mahony and J.S. Dong propose a timed, 
multithreaded object modeling notation for specifying 
real-time, concurrent, and reactive systems. The notation 
Timed Communicating Object Z (TCOZ) builds on 
Object-Z's strengths in modeling complex data and 
algorithms, and on Timed CSP's strengths in modeling 
process control and real-time interactions. TCOZ is novel 
in that it includes timing primitives, properly separates 
process control and data/algorithm issues and supports 
the modeling of true multi-threaded concurrency. TCOZ 
is particularly well suited for specifying complex systems 
whose components have their own thread of control. The 
expressiveness of the notation is demonstrated by a case 
study in specifying a multi-lift system that operates in 
real-time[24][25]. 

Sandeep Neema et al. present a model-driven 
approach for generating quality-of-service (QoS) 
adaptation in Distributed Real-Time Embedded (DRE) 
Systems. The approach involves the creation of high-
level graphical models representing the QoS adaptation 
policies. The models are constructed using a domain-
specific modeling language – the Adaptive Quality 
Modeling Language (AQML). Multiple generators have 
been developed using the Model-Integrated Computing 
(MIC) framework to create low-level artifacts for 
simulation and implementation of the adaptation policies 
that are captured in the models. A simulation generator 
tool synthesizes artifacts for Matlab® Simulink 
®/Stateflow® (a popular commercial tool), providing the 
ability to simulate andanalyze the QoS adaptation policy. 
An implementation generator creates artifacts for Quality 
Objects (QuO), a QoS adaptation software infrastructure 
developed at BBN, for execution of QoS adaptation in 
DRE systems. A case study in applying this approach to 
an Unmanned Aerial Vehicle – Video Streaming 
application is presented. This approach has goals that are 
similar to those specified in the OMG’s Model- Driven 
Architecture initiative[26]. 

Although UML is a general purpose modeling 
language, it contains extensibility mechanisms that can be 
used to tailor it to specific domains (QoS information 
specification, for instance). These extensibility 
mechanisms can be understood as indirect modification, 
at the model level, of the UML meta-model [8.The 
standard extensibility mechanisms of UML are 
stereotypes, tagged values and constraints. These 
extensibility mechanisms are called “lightweight 
extensibility mechanisms”  in contrast to the direct 
manipulation of the UML “meta-model” that can be 
interpreted as “heavyweight extensibility mechanisms” 
(addition of new meta-classes, meta-associations, etc.). In 

order to give support to the gradual adoption of 
“standard” UML extensions, OMG has introduced the 
concept of “UML profile” which, in spite of the lack of a 
normative definition, has already been used in several 
OMG technical groups. A “profile” might be defined as a 
“specification that specializes one or several standard 
meta-models, called “reference meta-models”. OMG 
defines two UML profiles in order to use this modeling 
language for the specification of QoS information related 
to distributed object-based applications and for the 
modeling of mechanisms for monitoring the specified 
QoS information. A QoS characteristic represents some 
aspect of the QoS of a system, service or resource that 
can be identified and quantified. A QoS statement 
expresses some QoS by constraining values of QoS 
characteristics. A QoS relation specifies the mutual 
obligation of an object and its environment with respect 
to QoS. These concepts are related to the UML meta-
model in order to define a UML profile for QoS[27][28]. 

V.  CASE STUDY ONE:  ASPECT-ORIENTED  QOS 
MODELING OF FIRE ALARM SYSTEMS 

An automatic fire alarm system is designed to detect 
the unwanted presence of fire by monitoring 
environmental changes associated with combustion. In 
general, a fire alarm system is either classified as 
automatically actuated, manually actuated, or both. 
Automatic fire alarm systems can be used to notify 
people to evacuate in the event of a fire or other 
emergency, to summon emergency services, and to 
prepare the structure and associated systems to control 
the spread of fire and smoke. 

