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Abstract—Ensemble learning aims at combining several 
slightly different learners to construct stronger learner. 
Ensemble of a well selected subset of learners would 
outperform than ensemble of all. However, the well studied 
accuracy / diversity ensemble pruning framework would 
lead to over fit of training data, which results a target 
learner of relatively low generalization ability. We propose 
to ensemble with base learners trained by both labeled and 
unlabeled data, by adopting data dependant kernel 
mapping, which has been proved successful in semi-
supervised learning, to get more generalized base learners. 
We bootstrap both training data and unlabeled data, 
namely point cloud, to build slight different data set, then 
construct data dependant kernel. With such kernels data 
point can be mapped to different feature space which results 
effective ensemble. We also proof that ensemble of learners 
trained by both labeled and unlabeled data is of better 
generalization ability in the meaning of graph Laplacian. 
Experiments on UCI data repository show the effectiveness 
of the proposed method.  
 
Index Terms—ensemble learning; generalization ability; 
data dependant kernel; kernel mapping; point cloud kernel 
 

I.  INTRODUCTION 

Ensemble learning combines base learners to get better 
result than individual ones. It is widely accepted that it 
works if base learners are well selected by some criteria, 
and ensemble of a small size but carefully selected subset 
could be better than ensemble of all [3]. Currently there 
are two main selection strategies: weighted ensemble and 
ensemble pruning. For the former, a weight is associated 
with each base learner and output of final ensemble is the 
weighted sum of output of all base learners. Often we 
confine all weights are non-negative and sum to 1. For 
the latter, there is also a weight associated with each 
learner but it is either 0 or 1. In another word, the learners 
with weights 0 would be discarded. We can say the latter 
is a special case of the former. 

There are many efforts to find optimal weights in both 
cases, though it is a NP-hard problem in essence. The 
subensemble selection problem is a combinatorial 
optimization problem and it is computationally 
prohibitive to search for the best solution directly [2]. But 
it is possible to get near-optimal subensembles through 
some approximate algorithms. Examples include GASEN 
[3] which based on an evolution algorithm, and SDP [2] 
which relied on a quadratic optimization process by 
searching in whole solution space to find the optimal 
solution. By selecting ensemble members with some 
strategies, they construct an effective weighted 

subensemble with smaller size and stronger 
generalization ability than original ones. 

If ensemble members are aggregated in an appropriate 
order, the error rate of a subensemble by top k members 
can still get better results. This is the so-called ensemble 
pruning. Many ensemble pruning approaches exist in 
ensemble learning research, such as Reduce-Error 
Pruning [4], Kappa Pruning [4], Orientation Ordering 
(OO) [5] and Ensemble Pruning via Individual 
Contribution (EPIC) [6]. Efficiency of algorithms in this 
family is highly relied on ranking metric of member 
learners. Such metrics include accuracy and diversity and 
their weighted combination. There is some work on the 
relationship between performance of ensemble and such 
metric of individual learners [9]. 

However, previous ensemble pruning framework does 
not consider generalization ability of the final 
subensemble which means the performance on unseen 
data. Recently, a semi-supervised consideration of 
ensemble pruning is proposed. [10] gave a general review 
of relationship between ensemble learning and semi-
supervised learning, and stated that it would be helpful if 
they are put together properly. [11] showed such 
helpfulness by adopting unlabeled data to get maximized 
diversity of learners in ensemble learning.  

Generalization ability of ensemble or subensemble is 
coming into consideration currently. In a series 
algorithms like RNCL [7] targeted at ANN, a 
regularization term formed by weights in ANN is added 
to the optimization problem to get relative small weights 
of trained networks. Generalization ability formularized 
as Graph Laplacian regularizer [13] of ensemble over the 
whole dataset is considered in [14] and it is naturally 
suitable for both semi-supervised and transductive 
settings. 

However, the idea of this paper lies in a different 
direction. We notice that in ensemble pruning, a 
subensemble constructed by members with better 
generalization ability also performs better in 
generalization. It is necessary to integrate generalization 
ability consideration in the process of training individual 
learners, and it can guarantee that all member learners 
have relative better generalization ability before pruning, 
which forms the main intuition of our work. 

