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Abstract—In this paper, we propose an automatic PAM 
(Partition Around Medoids) clustering algorithm for outlier 
detection. The proposed methodology comprises two phases, 
clustering and finding outlying score. During clustering 
phase we automatically determine the number of clusters by 
combining PAM clustering algorithm and a specific cluster 
validation metric, which is vital to find a clustering solution 
that best fits the given data set, especially for PAM cluster-
ing algorithm. During finding outlier scores phase we decide 
outlying score of data instance corresponding to the cluster 
structure. Experiments on different datasets show that the 
proposed algorithm has higher detection rate go with lower 
false alarm rate comparing with the state of art outlier de-
tection techniques, and it can be an effective solution for 
detecting outliers. 
 
Index Terms—outlier detection, PAM clustering algorithm, 
subtractive clustering, cluster validation 
 

I. INTRODUCTION 
An outlier is an observation that deviates so much 

from other observations as to arouse suspicion that it 
was generated by a different mechanism [1]. It is con-
cerned with discovering the exceptional behavior of 
certain objects [2]. Many data mining algorithms try to 
minimize the influence of outliers or eliminate them all 
together. However, it may result in the loss of important 
hidden information. Some data mining applications are 
focused on outlier detection, and it is the essential result 
of a data analysis. For example, while detecting fraudu-
lent credit card transactions, the outliers are typical ex-
amples that may indicate fraudulent activity, and outlier 
detection is mainly process in the entire data mining [3], 
[4]. 

In the recent decades, many the state of art outlier 
detection techniques have been proposed, which can be 
mainly classified into several categories: distribution-
based [5], [6], [7], depth-based [8], distance-based [9], 
[10], density-based [11], cluster-based [12], [13]. Distri-
bution-based methods are mostly used in early studies, 
which is a statistic method. However, a large number 

of tests are often required to decide which distribution 
model fits the arbitrary dataset best. Fitting the data 
with standard distributions is costly, and may not produce 
satisfactory results. The second category of outlier studies 
in statistics is depth-based. Each data object is represent-
ed as a point in a k-d space, and is assigned a depth. With 
respect to outlier detection, outliers are more likely to be 
data objects with smaller depths. However, in practice, 
depth-based approaches become inefficient for large da-
tasets for k≥4. Hence, many other categories of methods 
are proposed. In [9], Knorr and Ng firstly proposed the 
notion of distance-based outliers which is a non-local 
approach and can not find local outliers in complex struc-
ture data sets. Then, Breunig et al. propose density-based 
local outliers detection method (LOF) based on the dis-
tance of a point from its k nearest neighborhood and de-
clare the top n points in this ranking to be outliers. Fur-
thermore, many clustering algorithms, especially those 
developed in the context of KDD were extended to have 
capable of handling exceptions. The ordinary clustering 
based outlier detection methods find outliers as a side-
product of clustering algorithm, which regard outliers as 
objects not located in clusters of dataset. 

Even though clustering and anomaly detection appear 
to be fundamentally different from each other, there are 
numerous studies on clustering-based outlier detection 
methods. Many data-mining algorithms in literature de-
tect outliers as a by-product of clustering algorithms 
themselves, which define outliers as points that do not lie 
in or located far apart from any clusters. Actually no clus-
tering algorithm can precisely classify every data instance 
and some special data points in a certain cluster may be 
outliers. In this paper, we present one improved cluster 
based local outlier factor (CBLOF) [12] to tackle this 
problem. For clustering based outlier detection algo-
rithms, the number of clusters is needed to choose. How-
ever, for unknown datasets, we choose the number of 
clusters arbitrarily and it would decrease the performance 
of the algorithm. In this paper, we combine PAM cluster-
ing algorithm with a cluster validation metric to propose 

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1045

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.5.1045-1051



an automatic PAM clustering algorithms for dividing 
data instances into k clusters. To our proposed algorithm, 
the accurate cluster structure (or approximate to the ac-
tual nature of data set) is crucial to improve detecting 
ratio and false alarm ration in the context of outlier de-
tection. 

The rest of this paper is organized as follows. Section 2 
introduces subtractive clustering algorithm for estimating 
approximate number of clusters. Section 3 introduces the 
definition of the cluster validation metric used in our 
proposed algorithm and propose automatic PAM cluster-
ing algorithm. Section 4 proposes the improved CBLOF 
and outlier detection algorithm based automatic PAM 
clustering algorithm. Section 5 elaborates the experiments 
for demonstrating the effectiveness and efficiency of our 
proposed method. We conclude the paper in Section 6. 