QoSConstraint  Q1,Q2, Q5 of the fire alarm system 
is expressed as follows with formal technique RTL[9]:    

[Q1]: ij@(data.collect,j)-
@(stop,i)COLLECT_MIN_TIME@(data.open,
j) -@ (stop,i)COLLECT_MAX_TIME 
[Q2]: ij@(data.process,j)-
@(stop,i)DATA_PROCESS_MIN_TIME @ 
(data. process, j)-
@(stop,i)COLLECT_MAX_TIME 
[Q5]: ij@(alarm.process.,j)-
@(command.send,i)ALARM_PROCESS_ MINTI 
ME @(alarm.process,j)-
@(command.send,i)ALARM_PROCESS_MAXTI
ME 
 
QoSConstraint Q3 and Q4 of the fire alarm system is 
expressed as follows with XML[12]:  
[Q3]:  <QoS type=”Level”> 
        <Firelevel  val = “FIRE_MAX_LEVEL”/> 
       </QoS> 
[Q4]:  <QoS type=”Contraint”> 
         <frame_rate val = 
“FRAME_RATE_CONSTRAINT”/> 
         <audio_sample_rate val = 
“FRAME_RATE_CONSTRAINT”/> 
       </QoS> 
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We separate QoS from real-time fire system as an 
aspect, the aspect-oriented model of  QoS  of real-time fire 
system is shown as Fig.2. 

 

 
Figure 2. QoS aspect-oriented model of Fire real-time system 
 

We use QoSAspect to express QoS of real-time fire 
alarm system. The class diagram of Fire Real-time 
System with the aspect-oriented extension is shown as 
Fig.3. 

Figure 3. Class Diagram of Fire Real-time System 
 

 The QoS Aspect Weaving Diagram of real-time fire 
alarm system is shown as Fig.4. 

 
Figure 4.  QoS Aspect Weaving Diagram of Fire Real-time System 

VI.  CASE STUDY TWO:  ASPECT-ORIENTED QOS 
MODELING OF ELEVATOR SYSTEM  

To satisfy the requirements of AOSD modeling cyber 
physical systems, UML should be extended by 
introducing a new stereotype called <<aspect>>. The 
<<aspect>>is a stereotype for the base class <<class>> 
that is part of the <<classifier>> element , in order to 
make sure that <<aspect>> has the same behavior as class. 
Real-time feature is described as an instance of 
<<aspect>> and called TimeAspect as shown in Fig.5. 

 
Figure 5. Relationship of class, classifier and <<aspect>> 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1089

© 2012 ACADEMY PUBLISHER



The time aspect of real-time systems can be designed 
independently and expressed as a time aspect model. The 
time aspect model can be defined and designed based on 
the general time model in Fig.6.  

 
Figure 6. Time Aspect Model 

  
An elevator control system[24][29] illustrates the 

development process including static structure, dynamic 
behaviors and the weaving of time aspect by integration 
of Informal Specification and formal Specification with 
aspect-oriented approach.  We consider that every floor 
has a pair of direction lamps indicating that the elevator is 
moving up or down. There is only one floor button and 
one direction lamp in the top floor and the bottom floor. 
Every floor has a sensor to monitor whether the elevator 
is arriving the floor. 
We consider that the elevator is required to satisfy the 
following timing constraints:  
[T1] After the elevator has stopped at a particular floor, 

the elevator’s door will open no sooner than 
OPEN_MIN_TIME and no later than 
OPEN_MAX_TIME. 

[T2] After the elevator has stopped at a given floor the 
elevator’s door will normally stay open for a 
STAY_OPEN_NORMAL_TIME. However, if the 
CloseDoorButton on board of the elevator is pressed 
before this timeout expires, the door will close but no 
sooner than STAY_OPEN_MIN_TIME. 

[T3] After the door is closed, the movement of the 
elevator can resume, but no sooner than 
CLOSE_MIN_TIME, and no later than 
CLOSE_MAX_TIME. 

 
 
 

Separation of Concerns From Elevator System 
Several concerns can be separated from the elevator 

control system, such as time aspect, control aspect, and 
concurrency aspect. The development process of the 
elevator control system is shown as Fig.7. However, in 
this paper we only simply consider the time aspect, and 
will complete other aspects in our future work. 

