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Abstract— In dynamic service-oriented environment, service 
monitoring could provide reliability improvement to service 
composition as well as cost increase. To reduce the overall 
cost brought by monitoring, existing literatures proposed to 
decrease the number of monitors through monitoring the 
most reliability-sensitive services. However, the optimal 
monitoring rate for those monitors was not taken into 
account at the same time. Aiming at choosing optimal 
monitoring rate for minimal number of monitors, this paper 
proposed to search appropriate monitoring rate to minimize 
multi kinds of resources cost by monitoring under reliability 
constraints. Firstly, two multi-objective optimization 
problems were presented with the reliability and cost 
models of service composition under monitoring analyzed 
through Markov chain. Then a multi-objective memetic 
algorithm (MOMA) was used to search the near-optimal 
solutions of monitoring rate for services. This algorithm 
employed nondominated sorting strategy as the global 
search method and used random walk with direction 
exploitation method as local search operator. Experimental 
studies results showed that multi-objective approach for 
service monitoring rate optimization could provide solutions 
with a variety of trade-offs between the system reliability 
and cost comparing with existing greedy sensitivity-based 
method. Comparison with other multi-objective 
evolutionary algorithms showed that, in terms of both the 
coverage rate and hypervolume indicator, MOMA searched 
more effectively than several state-of-art algorithms 
including NSGA II, PHC-NSGA-II and HaD-MOEA. 
 
Index Terms—service monitoring; Markov chain; software 
reliability; memetic algorithm; multi-objective optimization 
 

I.  INTRODUCTION 

Although the development techniques for service-
oriented architecture have been extensively investigated, 
how to improve the reliability of service composition has 
not been comprehensively studied. In traditional software 
systems, testing time increase and redundant components 
configuration are two common ways to improve system 
reliability [1]. In dynamic service-oriented environments, 
it is difficult to test all services in a composition in 

advance, so monitoring is often used to improve service 
reliability [2]. Like traditional reliability assurance 
methods, monitoring mechanism also increases system 
cost, so it may be advantageous to achieve a balance 
between reliability improvement and cost increase. Since 
a service-oriented system typically comprises of several 
services, a natural question is how to deploy monitors on 
them and how to optimize the monitoring rates. 

Our previous work [3] employed a greedy method to 
select the most reliability-sensitive services in a 
composition to monitor but it couldn’t guarantee the 
minimal monitoring rate for these monitors at the same 
time. In this paper, we treat the problem of “finding the 
minimal number of monitors with minimal monitoring 
rate” as multi-objective optimization problems of 
“minimizing the cost under reliability constraints” and a 
memetic algorithm is used to search the near-optimal 
solutions. In the memetic algorithm, nondominated 
sorting genetic algorithm II (NSGA II) [4] is introduced 
in the global search process and iterative random walk 
strategy with direction exploitation [5] is employed as 
local search operator. Empirical studies results showed 
that in multi-objective monitoring rate optimization, our 
method outperformed the sensitivity-based method and 
several evolutionary algorithms including NSGA II, 
PHC-NSGA-II[6] and HaD-MOEA[7], which are state-
of-art approaches for multi-objective reliability allocation.  

The whole paper is organized as follows: Section II 
summarized related work on optimal reliability allocation 
and multi-objective memetic algorithms. Section III 
analyzed reliability model of service composition under 
monitoring and presented the problem formulation of 
monitoring rate optimization. Section IV introduced our 
memetic algorithm to find minimal monitors with 
minimal monitoring rate. Section V listed experimental 
studies results followed by a conclusion. 

II.  RELATED WORK 

Optimal reliability allocation has been researched for 
decades [1] but existing researches often deal with single-
objective reliability allocation problems. Moreover, few 
approaches on monitoring resources allocation have been 
proposed. Reference [3] presented a greedy sensitivity-
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based method to select most sensitive services to monitor 
according to monitoring mechanisms. However, it didn’t 
consider the trade-off between the number of monitors 
and the monitoring rate. Zai Wang[7] proposed a 
harmonic distance based multi-objective evolutionary 
algorithm(HaD-MOEA). It outperformed NSGA II but 
aimed at multi-objective testing time allocation. In a word, 
there is no existing work on efficient multi-objective 
algorithms for monitoring rate optimization, so we plan to 
build a memetic algorithm to solve this problem.  