In this paper, we first introduce a data dependant 
kernel and plug it into a kernel learner. And then propose 
an efficient method to comprehensively evaluate 
contribution of individual learners with better 
generalization ability, which synthetically considers 
accuracy and diversity. An algorithm named Ensemble 
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Pruning for Data Dependant Learners (DDLEP) that 
trains individual learners with good generalization ability 
and incorporates ensemble members with order of hybrid 
metric value into subensembles is proposed as the main 
algorithm of this paper.  

We also note that the proposed method can be used in 
both single-instance and multi-instance learning. For the 
former case, a semi-supervised single-instance kernel is 
used while in the latter case, we introduce a multi-
instance version of such kernel with Graph Laplacian of 
bags. 

Experimental results on 10 UCI data sets for single-
instance setting and 4 data sets for multi-instance setting 
show that subensembles formed by DDLEP are of better 
performance than the original ensemble and traditional 
semi-supervised methods. In all experiments, bootstrap is 
chosen to be the method for constructing the original 
ensemble since it has been shown to be a safe and robust 
method [8]. Current state-of-the-art ensemble pruning 
methods EPIC [6] and traditional non-ensemble semi-
supervised learning algorithm [15] are chosen to be peer 
methods. Our experiments show that DDLEP 
outperforms them on most data sets. 

The paper is structured as following. Section II reviews 
some important related work of our topic. Section III 
presents some basic concept and theory on data 
dependant kernel mapping and the accuracy / diversity 
trade-off in ensemble learning. In Section IV we present 
the main algorithm of this paper. We report experimental 
results in Section V and conclude in Section VI. 

II.  RELATED WORK 

An ensemble is composed of multiple learners that 
work together in some way to make decisions. It has been 
found that ensembles are often much more accurate than 
their member learners. Dietterich [12] stated that an 
ensemble of classifiers is more accurate than any of its 
ingredient if the members are of better accuracy and 
diversity. Gavin Brown [9] has explained the 
effectiveness of ensemble learning of regression in a 
theoretical view. He pointed out that the key properties of 
individual learners that affected final ensemble were 
accuracy and diversity. [10] gave some analysis on semi-
supervised learning and ensemble learning, and presented 
some methods to incorporate both in a united framework. 

There is some work on regularization of ensemble 
learning. RNCL [7] introduced a regularization term of 
member ANN weights in the optimization problem to 
improve generalization of the overall ensemble. But it is 
confined to ensemble of ANNs and it is not able to make 
use of unlabeled data.  [14] proposed a regularization 
framework which directly used unlabeled data to improve 
generalization ability of weighted ensemble. A quadratic 
optimization is launched to get the optimal solution. The 
method is naturally suitable for semi-supervised and 
transductive learning, and with a threshold for weights, it 
can achieve weighted ensemble and pruning. However, 
we point out that the method in [14] may not get the 
optimal solution with all seen data, since the unlabeled 
data does not appear in construction of member learners. 

[11] is a more recent work on semi-supervised ensemble 
learning. The main idea is to get a maximized diversity 
estimation of the ensemble on unlabeled data while 
keeping accuracy on labeled data. But the unlabeled data 
is not considered while building member classifiers in a 
semi-supervised manner. 

Recent semi-supervised learning methods can greatly 
improve generalization ability of learners. We introduce 
the work presented in [15] to training member learners, 
which makes use of unlabeled data by a deformed kernel 
named point cloud kernel. It introduced a modified 
RKHS with a norm determined by a set of data points. By 
combining manifold assumption and cluster assumption, 
the reproducing kernel appropriately warps an RKHS and 
is adapted to the geometry of data distribution. The point 
cloud is irrelevant to labels and can be constructed by all 
seen data points, which provides a natural way to get 
learners of better generalization ability [16][17]. 