II. SUBSTRATIVE CLUSTERING 
The Subtractive Clustering (SC) method is adopted in 

this paper to estimate approximate number of clusters of a 
given data set. Suppose that we don't have a clear idea 
how many clusters there should be for a given data set. 
Subtractive clustering [14] is a fast, one-pass algorithm 
for estimating the number of clusters and the cluster cen-
ters in a set of data. The subtractive clustering algorithm 
is described as follows. 

Consider a group of n data points {x1,x2,...,xN}, where 
xi is a data point, denoted as a vector in the feature space. 
Without loss of generality, we assume that the feature 
space is normalized so that all data are bounded by a unit 
hypercube. Firstly, we consider each data point as a po-
tential cluster center and define a measure of the point to 
serve as a cluster center. The potential of xi, denoted as 
Pi, is computed as by Eq. 1. 

1

2exp( )
N

i i l
l

P x xα
=

= − −∑ . (1)

Where α=4/ra
2 and ra>0 denotes the neighborhood ra-

dius for each cluster center. A data point with many 
neighboring data points will have a high potential value 
and the points outside ra have little in influence on its 
potential. After calculating potential for each point, the 
one with the highest potential value will be selected as 
the first cluster center. Then the potential of each point 
is reduced to avoid closely spaced clusters. Selecting cen-
ters and revising potential is carried out iteratively until a 
stopping criteria satisfied. The SC algorithm can be de-
scribed as follows. 
Algorithm: Estimate k number of clusters based on SC 
algorithms (SC_EstimateK) 
Input: A data set D={x1,x2,...,xN} 
Output: k number of clusters 
Step 1: Calculate the potential Pi for each point according 

to Eq. 1, 1≤i≤N; 
Step 2: Set the number of cluster center k=1 and select 

the data point with the highest potential value as 
the first cluster center. Let xk

* be the location of 
the point and P(xk

*), its corresponding potential 
value; 

Step 3: Revise the potential of each data point according 
to Eq. 2 

( )2** exp( )i i i kkP P P x xx β= − − − . (2)

Step 4: If maxi(Pi)≤ε∗P(xk
*), terminate the algorithm, 

return k number of clusters; otherwise, set k=k+1 
and find the data point with the highest potential 
value. Let xk

* be the location of the point and 
P(xk

*), its corresponding potential value, go to 
Step 3. 

Note that in Eq. 2, β=4/rb
2 and rb>0 presents the radius 

of the neighborhood for which significant potential revis-
ing will occur. To avoid obtaining closely spaced cluster 
centers,  rb is chosen to be greater than ra. Typically, rb 
=1.5ra. In step 4, the parameter ε should be selected 
within (0,1). If ε is selected to be close to 0, a large 
number of cluster centers will be generated. On the con-
trary, a value of ε close to 1 will render fewer cluster 
centers. 

In this paper, we utilize subtractive clustering to esti-
mate the approximate number k of clusters, which is a 
reference number of clusters in the next section. For it is 
approximate estimation, we can set the parameters ε, ra 
and rb to 0.5, 0.5 and 0.75 as default respectively. 

III. CLUSTER VALIDATION METRIC AND AUTOMATIC 
PAM CLUSTERING ALGORITHM 

A.  Cluster Validation Metric 
For PAM clustering algorithm, choosing the number of 

clusters (k) is crucial to the performance of clustering. 
With variant given the number of clusters, different clus-
tering results may be acquired. In cluster analysis, we 
find the partitioning that best fits the underlying data 
through evaluating clustering results. The validity indices 
are simply and effective methodology of measuring the 
quality of clustering results. There are two kinds of valid-
ity indices: external indices and internal indices. In order 
to choose the optimal k value for PAM clustering algo-
rithm, we choose an internal validity index. The princi-
ples of some widely-used internal indices for k-estimation 
and clustering quality evaluation are [15]: Silhouette in-
dex [16], Davies-Bouldin index, Calinski-Harabasz in-
dex, Dunn index, RMSSTD index. One may choose a 
validity index to estimate an optimal k value, where the 
optimal clustering solution is found from a series of clus-
tering solutions under different k values.  