As an emerging area of evolutionary algorithm, 
memetic algorithm combines global search strategies 
with local search heuristics [8] and thus searches more 
efficiently than conventional genetic algorithms [9]. The 
success of memetic algorithm has been demonstrated on a 
variety of single objective optimization problems. Zai 
Wang [10] proposed a memetic algorithm to solve single 
objective redundancy allocation in multi-level system. 
Hongfeng Wang [11] presented a particle swarm 
optimization based memetic algorithm for dynamic 
optimization problems. T. Warren Liao [5] employed 
random walk with direction exploitation method as the 
local search operator in the single objective memetic 
algorithm. The application of memetic algorithm in 
multi-objective optimization hasn’t drawn much attention. 
Slim Bechikh [6] introduced a novel multi-objective 
memetic algorithm (PHC-NSGA-II) for continuous 
optimization, which was a result of hybridization of the 
NSGA-II algorithm with polynomial mutation as local 
search procedure, and the efficiency of this local method 
could be improved. 

III.  PROBLEM DESCRIPTION 

In this section, we first analyze the reliability and cost 
models for service composition under monitoring and 
then present the monitoring rate optimization model. 

A. Reliability and Cost  Models 
1) Reliability model 
Monitoring process checks the status of in-use service 

periodically and replaces unavailable ones in background. 
Since service running and monitoring process are both 
continuous process, we first build Continuous Time 
Markov Chain (CTMC)[12] model to analyze the 
reliability of single service under monitoring, as shown 
by Fig.1. In this model, state(1,0) and state(0,0) represent 
the normal execution and failure state of service. 
State(1,1) and state(0,1) represent that the service is in the 
monitoring state. 1/λ and 1/μ represent mean time to 
failure and mean time to restore the service respectively. 
We assume that 1) λ(μ) of new service and the replaced 
service are the same because they are often selected 
according to certain QoS rules; 2) new changed services 
are always in the working state. λm represents the 
monitoring rate and 1/μ0 denotes the mean time taken to 
wait for the response of the service. 1/μm denotes the 
mean time used to wait for the response of services, select 
and change service. To simplify the calculation process, 
we consider the steady state of this model. Let πi,j denotes 
the steady probability of the service pool in state (i,j).  

 
According to the rule of “Rate of flow in=Rate of flow 

out for each state” [12], we can get (1) from Fig. 1. 
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The reliability of this service could be perceived as the 
probability that the service in working states (1, i): 
R=π1,0+π1,1, shown by (2). All the parameters in R could 
be determined except for the monitoring rate λm , so we 
could solve (2) to get R=R(λm). 

 
0 0

(1 ) (1 )m m m

m m m

R
p

λ λ λλ λ
μ μ λ μ μ λ μ

= + + + + ⋅
⋅ + +

  (2) 

Then, we analyze the reliability of service composition 
under monitoring. Although there are some differences 
between the service composition and traditional modular 
software, it could be transformed to DTMC [14,15]. After 
building the DTMC model on the composition, we could 
get the number of invocations to each service Vi. The 
overall reliability model of service composition with 
monitored services could be calculated from each service 
using hierarchy approach of architecture-based software 
reliability model[13], as shown by (3). Rc denotes the 
reliability of the service composition, Ri denotes 
individual services’ reliability under monitoring, m 
denotes the number of services in the composition and λmi 
denotes monitoring rate for the ith service (1≤i≤m). 
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2) Cost model 
There are generally two kinds of resources cost by 

monitoring. On one hand, additional resources are needed 
to store information about backup services, deploy the 
monitor and set the timer. Let Si denotes this kind of 
resource cost by the ith monitor and Sc denotes the 
overall cost resources. Sc could be calculated from Si, as 
shown by (4), where ki denotes whether the ith monitor is 
deployed. If monitor is deployed on the ith service, ki=1, 
else ki=0. On the other hand, additional network 
bandwidth will be taken to transmit monitoring query and 
response messages. Let Lc denotes the bandwidth cost in 
a unit time and Li denotes the length of query and 
response message of the ith monitor. Lc is determined by 
the monitoring rate λmi, as shown by (5). If monitor is 
deployed on the ith service, λmi>0, else λmi=0. 
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Figure 1. CTMC model for single service under monitoring. 
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B.  Service Monitoring Rate Optimization Problem 
To minimize overall monitoring cost Sc and Lc, we aim 