Pruning is an approach to find better ensemble based 
on learners ranking at relatively low computational cost. 
Famous ensemble pruning include Reduce-Error (RE) 
pruning [4], Kappa Pruning, Orientation Ordering (OO) 
[5] and Ensemble Pruning via Individual Contribution 
ordering (EPIC) [6]. Current algorithms mainly adopt 
accuracy and diversity as ranking metric. However, there 
is still no work in the literature considering generalization 
ability of individual learners in ensemble pruning. A 
doctor thesis [18] presented some empirical study on 
pruning with the concern of accuracy, diversity and 
generalization ability of individual learners and solved it 
as a multi-objective optimization problem. The weak 
point is that supervised learners of poor generalization 
ability would be generated by bootstrapping training data 
set only. As mentioned before, we tackle this problem by 
adopting semi-supervised learning with unlabeled data to 
guarantee better performance on unseen data before 
pruning. 

III.  PRUING OF SEMI-SUPERVISED LEARNERS 

In this section we first present semi-supervised 
learning with data-dependant kernel, and then detail 
ensemble pruning with accuracy and re-defined diversity. 

A. Data Dependant Kernel 
This section briefly describes the data dependant 

kernel proposed in [15] [16]. Here the main idea is to 
warp an RKHS using a redefined norm determined by a 
set of points. Then a modified kernel is obtained by 
reproducing property and the point cloud dependant norm. 

Formally, given a data set of both labeled and 
unlabeled data l uX X X= ∪ , ix X∈ , where lX  is a 

labeled data set and uX  is an unlabeled data set. The 

learning task is to find a function f  on  X  in a 
hypnosis space H  such that: 

}),,(1{minarg 2

1
H

l

i
iiHh hyxhV

l
f += ∑

=
∈         (1) 

920 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER



Where V  is a loss function and 
H
⋅  is a norm defined 

on H . If 
H
⋅  is standard norm on H , then we can get 

the solution of (1) by Representer Theorem.  

∑
=

⋅=
l

i
ii xxkxf

1

),()( α                        (2) 

k  is the kernel of H . Now we are interested in the case 
that 

H
⋅  is determined by a point cloud.  Named the new 

space 
~
H  with a different inner product: 

VH
H

SgSfgfgf ><+>=<>< ,,, ~          (3) 

nRVHS =→:   ))(),...,(( 1 lxfxfSf =      (4) 

))(),...,(( 1 lxfxfF =                          (5) 

V  is a linear space with norm MFFSf T
V
=2

, 

where  M   is a symmetric positive semi-defined matrix 
reflecting the geometry structure of the space. [15] 

proved that 
~
H is still an RKHS with kernel 

~
k as 

following: 

z
T
x kMMKIkzxkzxk ⋅+−= −1

~
)(),(),(        (6) 

Where )),(),...,,(( 1 xxkxxkk lx =  and K  is Gram 

matrix. With kernel 
~
k , unlabeled data can be 

incorporated into supervised kernel learning machine, 
such as SVM. 

B. Individual Contribution Assessment 
In ensemble pruning, diversity and accuracy of 

individual learners affect the quality of ensemble 
tremendously. Below we give the formal definition of 
both metrics used in our algorithm. For simplicity, we 
only consider bi-classification problem. 

Let ]}1,1[,],,1[|),{( −+∈∈∈= iiii yXxniyxD  
be a set of n  data points with vectorical representation, 
x  is properties associated with a data point and y  is 

class label. },...,{ 1 mccE =  is a set of m  classifiers 

with )( ji xf  is the prediction of the ith  classifier on the 

jth  data point. The accuracy iAcc of the ith  ensemble 
member is defined as its probability of correct prediction 
on data set. 