We adapt Silhouette index as cluster validation metric 
for its simplicity. Silhouette index is a composite index 
reflecting the compactness and separation of the clusters, 
and can be applied to different distance metrics. For data 
instance xi, its silhouette index Sil(xi) is definite as: 

Sil(xi)=(b(xi)-a(xi))/max{a(xi),b(xi)}  (3)

where a(xi) is the average distance of data instance xi to 
other data instances in the same cluster, b(xi) is the aver-
age distance of data instance xi to instances in its nearest 
neighbor cluster. The average of Sil(xi) across all data 
instances reflects the overall quality of the clustering re-
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sult. A larger averaged Silhouette index indicates a better 
overall quality of the clustering result. 

B. Automatic PAM Clustering Algorithm 
PAM clustering [17], standing for “partition around 

medoids”, is a well-known partitioning method. Objects 
are classified as belonging to one of K groups, K comput-
ed by the algorithm SC_EstimateK in section 2. Com-
pared to the well-known k-means algorithm, PAM has the 
following features. Firstly, it operates on the dissimilarity 
matrix of the given data set or when it is presented with 
an n×m data matrix and the algorithm first computes a 
dissimilarity matrix. Secondly, it is more robust, because 
it minimizes a sum of dissimilarities instead of a sum of 
squared Euclidean distances. Finally, with the Silhouette 
index, it allows the user to select the optimal number of 
clusters.  

In many clustering problems, one is interested in the 
characterization of the clusters by means of typical ob-
jects, which represent the various structural features of 
objects under investigation. The algorithm PAM first 
computes k representative objects, called medoids. A 
medoid can be defined as that object of a cluster, whose 
average dissimilarity to all the objects in the cluster is 
minimal. In the classification literature, such representa-
tive objects are called centrotypes. After finding the set of 
medoids, each object of the data set is assigned to the 
nearest medoid. That is, object xi is put into a certain 
cluster CI, when medoid cmI is nearer than any other me-
doid cmw, denoted as follows: 

( , ) ( , )
i I i k

d x cm d x cm≤  (4)

where k =1,..., K. The K representative objects should 
minimize the objective function J, which is the sum of the 
dissimilarities of all objects to their nearest medoid, de-
noted as follows: 

1 1

( , )
K N

ik i k
k i

J r d x cm
= =

=∑∑  (5)

where rik denotes 1 when xi belonging to the cluster Ck, 0 
when xi not belonging to the cluster Ck; N denotes the 
number of data instances in data set; K denotes K clusters 
in data set; cmk represents kth cluster medoid. 

The goal of the algorithm is to minimize the average 
dissimilarity of objects to their closest selected object. 
Equivalently, we can minimize the sum of the dissimilari-
ties between object and their closest selected object. 

The algorithm proceeds in two steps: 
BUILD-step: This step sequentially selects k “centrally 

located” objects, to be used as initial medoids. 
SWAP-step: If the objective function can be reduced by 

interchanging (swapping) a selected object with an unse-
lected object, then the swap is carried out. This is contin-
ued till the objective function can no longer be decreased. 
In this paper, we refer to the PAM clustering algorithm as 
PAMClust in our proposed algorithm by brevity. We 
describe the algorithm as follows: 
Algorithm: k-means clustering algorithm (PAMClust) 

Input: A data set D={x1,x2,...,xN}, the number of clusters 
K; 
Output: Clusters {C1,C2,…,CK} 
Step 1. Initialize: randomly select the K cluster centroids 

CM={cm1, cm 2,...,cm K}; 
Step 2. Associate each data point xi∈D-CM to the closet 

mediod cmk according to Eq. 4, and each centroid 
and associated data point form clusters, denoted as 
{C1,C2,…,CK}; 

Step 3. For each medoid cmk 
For each non-mediod data point o∈D-CM 
Swap cmk and o and compute the function J ac-
cording to Eq. 5. If the function J decrease, repal-
ce cmk with o, else keep cmk as cluster mediod. 

Step 4. Repeat Steps 2 and 3 until there is no mediods 
updating, viz. the function J can not be decreased;  

Step 5. Return K clusters {C1,C2,…,CK} 
Firstly, we acquire the proximate number of clusters by 

the algorithm SC_EstimateK in section 2. Then we run 
the algorithm PAMClust to find optimal cluster according 
to the Silhouette index value. The algorithm of finding 
optimal cluster is as follows: 
Algorithm: Automatic PAM clustering (APAMClust) 
algorithm  
Input: A data set D={x1,x2,...,xN}; 
Output: Optimal clusters Clustopt={C1,C2,…,Copt}; 
Step 1. K=SC_EstimateK (D) 
Step 2. for i=K-λ:K+λ do loop 
Step 3.  Clust[i]=PAMClust(D,i) 
Step 4.  S[i]=Sil(Clust[i]) 
Step 5.  Array[i]={S[i], Clust[i]} 
Step 6. end_loop 
Step 7. Find maximal Silhouette index value and corre-

sponding cluster in Array, and the found index is 
denoted as maxindx. 