at choosing appropriate k and λmi under reliability 
constraints R0. To simplify the problem, we assume that 
Si and Li for each monitor is the same and denote them by 
S0 and L0. Let k denotes the number of monitors set in the 
composition. The optimal problem is shown in (6) and (7), 
depending on whether we need to maximize the 
reliability. Equation (6) is a bi-objective optimization 
problem and (7) is a tri-objective optimization problem. 
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IV.  MULTI-OBJECTIVE MEMETIC ALGORITHM 

In this section, we proposed a multi-objective memetic 
algorithm (MOMA) to solve the above two problems. 

Our MOMA is built as follows: 1) the simulated 
binary crossover operator and polynomial mutation 
operator are employed as genetic operator to generate 
new invididuals; 2) nondominated sorting strategy [4] is 
used to sort combined populations and to select needed 
solution; 3) random walk with direction exploitation 
method [5] is introduced to refine local best solutions. 
The pseudo code of MOMA’s framework is shown below. 
Begin 
Set offspring population Q0=Ø, and generation counter 
t=0. Initialize population P0 with N individuals, P0= 
{p1,p2,…,pN}. 
While t<tmax(the maximum generation number) 

Use genetic operator to generate Qt from Pt. 
Combine parent and offspring population Rt=Pt∪ Qt. 
Calculate objective values and constraints values of 

individuals in Rt. 
Calculate nondominated fonts and crowding distance 

for elements in Rt, 
Sort Rt in descending order using nondominated fonts 

and crowding distance and select the first individual. 
Apply local search operator to the selected one. 

Include the feasible solutions obtained in the local 
search into Rt and calculate corresponding nondominated 
fonts and crowding distance. 

Sort Rt again in descending order using nondominated 
fonts and crowding distance and fill Pt+1 with first N 
individuals. 

Set t=t+1. 
Output Pt 
End 

A.  Genetic Operators 
Each individual pj(1≤j≤N) in the population Pt is an 

array of monitoring rate value for web services: pj={λm1, 
λm2,…,λmm}j. The simulated binary crossover (SBX) 
operator and polynomial mutation [16] operator are 
employed as genetic operator in this algorithm. In each 
generation, SBX operator generates new individuals as (8) 
and (9), where λ'mi,k denotes the monitoring rate of the ith 
service monitor in the kth child and λmi,k denotes the ith 
monitoring rate of the randomly selected parent (1≤k≤2). 
β is generated from (10), where μ is a random number 
between (0, 1) and η is the predefined distribution index 
for crossover. 
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Polynomial mutation operator could be presented by 
(11), where λ'mi and λmi denote the ith monitoring rate of 
the child and parent. r is a random number between (0, 1) 
and ηm is the predefined mutation distribution index. 
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B.  Nondominated Sorting and Selection Strategy 
The pseudo code of sorting and selection strategy is 

shown below and the details of fast_non_dominated_sort() 
and crowding_distance_assignement() could refer to [4]. 
Nondominated sorting algorithm is used twice in MOMA, 
before local search and for global selection process. 
Fast_non_dominated_sort_and_select() 
Begin 

Fast_non_dominated_sort(Rt) to get nondominated 
fonts F of Rt, F={F1,F2,…}. 

If (before local search) 
     crowding_distance_assignement(F1), calculate 

crowding distance in F1(the first nondominated font). 
     Sort F1 in descending order using crowding 

distance. 
      Local_best_solution=F1[1](the first solution in the 

first nondominated font). 
Else (for global search) 
      Pt+1=Ø and i=1. 
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      While |Pt+1|+|Fi|≤ N 
           crowding_distance_assignement(Fi), calculate 

crowding distance in Fi. 
           Include ith nondominated front in the parent 

population, Pt+1=Pt+1∪ Fi. 
           Set i=i+1. 
     End 
   Sort Fi in descending order using crowding distance. 

     Pt+1=Pt+1∪ Fi[1:(N-|Pt+1|)], choose the first (N-|Pt+1|) 
elements of Fi and combine them with Pt+1. 