There are various diversity definitions of set of 
learners in the literature [10], with different background 
from problem domain to learning framework. In this 
paper, we employ a modified disagreement measure 
based on [9]’s definition. Intuitively speaking, only shift 
between member classifier and ensemble is considered in 
this diversity definition.  
Definition 1: The continuous prediction of 
ensemble },..,{ 1 mccE =  on a data point x  is defined as 
following: 

Dx
m

xc
xc

m

k
k

contens ∈=
∑
= ,

)(
)( 1

_                (7) 

        
Definition 2: Diversity of classifier ic  to the ensemble, 

denoted as iDiv , is defined as following: 

2
1

2
_ ))()((

n

xcxc
Div

n

j
kjcontensji

i

∑
=

⋅−
=

δ
             (8) 

δ  in (8) is a penalty parameter such that: 

 
The definition of δ  only considers the contribution of 

correct classification samples. Thus the diversity in our 
framework is closely related to accuracy, which means 
accuracy and diversity would not contradict to each other. 
We show this point empirically. 

        
Figure 1.       Rank Order of Accuracy and Diversity 

Fig. 1 show two base learner ranking of two UCI data 
sets. The left part in Fig. 1 is harbman and the right part 
is glass. In each part, the first column stands for the 
decent ranking by accuracy and the second column for 
diversity. The number in each column stands for the ID of 
learner. From Fig. 1 we see that both ranking are 
consistent in accuracy and diversity. The main reason lies 
in the label punishment in diversity definition. 

An equal weighted ranking strategy is adopted to 
combine accuracy and diversity contribution of each 
learner. All learners are ranked twice, the first time is by 
accuracy and the second time is by diversity of both 
descend order. Two rankings are added together to get the 
final ranking. 

IV.  MAIN ALGORITHM 

In this section we propose the main algorithm DDLEP 
(Data Dependent Learners Ensemble Pruning) of this 
paper, and give some detail discussion on applying the 
proposed algorithm to both single-instance (SI) and 
multi-instance (MI) learning. 

 

δ =
1  iff   ( )i j jc x y=  

0  otherwise 
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A. DDLEP algorithm 
As mentioned above, kernel based semi-supervised 

learning is adopted to generate base learner before 
ensemble pruning. Then accuracy and diversity of each 
learner is calculated according to Eq. (7) and Eq. (8). 

Formally, the input of DDLEP is a training set trainD , 

an evaluation set evalD ,a testing set testD  and a 

predefined parameter θ  which is the percentage of the 
selected classifiers in original ensemble. 

The original ensemble 1 2{ , ,..., }mC c c c= is trained 

on trainD , and take evaltrain DD +   and 

testevaltrain DDD ++ as point cloud for semi-supervised 
and transductive learning respectively. We also note that 
in transductive setting, the point cloud is made up of 

train testD D+  which would be very large in size. Thus a 
randomly selected subset is generated to substitute the 
original point cloud.  It is empirically effective as shown 
in the experiment section. The algorithm is summarized 
in Fig. 2. 

 
Figure 2.  DDLEP algorithm 

Fig. 2 details the DDLEP algorithm. The procedure 
PointCloudKernel calculates the point cloud kernel on 
point cloud P , which is described in Fig. 3. Note that in 
SVM training and testing procedure, Gram matrix of 
associated data is needed.  For training, Gram matrix is 
constructed between training data; for testing, Gram 
matrix is constructed between training data and testing 
data. The procedure svmtrain is a standard SVM training 
method with kernel trainK and training data T . 
CalAccuracy and CalDiversity are two methods for 
calculation of accuracy and diversity of all learners. 

Graph Laplacian regularizer is calculated to measure 
smoothness. For SI learning, procedure ‘GraphLaplacian’ 
constructs KNN adjacency weighted graph and heat 

kernel [18] is used. Details can be found in [15]. For MI 
learning, we define a new bag level Graph Laplacian to 
evaluate the adjacency of the input samples. Details are 
described in subsection C. 

B. On Single-Instance Learning 
We show that the proposed algorithm is suitable for SI 

learning naturally. Note that M constructed by KNN 
adjacency graph really captures underlying manifold of 
the data set. There are two important parameters 
controlling the quality of M . The first one is p  that 
controls degrees of manifold and the second is the 
parameter of original kernel K . In our work, radius basis 
function (RBF) is used with a parameter σ  controlling 
kernel width. The meaning of σ is how far points in a 
manifold can be away from each other. Such parameters 
are data set dependant and a proper selection can reach 
relatively good result.  We use a grid search procedure to 
obtain the best result in a manual defined scope. 