Step 8. Return Clustopt=Clust[maxindx]; 
In step 2, PAMClust algorithm run 2*λ times loop and 

produce the clusters of data set and corresponding Sil-
houette index value for every time, where λ is a desired 
value and can be a constant or adjusts to K value. In this 
paper, for the sake of simplicity, λ is set to K/2. 

IV. IMPROVED CBLOF AND OUTLIER DETECTION 
ALGORITHM 

In this section, we take use of the local outlier factor to 
identify the top n outliers in data set by analyzing the 
clustering structure obtained in section 3. It is reasonable 
to define the outliers based on the structure of clusters 
and identify those objects that do not lie in any large clus-
ters as outliers. As the large clusters are often dominant in 
the data set, the outliers are less probably included in 
them. Before presenting our outlier detection algorithm, 
we describe the following definition about the local outli-
er factor [12]. 

Definition 1. (large and small cluster) Suppose that 
C={C1, …,Ck} is the set of clusters in the sequence that 
|C1|≥ …≥|Ck|, where |Ci| denotes the number of objects in 
Ci (i=1,…,k) and k is the number of clusters. Given two 
numeric parameters α and β, we define b as the boundary 
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of large and small cluster if one of the following formulas 
holds. 

|C1|+… +|Cb|≥|D|∗α (6)

|Cb|/|Cb+1|≥β (7)

Then, the set of large cluster is defined as LC={Ci|i≤b} 
and the set of small cluster is defined as SC={Cj|j>b}.  

Definition 1 provides quantitative measure to distin-
guish large and small clusters. Formula 6 considers the 
fact that most data points in the data set are not outliers. 
Therefore, clusters that hold a large portion of data points 
should be treated as large clusters. Formula 7 considers 
the fact that large and small clusters should have signifi-
cant differences in size.  

To study clustering algorithm across different data set 
with outliers, we find that fact the point outliers will be 
classified as the nearest large clusters, since point outlier 
can not be clustered as one cluster. Therefore, the design 
of a new local outlier factor is desired in this situation. 
We designed an improved cluster-based local outlier fac-
tor based on the definition in the previous studies [12], 
[18].  

Definition 2. (Cluster-Based Local Outlier Factor) 
Suppose C={C1, …,Ck} is the set of clusters in the se-
quence that |C1|≥ …≥|Ck| and the meanings of  α, β, b, LC 
and SC are the same as they are formalized in Definition 
1. For any record t, the cluster-based local outlier factor 
of t is defined as: 

 ( ) ( , )j iCBLOF t dist t C C=   

(8)

…where t∈Ci, Ci∈SC and Cj∈LC 

( ) ( , )
j

j j
C LC

CBLOF t dist t C C LC
∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

…where t∈Cj, and Cj∈LC 

where dist(t,Cj) is the Euclidean distance between t and 
the center of Cj, |Cj| is the number of objects in Cj, |LC| is 
the number of clusters in the large clusters set. CBLOF(t) 
is simply to be calculated because we just need know the 
number of objects in certain large clusters as well as how 
far it close to t. 

If t∈SC, Cj denotes the nearest large cluster which is 
neighboring to t. In this case,  ∀t∈SC, Cj is almost identi-
cal. Thus, the object t which is more far away from the 
center of Cj will get a larger CBLOF. Otherwise, if t∈LC, 
Cj denotes the large cluster which contains t. Assume that 
two objects are respectively within a large cluster and a 
small cluster, they have equal distance from their corre-
sponding center of clusters. In this situation, the object t 
belong to the small cluster will get a larger CBLOF be-
cause we consider that data points in small clusters are 
outliers and provide more meaningful outlying infor-
mation than point outliers in large clusters. In addition, in 
a sense, we can regard point outliers as noises and they 

provide less underlying outlying information about the 
data set. 