End 
End 

For bi-objective problem, number of monitors k (no. of 
positive λmi in pj) and sum of monitoring rate Σλmi are 
used as the objective value in nondominated sorting 
algorithms and crowding distance calculation. For tri-
objective problem, one more objective value, the 
reliability R=R(λmj) is added.  

C.  Local Search Strategy 
After the local best solution is found through non-

dominated sorting, the local search strategy takes use of 
random walk with direction exploitation method to search 
its neighbors and include feasible solutions. In the search 
process, a random array is generated and adjusted to local 
best solution. The new individual is then checked whether 
to be a nondominated solution. If so, it will be included 
into acceptable solutions, otherwise, the random array 
will be reduced by half and the process will continue until 
it reaches the maximal number of iterations. The pseudo 
code of local search method is shown below and the 
algorithm will return a set of nondominated solutions. 
Local_search_procedure(Input local best individual x) 
Begin 

i=1 and Q=Ø. 
While i<imax(predefined maximal search number) 
    Randomly generate vector λ={λ1,λ2,…}. 
    Set t=1, xt=x and ratio=1. 
    While t<tmax(predefined maximal iteration number) 
        xt=xt+ratio*λ. 
        If xt constraint_dominate x 
            Include xt into Q and break; 
        Else 
            ratio=ratio/2. 
        End 
        Set t=t+1. 
    End 
    Set i=i+1. 
End 
Output Q. (Include Q into combined population Rt) 

End 

V.  EXPERIMENTAL STUDIES 

In this section, our MOMA is compared with the 
sensitivity-based method and other multi-objective 
algorithms including original NSGA II [4], PHC-NSGA-
II[6] and HaD-MOEA[7]. NSGA II is a most widely used 
algorithm in multi-objective optimization. PHC-NSGA-II 
is a new memetic algorithm built upon NSGA II and 
HaD-MOEA is a state-of-art evolutionary algorithm for 

multi-objective testing time allocation. The experimental 
studies were designed to consist of two parts. First, the 
MOMA was compared with other approaches using a 
single group of parameters with different reliability 
constraint values. Second, several groups of system 
parameters with a certain reliability constraint value were 
used for comparison. 

A.  Experimental Design 
A sample service composition, containing six types of 

basic workflow patterns, taken from [17] is used as the 
example in this section, shown by Fig. 2. The transition 
probability information is listed in [17] and we could 
obtain Vi=[1,1,3.03,1,1,0.7,0.2,0.1,1,1,1], Rc=R1R2R3

3.03 

R4R5R6
0.7R7

0.2R8
0.1R9R10R11R12. 10 groups of failure rate, 

repair rate are simulated for 12 services in it. The data is 
randomly chosen from the sample data collected from 
real-world services through Membrane, an open source 
web service registry and monitoring tool [18]. 

 
Assuming each service waits at most 10 seconds for 

response [19] and 10 seconds for retrying, the value of 
μ0=1/t0=3. Generally service selection process takes about 
0.5~2 seconds according to different algorithms [20]. We 
don’t take the service replacement time into consideration 
since it is often much less than the time for service 
selection. As a result, the value of μs=1/ts∈(30,120) and 
we choose μs=60 in the following experiments. tm=1/μm= 
t0+ ts. Let S0 and L0 to be unit 1 and omit them in the 
objective values calculation. In MOMA, the population 
size is set to 100, the maximum generation is 200, the 
crossover rate is set to 0.9, and the mutation rate is set to 
0.1. The initial value of monitoring rate of each service 
λmi (1≤i≤m) is randomly generated from 0 to 1/min. The 
minimal monitoring interval is 1 minute and the maximal 
interval is ∞, which implies that no monitor is set. If the 
monitoring rate value after genetic operations exceeds the 
range of [0, 1], it will be replaced by 0 or 1 respectively.  