 
Figure 3.  Point Cloud Kernel Calculation 

C. On Multi-Instance Learning 
The proposed method is also suitable for multi-

instance learning [19] with introduction of MI kernel  [20] 
and smoothness penalty of bags.  There are two key 
points to apply the proposed method to multi-instance 
setting. The first is MI kernel that is studied in many 
literature [20, 21]. In this paper, node kernel [20] and 
miGraph [21] are used as kernels in the main algorithm. 
We briefly describe the two kernels. 

Suppose we have a multi-instance data set 
)},(),...,,{( 11 nn yXyXD = , where i 1{ ,.., }

ii imX x x= , 

}1,1{ +−∈iy  and ijx  stands for the jth  instance in 

bag i . 
1) Node Kernel 
Let k  be a single-instance kernel, define node kernel 

as following: 

∑∑
= =

=
i jm

p

m

q
jqipjinode xxkXXk

1 1

),(),(             (9) 

Node kernel provides a mapping between bags and 
some feature space. 

 
2) miGraph 
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[21] proposed an effective but simplified MI kernel. It 
regarded a bag as a partial connected graph (KNN graph 
or ε –ball graph). Both nodes and edges that represent 
relationship between nodes are considered in the kernel 
function.  

To construct miGraph kernel, define iW  as adjacency 
matrix for bag iX : 

                                                                   
(10) 

(10) indicates that we only care whether there is 
relationship between nodes, but not how strong the 
relationship is.  miGraph gk  is defined as (11): 

1 1

1 1

( , )
( , )

ji

ji

mm

ia jb node ia jb
a b

g i j mm

ia jb
a b

W W k x x
k X X

W W

= =

= =

⋅ ⋅
=

⋅

∑∑

∑ ∑
   (11) 

where ∑
=

=
im

p

i
apia WW

1
/1 ， ∑

=

=
jm

p

j
bpjb WW

1

/1 . 

[22] gave a theoretical analysis of the effectiveness of  
the kernel defined in (11). 

The second point to be discussed is the Graph 
Laplacian of bags. Motivated by single instance semi-
supervised kernel [13], we define semi-supervised multi-
instance kernel to make use of labeled and unlabeled bags. 

Following the idea of Citation-KNN [23], we define 
the smallest Euclidean distance between instances from 
two bags as bag instance, denoted as MinD . Formally, we 
have: 

2
( , ) minMin i j i jD X X x x= − ii Xx ∈ , jj Xx ∈    (12) 

Since the calculation of Graph Laplacian and kernel is 
based on certain distance definition, it is acceptable to 
plug MinD  into Algorithm 2 to get a point cloud kernel 
for MI problem. 

 

D. Time Complexity 
An approximate evaluation of time complexity of the 

proposed method is presented here. Let m  be the size of 
learners, 1n be the size of training data, 2n be the size of 

evaluation data and 3n be the size of testing data.  

))(( 2
32

2
1_ nnnOT trainK ++=           (13) 

)( 2
1nOTDIV =                                 (14) 

)(mOTpruning =                                 (15) 

trainKT _ denotes time of point cloud kernel calculation 

for training. DIVT  stands for time of calculation of 

diversity of each member learner and pruningT  for pruning 

time. SVMT  is the standard SVM training time 
complexity. Then the overall time complexity for the 
proposed method is: 

pruningDIVtrainKSVM TTTTmT +++⋅= )( _          (16) 

IV.  EVALUATION 

A. Experiment 
Experimental data in this paper were chosen from the 

UCI machine learning data repository [23] and Corel 
Image Gallery Magic. We choose 10 data sets from UCI 
repository to evaluate the performance of DDLEP on the 
single-instance learning setting, and 2 data sets from 
Corel Image Gallery Magic on the multi-instance learning 
setting. We also test the proposed algorithm on the 
famous multi-instance learning data set Musk1 and 
Musk2 [19]. We verify the efficiency of the proposed 
method on both single-instance learning and multi-
instance learning. 