  
Figure 7. The Development Process of The Elevator Control System 

 
Structural Description Using Class Diagrams 

The real-time feature of real-time systems can be 
modeled using UML by extending stereotypes, tagged 
values, and constraints before. For example, timing 
constraints can be added on the class to express the time 
feature in class diagram. But the implementation of the 
time feature were still scattered throughout, resulting in 
tangled code that was hard to develop and maintain. So 
we describe the real-time feature as an independent 
aspect according to the AOP techniques, and design a 
time model to realize and manage the time aspect in order 
to make the system easier to design and develop and 
guarantee the time constraints. 

We separate the real-time feature as a TimeAspect, 
which is an instance of <<aspect>> in the elevator control 
system. The TimeAspect crosscuts the core functional 
class by stereotype <<crosscut>> in class diagram. Also 
timing constraints can be attached to the TimeAspect 
explicitly. The elevator control system class diagram is 
shown in Fig.8.  

 
 Figure 8. The Elevator Control System Class Diagram 
 
Behavioral Description 

UML has five behavioral diagrams to describe the 
dynamic aspects of a system as representing its changing 
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parts. Use case diagram organizes the behaviors of the 
system. Sequence diagram focuses on the time ordering 
of messages. Collaboration diagram emphasizes on the 
structural organization of objects that send and receive 
messages. Statechart diagram focuses on the changing 
state of a system driven by events. Activity diagram 
focuses on the flow of control from activity to activity 
messages. Use case diagram, collaboration diagram, and 
sequence diagram belong to Inter-Object behavior 
diagrams. While statechart diagram belong to Intra-
Object behavior diagrams. The time behavior is depicted 
by extending timing marks in the statechart traditionally. 
can model the intra-object aspectual behaviors well in the 
object-oriented programming paradigm. However, 
current specification of statecharts doesn’t support 
aspect-oriented modeling. To support aspect-orientation 
within the context of statecharts, we need to provide a 
mechanism by which the modeler can express these 
aspects. Statecharts modeling aspects should consider the 
association between aspects and transitions instead of 
states. Orthogonal regions, which are shown as dashed 
lines in statecharts, combine multiple simultaneous 
descriptions of the same object. The aspects can be 
expressed as objects, which have their own sub-states. 
Interactions between regions occur typically through 
shared variables, awareness of state changes in other 
regions and message passing mechanisms such as 
broadcasting, and propagating events .  

Collaboration diagram emphasizes on the structural 
organization of objects that send and receive messages. A 
collaboration diagram shows a set of objects, links among 
those objects, and messages sent and received by those 
objects. It shows classifier roles and the association roles. 
A classifier role is a set of features required by the 
collaboration. Classifier roles for core classes implement 
the core features required by the system. Classifier roles 
for aspects are services required by the core classes which 
are otherwise tangled with the roles of the core functional 
features . The time aspect is time service required by the 
core classes in real-time systems. 

The elevator control system expresses the time 
features as an object of TimeAspect. The behavior of the 
time object interacting on other objects of the system is 
shown in Fig. 9. 

The statecharts of the elevator control system is 
shown in Fig.10. Timing behaviors are described by the 
advanced features of statecharts, and the time concern is 
achieved implicit weaving with the core functionality of 
the system. Statecharts refine the model and aspects 
codes can be generated automatically by existing CASE 
tools. 
 
Weaving of Time-Aspect 

The time aspect can be woven into the real time 
system by using the UML’s statecharts, as statecharts 
refine the model. Libraries of core and time aspect 
statecharts can be developed concurrently and 
independently, and combined only when needed for a 
particular application. 

 

 
Figure 9. Collaboration Diagram of The Elevator Control System 
 

 
Figure 10. Statechart of the Elevator Control System 

 
In this paper, we weave the time aspect with high-

level declarations about how an event in the time 
statechart can be treated like a completely different event 
in the core statechart. The weaving framework permits 
statecharts design to be translated into skeleton code for a 
class. The time aspect and core statecharts objects may be 
joined to create orthogonal regions. In addition, the time 
aspect statechart can be woven by specifying which 
events shall be reinterpreted to have meaning in other 
statechart. The declarations of events reinterpretation of 
the elevator example can be described as follows 
according to the timing constraints:  
[1] If the core statechart is in the ‘ElevatorStopping’ state 

and a ‘openDoor’ event is introduced, and if the time 
aspect statechart is in the state ‘InitState’ satisfying 
‘t>=Min_Time&&t<=Max_Time’. Then the time 
aspect statechart transfers to the ‘Normal’ state, the 
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core statechart treats the ‘openDoor’ event exactly 
and transfers to the ‘DoorOpening’ state.  