B.  Comparison using Different Reliability Constraint 
In this experiment, a single group of service failure 

rate and repair rate was randomly chosen from the dataset 
and the reliability threshold value was set from 0.90 to 
0.99. Fig. 3 shows the comparison of a single group of 
solutions obtained by different algorithms for bi-objective 
problem under different constraint value, where dR0 
denotes the minimal reliability improvement for 
sensitivity-based method. Sensitivity-based method only 
returns a single group of solution and it is dominated by 
the Pareto sets obtained by MOMA, which provides more 
kinds of solutions. Under the same number of monitors, 
the monitoring rate obtained by MOMA is generally 
smaller than those obtained by other solutions. Fig. 4 
illustrates a set of nondominated solutions obtained by 
multi-objective algorithms on both the bi-objective 
problem and the tri-objective problem. According to 

 
Figure 2. Sample workflow of service composition. 
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Figure 3. Comparison of solutions obtained by different algorithms for bi-objective problem using different reliability constraint (one case study). 
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Figure 4. Nondominated sets obtained by multi-objective algorithms for bi-objective and tri-objective problems using different reliability 

constraint (one case study). 

Fig.4, the solutions obtained by MOMA spread better in 
the objective space than those obtained by other 
algorithms. This result suggests that MOMA might be 
advantageous to other methods. However, the figures are 
just a simple illustration, and to compare MOMA and 
other multi-objective evolutionary algorithms in detail, 
we use two measures: 1) the coverage fraction [21] and 2) 
hypervolume indicator [22]. The coverage fraction stands 
for the fraction of nondominated solutions obtained by 
one algorithm, which are covered by the nondominated 
solutions of another algorithm. It indicates a direct 
comparison of two nondominated sets. The hypervolume 
indicator is a set measure reflecting the volume enclosed 
by a set of solutions. It guarantees that any approximation 
set that achieves the maximally possible quality value 
contains all the Pareto-optimal objective vectors.  

Experiment for each reliability constraint value was 
carried out for 10 times and the average coverage fraction 
of nondominate sets obtained by four algorithms was 
shown in Table I. The result obtained by MOMA that is 
significantly better than the other is emphasized in 
boldface. Again, MOMA covers greater faction of the 
Pareto sets achieved by other algorithms, which implies 
that the solution space of MOMA is bigger than the 
others. Table II presents the mean values of hypervolume 
indicator obtained by four algorithms in 10 independent 

runs for each reliability constraint value. Except for few 
test cases, the hypervolume indicator of MOMA is higher 
that other algorithms.  

C.  Comparion Using Different Service Reliability  
In this experiment, different groups of service failure 

rate and repair rate from the dataset were used and 
reliability constraint value was set to 0.95. Fig. 5 shows 
the comparison of a single group of solutions obtained by 
different algorithms for bi-objective problem using 
different groups of parameters and Fig. 6 illustrates the 
nondominated solutions obtained on both the bi-objective 
problem and the tri-objective problem. Similarly, 
sensitivity-based method only returns single solution for 
each experiment and the solution is dominated by the 
Pareto sets of MOMA. From Fig.6, it is difficult to 
determine which algorithm dominates another, so we will 
compare the coverage fraction and hypervolume indicator 
of solutions obtained by different algorithms. 

Each experiment (for different failure rate and repair 
rate) was carried out for 10 times and the average 
coverage fraction of nondominate sets obtained by four 
algorithms was shown in Table III. Again, MOMA 
covers greater faction of the Pareto sets achieved by the 
other algorithms. Table IV presents the average values of 
hypervolume indicator obtained by the four algorithms in 

994 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



TABLE I.   
THE FRACTION OF NONDOMINATED SOLUTIONS COVERED BY OTHER NONDOMINATED POINTS (THE LAST COLUMN COMPRISES THE MEAN VALUE 

FOR EACH ROW). 

Coverage (A cover B) 
bi-objective problem 

algorithm Reliability constraint 
A B 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 mean 

NSGA II MOMA 52.0% 60.1% 36.8% 25.5% 18.9% 4.9% 10.9% 1.7% 0.0% 0.0% 21.1% 
MOMA NSGA II 47.5% 35.2% 59.3% 71.2% 75.5% 94.2% 86.6% 95.0% 100.0% 100.0% 76.5% 

PHC-NSGA-II MOMA 64.7% 57.6% 62.0% 35.2% 11.1% 4.4% 3.8% 3.7% 0.0% 0.0% 24.2% 
MOMA PHC-NSGA-II 17.3% 41.3% 34.3% 59.9% 80.1% 98.3% 86.1% 86.8% 100.0% 100.0% 70.4% 