Based on the clusters obtained in section 3, we can 
give an outlier detection algorithm. 
Algorithm: Automatic PAM clustering algorithm for 
outlier detection (APCOD) 
Input: A data set D={x1,x2,...,xN}; parameters n, α and β 
Output: The top n outliers with largest values of CBLOF 
in data set 
Step 1. Utilize APAMClust algorithm to produce optimal 

cluster Clustopt = {C1,C2,…,Copt}; 
Step 2. Get LC and SC according to Definition 2 based on 

parameters α and β; 
Step 3. For each object t in the data set, calculate 

CBLOF(t) according to Eq. 8; 
Step 4. Return the top n outliers with largest CBLOF 

V. EXPERIMENTS 
In this section, we conduct extensive experiments to 

evaluate the performance of our proposed algorithms. All 
algorithms are implemented through MATLAB on Penti-
um(R) Dual-Core CPU 2.0G PC with 2.0G main 
memory. We utilize the synthetic data set with outliers 
and real life data sets obtained from the UCI machine 
learning repository [21] to compare our algorithm against 
the original CBLOF algorithm (ORCBLOF) [18], KNN 
[10] and LOF [11] for outlier detection. For the results of 
KNN and LOF algorithm, we only present the best over-
all performance with the optimal number of nearest 
neighbors. For ORCBLOF algorithm, we choose the 
same parameters with our proposed algorithm. 

We evaluate outlier detection techniques using two 
categorical different metrics. The first metric consists of 
detection rate (denoted as DR) and false alarm rate (de-
noted as FR) [19], which is the most commonly used in 
detection systems, defined as follows: 

DR=|AO|/|CO|  (9)

FR= (|BO|-|AO|)/(|DN|-|CO|)  (10)

where |AO| is the number of true outliers in the detect-
ed top n outliers, |BO| is the number of the detected top n 
outliers and |CO| is the number of true outliers in the en-
tire data set; while |DN| is the number of all objects in the 
data set. 

One drawback of the above type metric is that it is 
highly dependent on the choice of n, which is used for top 
n outliers. An outlier detection technique might show 
100% DR for a particular value of n but show 50% accu-
racy for 2n. To overcome this drawback we also use the 
following evaluation metric. The second categorical met-
ric used to evaluate the outlier detection techniques is to 
obtain the ROC curve [20] obtained by varying n from 1 
to |DN|. The advantage of ROC curve is that it is not de-
pendent on the choice of n. The higher area under of the 
ROC curve (AUC) indicates higher performance corre-
sponding competing outlier detection algorithm. 
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A.  Effectiveness of Detecting Outliers on Synthetic Data 
Set 

Figure 1 shows a synthetic 2-dimentional data set with 
three large clusters, two small clusters and four point out-
liers. Figure 2 shows estimation number of cluster corre-
sponding to the data set depicted in Figure 1. Optimal 
number of cluster is indicated by a square symbol in Fig-
ure 2. Intuitively, all of 22 objects in the small clusters 
and 4 point outliers denoted with “*” (O1 to O6) can be 
regards as outliers. We apply APCOD, ORCBLOF, KNN 
and LOF to find the top 26 outliers in the dataset. To 
KNN and LOF outlier detection algorithms, we choose 20 
and 15 as optimal number of k nearest neighbors respec-
tively. APCOD can successfully find the desirable outli-
ers because it utilizes APAMClust algorithm to obtain 
stable clusters and effectively defines the local outlier 
factor in both large and small clusters for every object. 
ORCBLOF is not able to find outliers which are near to 
enormous clusters. According to the definition in [18], 
the skewed enormous clusters would decrease CBLOF 
value of outliers near to enormous clusters. For example, 
O1 and O2 will be assigned smaller CBLOF values rela-
tive to normal objects in C3 and be treated as normal ob-
jects. However, LOF has some difficulty to distinguish 
outliers since the density of C3 and O6 are similar. So it 
identifies some normal objects in C3 as outliers rather 
than detects the outlier cluster O6. On the other hand, 
KNN fails to identify outlier cluster O5 because it is much 
closed to C3. In table I, we present the performance of 
competing outlier detection algorithms adapted in this 
paper. 

 

 
Figure 1.  2-dimensional data set with outliers 
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Figure 2.  estimation number of cluster for synthetic 2-

dimentional data 

TABLE I.   
RESULTS OF OUTLIER DETECTION ALGORITHM ON SYNTHETIC DATA SET. 