[2] If the core statechart is in the ‘DoorOpening’ state and 
a ‘closeDoor’ event is introduced, and if the time 
aspect statechart is in the state ‘InitState’ satisfying 
‘t>=Min_Time’. Then the time aspect statechart 
transfers to the ‘Normal’ state, the core statechart 
treats the ‘closeDoor’ event exactly and transfers to 
the ‘DoorClosing’ state. 

[3] If the core statechart is in the ‘DoorOpening’ state and 
no any event is introduced, and if the time aspect 
statechart is in the state ‘Normal’ satisfying 
‘t>Max_Time’. Then the time aspect statechart 
transfers to the ‘TimeOut’ state, the core statechart 
transfers to the ‘DoorClosing’ state. 

[4] If the core statechart is in the ‘ReadyMove’ state and a 
‘down(up)’ event is introduced, and if the time aspect 
statechart is in the state ‘InitState’ satisfying 
‘t>=Min_Time&&t<=Max_Time’. Then the time 
aspect statechart transfers to the ‘Normal’ state, the 
core statechart treats the ‘down(up)’ event exactly 
and transfers to the ‘Elevator Starting Down(Elevator 
Starting Up)’ state. 

The time aspect and core statecharts will only make the 
transitions based on the declarations defined above. So it 
makes sure that the system will implement strictly relying 
on the timing constraints and guarantee the real time 
feature. Weaving the time aspect of the elevator system is 
shown in Fig.10. We extend the reinterpretation function 
so that an aspect can be woven into other aspects or core 
classes. In the example above, weaving can be specified 
using a reference to the core ‘statechart’ object and a 
reference to the aspect ‘statechart’ object:  

AspectID= core.crosscutBy(TimeAspect); 
This specifies how an aspect is woven into other aspects 
or core classes. Every weaving of aspect has unique 
AspectID. When aspects are weaving, methods will be 
called to map events in the core and aspect statecharts. 
The declarations will hold which events need to be 
reinterpreted. These details will be filled in while a 
specific aspect is woven. The declarations above are 
equivalent to the expressions as follows:  
[1]. reinterpretEvent (core,”ElevatorStopping”,”openDoo

r”,”InitState”,”start/t>=OPEN_MIN_TIME&&t<=O
PEN_MAX_TIME”,AspectID,Statechart.PREHAN
DLE); 

[2]. reinterpretEvent (core,”DoorOpening”,”button”,”Init
State”,”start/t>=STAY_OPEN_MIN_TIME”,Aspect
ID,Statechart.PREHANDLE); 

[3]. reinterpretEvent (core,”DoorOpening”,” ”,”Norma
l”,”start/t>STAY_OPEN_NORMAL_TIME”,Aspec
tID,Statechart.PREHANDLE); 

[4]. reinterpretEvent (core,”ReadyMove”,”down(up)”,”In
itState”,”start/t>=CLOSE_MIN_TIME&&t<= CLO
SE_MAX_TIME”,AspectID,Statechart.PREHAND
LE); 

 
The time aspect can be woven into the real time 

system by using the UML’s statecharts as shown in 
Fig.11. 

 

Figure.11. Weaving the Time Aspect 

VII.  CONCLUSION 

In this paper, we presented an aspect-oriented model 
for specifying Quality of Service (QoS) based on the 
combination of UML and RTL. Two types of notation, 
graphical (semi-formal) and, respectively, formal, can 
efficiently complement each other and provide the basis 
for an aspect-oriented specification approach that can be 
both rigorous and practical for QoS modeling.  Two 
examples depicted how aspect-oriented methods can be 
used during QoS analysis and design process. 

Future works will focus an automatic weaver for 
aspect oriented model of QoS. 
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