HaD-MOEA MOMA 43.3% 27.3% 12.3% 17.1% 17.4% 13.9% 8.2% 3.3% 0.0% 0.0% 14.3% 
MOMA HaD-MOEA 62.3% 64.8% 67.6% 43.1% 45.8% 56.1% 64.6% 96.6% 100.0% 100.0% 70.1% 

tri-objective problem
NSGAII MOMA 6.3% 17.8% 12.7% 7.6% 12.9% 12.2% 14.2% 9.9% 12.6% 2.9% 10.9% 
MOMA NSGAII 91.5% 77.5% 73.1% 87.3% 81.4% 85.3% 80.8% 81.1% 72.2% 95.1% 82.5% 

`PHC-NSGA-II MOMA 20.1% 20.5% 21.9% 22.8% 21.8% 17.4% 12.8% 7.0% 4.4% 0.3% 14.9% 
MOMA PHC-NSGA-II 23.1% 23.6% 27.3% 22.0% 26.2% 34.5% 44.5% 52.2% 55.2% 91.4% 40.0% 

HaD-MOEA MOMA 11.0% 16.6% 2.5% 12.6% 11.6% 12.1% 21.3% 8.2% 21.4% 4.8% 12.2% 
MOMA HaD-MOEA 66.9% 59.4% 94.0% 55.9% 57.0% 52.2% 53.6% 47.1% 49.2% 61.0% 59.6% 

TABLE II.  
VALUES OF HYPERVOLUME INDICATOR OF OBTAINED RESULTS FROM DIFFERENT ALGORITHMS. 

Hypervolume Indicator
Reliability 
 constraint 

bi-objective problem tri-objective problem 
NSGA II PHC-NSGA-II HaD-MOEA MOMA NSGA II PHC-NSGA-II HaD-MOEA MOMA 

0.90 0.3478 0.1238  0.4814 0.4300 0.9160 0.9160  0.9155 0.9152 
0.91 0.4879 0.3811  0.4201 0.4953 0.9109 0.9123  0.9106 0.9127 
0.92 0.4222 0.2931  0.4625 0.4763 0.8216 0.8202  0.8243 0.8222 
0.93 0.6669 0.2657  0.5880 0.6171 0.8055 0.8088  0.7311 0.8095 
0.94 0.5705 0.3965  0.3487 0.5247 0.7078 0.7056  0.7051 0.7200 
0.95 0.2664 0.3213  0.2634 0.4202 0.6016 0.6037  0.6003 0.6276 
0.96 0.1943 0.2944  0.1794 0.3035 0.4779 0.4973  0.4865 0.5270 
0.97 0.2353 0.1840  0.1258 0.2480 0.3625 0.3799  0.3225 0.4094 
0.98 0.0914 0.0281  0.0391 0.1163 0.2054 0.2033  0.2105 0.2445 
0.99 0.0000 0.0000  0.0000 0.0188 0.0317 0.0355  0.0265 0.0726 

Mean 0.3283 0.2288  0.2908 0.3650 0.5841 0.5883  0.5733 0.6061 
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Figure 5. Comparison of solutions obtained by different algorithms for bi-objective problem using different groups of parameters (one case study).

10 independent runs for each group of parameter. For 
most test cases, the hypervolume indicator of MOMA 
outperforms other algorithms. 

V.  CONCLUSIONS AND FUTURE WORK 

In this paper, we propose to optimally deploy monitors 
and set monitoring rate in service composition to improve 
the reliability as well as to save unnecessary cost. To 
improve the optimization efficiency, we formulate this 
problem as two multi-objective optimization problems 
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Figure 6. Nondominated sets obtained by multi-objective algorithms for bi-objective and tri-objective problem using different groups of 

parameters (one case study). 

TABLE  III. 
THE FRACTION OF NONDOMINATED SOLUTIONS COVERED BY OTHER NONDOMINATED POINTS (THE LAST COLUMN COMPRISES THE MEAN VALUE FOR 

EACH ROW). 