Each data set is divided into 3 parts: training, 
evaluation and testing with a size ratio 3:3:4. Each data 
set is randomly partitioned 10 times and 10 independent 
trials of experiments are launched on each partition. 
Therefore a total of 100 trials of experiments were 
conducted on each data set. We take the average of all 
experimental results as the final result. TABLE I 
summarizes the characteristics of the data sets. 

TABLE I.  SINGLE INSTANCE DATA SET PROPERTIES 

Data Set Attributes Classes Size 
balance-scale 4 3 625 
breast-w 9 2 683 
ecoli 8 8 336 
glass 9 6 214 
haberman 3 2 306 
ionosphere 34 2 351 
segment 19 7 2310 
transfusion 4 2 748 
wine 13 3 178 
yeast 8 10 1484 

TABLE II.  MULTI INSTANCE DATA SET PROPERTIES 

Data Set Pos. Bags Neg. Bags Attributes 
Musk1 47 45 476 
Musk2 39 63 6598 
Fox 100 100 9 
Tiger 100 100 9 

We compare the proposed method DDLEP to two peer 
methods: semi-supervised kernel learning method and 
EPIC [6].  The former is a semi-supervised learning 
without ensemble, while the latter is a supervised 
ensemble learning method. For MI data set Fox and Tiger, 
method described in [24] is used to covert each image 
into a bag with 9-attribute regions as instances. 

We demonstrate the overall prediction accuracy on test 
data for all data sets of both SI and MI settings as 
TABLE III and TABLE IV. For DDLEP and EPIC, top 
15% of the learners are used to construct subensemble. 

 

=i
abW

1  iff   δ≤− ibia xx  

0 otherwise 
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TABLE III.  ERROR RATE OF SI SETTING 

Data Set DDLEP EPIC SSLK 
balance-scale 7.4%±8.4e-5 7.4%±8.4e-5 5.7%± 5.7e-3 
breast-w 5%±2e-4 4.7%±5.7e-5 12.6%±2e-2 
ecoli 4.9%±2e-4 4.7%±5.7e-5 5%±2e-4 
glass 8.5%±9e-5 10.4%±5e-4 10%±5e-4 
haberman 11.5%±4.2e-3 12%±4.4e-3 15.6%±9e-4 
ionosphere 25.4%±5.3e-4 26.1%±7e-4 28.6%±2.6e-3 
segment 6.6%±1e-4 6.7%±1.4e-4 6.7%±1.3e-4 
spambase 3.7%±4.4e-5 3.9±3.9e-5 4%±4e-5 
wine 5.3%±4.7e-5 5.5%±2.2e-4 5.2%±2.8e-4 
yeast 8.4%±4.5e-5 8.6%±6.8e-5 8.6%±4.9e-5 

TABLE IV.  ERROR RATE OF MI SETTING 

Data Set MI-Kernel EPIC DDLEP  
Musk1 8.2%±2.5e-4 8.2%± 2.5e-4 7.4%± 8.38e-5 
Musk2 5%±2e-4 4.7%±5.7e-5 4.9%±2e-4 
Tiger 10%±5e-4 10.4%±5e-4 8.5%±9e-5 
Fox 15.6%±9e-4 12%±4.4e-3 11.5%±4.2e-3 

   We use the proposed algorithm into MI learning by 
defining MI point cloud kernels, making use of SI kernel 
learner. However, the successfulness of this method is 
highly relied on the definition of point cloud norm, and 
such norm should be consistent in manifold. Another two 
point cloud norms are also proposed here. 
   Bag Center Point Norm is defined as Euclidean distance 
between two bags central points, as Eq. (17): 

2
),( jijiCenter xxXXD −=             (17) 

Eq. (17) assumes that the central point of a bag 
represents this bag. Though it is not consistent with the 
original MI assumption presented in [19], it works well in 
a few cases. 