 KNN LOF ORCBLOF APCOD 
DR 0.75 0.85 0.95 1 
FR 0.04 0.02 0.009 0 

B.  Effectiveness of Detecting Outliers on Real Life Data 
Set 

To verify the performance of our proposed algorithm 
on practical application domain, we apply all algorithms 
on several different real life data sets available at the UCI 
Machine Learning Repository. The details about the se-
lected data sets are summarized in Table 2. For the sake 
of simplicity, we choose all data sets with purely contin-
uous attributes. For the mixture of continuous and cate-
gorical attributes, a possible way is to compute the simi-
larity for continuous and categorical attributes separately, 
and then do a weighted aggregation. 

The “No. attributes” in table II denotes all attributes 
except the class attribute. Note that the “No. outliers” in 
the table is the total of objects in the small clusters. Each 
data set contains labeled instances belonging to multiple 
classes. We identify the last class or last two classes as 
the outlier class, and rest of the classes were grouped 
together and called normal. In order to produce the small 
clusters, we remove most objects within the last class and 
set the proportion of outliers to be not greater than 10% 
of total instances in data set. For Lymph data set, we 
choose two class containing least instances as outlier 
classes. In the experiments, the parameters α and β set to 
0.75 and 5 respectively. 

Tables III summarize the DR, FR results on the real 
life data sets. Figure 4 indicates performance of compet-
ing algorithms on Iris data set. Figure 5 indicates perfor-
mance of competing algorithms on Lymph data set. Fig-
ure 6 indicates performance of competing algorithms on 
Optical data set. From table III, we can find that the de-
tection ratio of all competing algorithms decreases along 
with higher dimensionality of data set. We can deduce 
that all competing outlier detection algorithm in this pa-
per are more or less unsuitable for high-dimensional data 
due to the notorious “curse of dimensionality”. This is 
primary drawback about our proposed algorithm. In order 
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to improve performance, we recommend SNN distance as 
distance function to calculate similarity between two data 
instances. Though all competing algorithm suffer from 
the notorious “curse of dimensionality”, our proposed 
algorithm, APCOD, still performs munch better than 
ORCBLOF, LOF and KNN with a lower false alarm rate 
and higher AUC. While running on Optical data set, 
KNN performs extremely poorly because the data set is 
high dimensional and very spare and in turn identify the 
outliers simply based on Euclidean distance is not feasi-
ble. Though APCOD performs moderately on Optical 
data set, it still outperforms both LOF and KNN. 

TABLE II.   
CHARACTERISTICS OF REAL LIFE DATA SETS. 

 No.  
attributes 

No.  
clusters 

No. 
outliers 

No. 
 instances 

Iris 4 3 10 110 
Lymph 18 4 6 148 

Optical(training) 64 10 60 3121 

TABLE III.   
RESULTS OF OUTLIER DETECTION ALGORITHM ON REAL LIFE DATA SET. 

  Iris Lymph Optical(training) 

DR       FR  DR      FR  DR      FR 

KNN 0.7500 0.06 0.5000 0.0211 0.0132 0.0279 
LOF 0.7000 0.06 0.5000 0.0211 0.0789 0.0130 

ORCBLOF 0.7000 0.08 0.6667 0.0141 0.3421 0.0186 
APCOD 0.8000 0.04 0.8333 0.007 0.3684 0.0179 
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Figure 3.   ROC of outlier detection algorithm on synthetic data set 
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Figure 4.  ROC of outlier detection algorithm on Iris 
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Figure 5.  ROC of outlier detection algorithm on Lymph 
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Figure 6.  ROC of outlier detection algorithm on Optical 

VI. CONCLUSION 
In this paper, an efficient automatic PAM clustering 

outlier detection (APCOD) algorithm is proposed. The 
algorithm firstly estimates the number of clusters in data 
set by subtractive clustering without expert knowledge 
about the data set. Then it fixes the optimal number of 
clusters by combining Silhouette index and PAM cluster-
ing and the optimal number of clusters represents the 
nature of the underlying data set. Finally, we present the 
definition of improved CBLOF and propose our outlier 
detection algorithm. Our proposed algorithm treats the 
small clusters and points far away from the large clusters 
as outliers and can efficiently identify the top n outliers 
by defining improved local outlier factor (CBLOF) for 
each instances in all clusters. Experimental results 
demonstrate that our proposed algorithm can automatical-
ly produce desirable clusters and has superior perfor-
mance for outlier detection with lower false alarm rate 
compared against ORCBLOF, LOF and KNN.  
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