Coverage (A cover B) 
bi-objective problem 

algorithm Test case no. 
A B 1 2 3 4 5 6 7 8 9 10 mean 

NSGA II MOMA 6.3% 17.8% 12.7% 7.6% 12.9% 12.2% 14.2% 9.9% 12.6% 2.9% 10.9% 
MOMA NSGA II 91.5% 77.5% 73.1% 87.3% 81.4% 85.3% 80.8% 81.1% 72.2% 95.1% 82.5% 

PHC-NSGA-II MOMA 2.9% 21.2% 18.1% 5.0% 16.0% 10.7% 19.9% 6.0% 21.6% 2.5% 12.4% 
MOMA PHC-NSGA-II 97.1% 72.5% 64.8% 91.7% 82.2% 87.7% 74.2% 86.7% 70.2% 98.0% 82.5% 

HaD-MOEA MOMA 11.0% 16.6% 2.5% 12.6% 11.6% 12.1% 21.3% 8.2% 21.4% 4.8% 12.2% 
MOMA HaD-MOEA 66.9% 59.4% 94.0% 55.9% 57.0% 52.2% 53.6% 47.1% 49.2% 61.0% 59.6% 

tri-objective problem
NSGAII MOMA 11.5% 20.4% 18.8% 9.9% 14.5% 14.0% 19.0% 6.4% 18.3% 8.1% 14.1% 
MOMA NSGAII 45.3% 26.6% 31.0% 49.3% 38.3% 45.1% 28.3% 57.9% 36.0% 52.2% 41.0% 

PHC-NSGA-II MOMA 16.3% 17.0% 22.2% 18.8% 21.3% 15.2% 19.6% 9.9% 17.4% 6.7% 16.4% 
MOMA PHC-NSGA-II 32.1% 29.5% 30.2% 31.9% 27.5% 41.4% 30.0% 45.5% 34.9% 60.2% 36.3% 

HaD-MOEA MOMA 14.9% 13.4% 16.3% 7.4% 13.4% 9.9% 12.3% 3.1% 12.4% 3.3% 10.6% 
MOMA HaD-MOEA 29.7% 15.7% 16.0% 51.5% 25.8% 40.4% 15.7% 77.5% 26.4% 83.5% 38.2% 

TABLE IV. 
VALUES OF HYPERVOLUME INDICATOR OF OBTAINED RESULTS FROM DIFFERENT ALGORITHMS. 

Hypervolume Indicator
Test case no. bi-objective problem tri-objective problem 

NSGA II PHC-NSGA-II HaD-MOEA MOMA NSGA II PHC-NSGA-II HaD-MOEA MOMA 
1 0.4290 0.3510  0.3160 0.4714 0.6013 0.6027  0.6075 0.6216 
2 0.2679 0.2257  0.2609 0.4460 0.7961 0.8018  0.8021 0.8077 
3 0.3249 0.1797  0.3887 0.3451 0.7251 0.7315  0.7307 0.7359 
4 0.5528 0.4499  0.5531 0.6211 0.7033 0.7137  0.7058 0.7245 
5 0.3873 0.3310  0.3550 0.5170 0.7112 0.7212  0.7190 0.7257 
6 0.2886 0.2550  0.4626 0.4330 0.6097 0.6241  0.6159 0.6344 
7 0.3781 0.2520  0.2613 0.3437 0.7998 0.8035  0.8026 0.8110 
8 0.4195 0.3815  0.3454 0.4594 0.5931 0.6052  0.5996 0.6268 
9 0.5934 0.3460  0.4272 0.5871 0.7980 0.8078  0.8038 0.8100 
10 0.2210 0.2555  0.1978 0.3383 0.4194 0.4274  0.4287 0.4646 

Mean 0.3863 0.3027  0.3568 0.4562 0.6757  0.6839  0.6816  0.6962  

and use memetic algorithm to search solutions. The 
memetic algorithm employs nondominate sorting strategy 
from NSGA II as the global search method and applies 
random walk with direct exploitation method as local 
search strategy. The experimental studies results showed 
that our MOMA outperformed both sensitivity-based 

method and other multi-objective evolutionary algorithms 
including NSGA II, PHC-NSGA-II and HaD-MOEA.  

This paper presented a further step of work on 
monitoring resource allocation comparing with our 
pervious work [3]. But there is still a lot of work to do in 
the future. For example, we take use of Markov chain in 
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this paper to get the reliability model of service 
composition under monitoring but we only consider the 
steady state of Markov chain. In Internet environment, 
states of services may change too quickly to achieve the 
steady sate. So, in the next step, we plan to consider real 
time processing of monitoring resources optimization and 
consider the usage of dynamic resources allocation. 
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