Set Kernel Norm is defined as node kernel between 
two bags, as Eq. (18): 

2

,( , ) im jnm n
Set i j

i j

x x
D X X

X X

−
=

⋅
∑

         (18) 

We adopt a set kernel to evaluate the bags smoothness. 
The motivation of this norm is from MI kernel mapping. 
It maps each bag to a feature space with vectorial 
representation. The traditional Graph Laplacian is 
meanful in such space. It is feasible to plug the norm 
defined in Eq. (18) in to the point cloud kernel calculation. 

We also use very few training samples (5% of the 
whole data set) to construct base learners and test the 
proposed algorithm. In Fig. 4-9, we launch experiments 
on UCI data sets breast-w, balance-scale, ecoli, wine, 
ionosphere and glass.  

 
Figure 4.  breast-w prediction result 

 
Figure 5.  balance-scale prediction result 

 
Figure 6.  ecoil prediction result 

 
Figure 7.  wine prediction result 

 
Figure 8.  ionosphere prediction result 
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Figure 9.  glass prediction result 

In Fig. 4-9, Base stands for error rate of ensemble of 
supervised kernel learners; Semi stands for error rate of 
ensemble of the proposed data dependant kernel learner 
and Transductive also stands for the proposed method but 
with a point cloud construction of both evaluation and 
testing data set. We bootstrap the training set and then 
train 200 learners for each case. Semi and Transductive 
cases use different point clouds. We can conclude that in 
many cases the Transductive setting outperforms the 
other two. And ensemble of data dependant learner yields 
smoother change of classification error rate, especially 
when ensemble size is small. Our remark on this point is 
that the point cloud improves generalization ability of 
individual learners. 

However, there are also cases that Transductive setting 
yields relatively large error rate compared to Semi setting. 
We regard such phenomenon as point cloud inconsistence. 
From previous semi-supervised learning study, it is well 
known that semi-supervised learning works only some 
conditions are satisfied. More unlabeled data may not 
really help improve the target learner. In fact we don’t 
have any knowledge about the data to be predicted. If we 
pull all seen data into the training procedure, side effect 
would appear because the point cloud includes conflicted 
data sets. 

B. Discussion 
We present some analysis of the effectiveness of the 

proposed method. As mentioned before, the proposed 
method tends to ensemble learners with better 
generalization ability. We put this analysis in a 
regularization framework, and propose a theorem. 
Theorem 1: Given two sets of binary classifiers 

},...,,{
1211 necccE =  and },...,,{

2212 necccE = , We 

define the regularization penalty S  of individual 

classifier c  as 2
1,

2))()((

N

Wxfxf
S

N

ji
ijjcic

c

∑
=

−
= . 

If dc SS ≤  holds for each c in 1E  and d  in 2E , then 

2_1_ EensEens cc SS ≤  holds, where  
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k
k
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()( 1
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Theorem 1 tells us that the generalization ability 
measured by S of individual learners will affect that of 
ensembles by majority voting in a bi-classification 
problem. We omit the rigorous proof due to the page limit. 
Another thing we should point out here is that for 
supervised learning, the training accuracy would be 
significantly reflected by bootstrapping if the size of 
training set is too small.  However, the selective ensemble 
would greatly reduce the side effect of bootstrapping. We 
observe it also appears for semi-supervised learning.  
There may be some inner relationship between these two 
famous frameworks. 

V.  CONCLUSION 

We have introduced ensemble pruning of data 
dependant learners for the improvement of generalization 
ability. The key idea is to train individual learners in a 
semi-supervised manner and prune ensembles with 
proper selected metrics. Point cloud kernel is adopted to 
incorporate unlabeled data, which greatly improves 
generalization ability of individual learners. And 
accuracy / diversity ranking is used for pruning. The 
proposed method is naturally suitable for both SI and MI 
framework, with special defined kernel and smoothness 
penalty term. Using 10 UCI and 4 MI data sets, we could 
show that the DDLEP can significantly improve the 
performance of ensemble learning compared to some 
famous methods.  

Further work includes incorporating of other semi-
supervised learning methods into ensemble learning, 
finding data set specific ranking metrics and theoretical 
analysis of inner relationship between semi-supervised 
learning and ensemble learning. 
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