

Using Ontology-based BDI Agent to
Dynamically Customize Workflow and

Bind Semantic Web Service

Chih-Hao Liu and Jason Jen-Yen Chen
Dept. of Computer Science and Information Engineering

National Central University, Jhong-Li, Taiwan
Email: 945402024@cc.ncu.edu.tw, jasonjychen@gmail.com

Abstract—As the Web gradually evolves into the semantic
web, the World Wide Web consortium (W3C) recommends
that web ontology language (OWL) be used to encode
semantic information content over the Web. Semantic web
is an essential infrastructure to enhance Web to obtain
better integration of information and intelligent use of web
resources. Moreover, a web service is annotated by web
ontology language for service (OWL-S) to form a semantic
web service that, however, is a static description. The OWL-
S based semantic web services thus are reactively invoked
by users. How to dynamically coordinate, composite, or
discover the services is an important issue.

We use agent to proactively interpret the static
OWL-S description. And, the Belief-Desire-Intention (BDI)
model is applied to develop BDI agent. This work thus
proposes a ontology-based BDI agent architecture, in which
a BDI agent dynamically generates customized workflow,
and binds semantic web services. The architecture includes
four parts: 1) Application Ontology, which is description of
a specialized domain, 2) Operation ontology, which is
description of BDI agent, 3) Ontology-based BDI agent
engines, which interpret corresponding operational ontology
to dynamically generate workflows, and 4) Java agent
development environment extension (JadeX) platform that
our architecture is based on. Through JadeX, our BDI agent
can dynamically bind semantic web services according to
customized workflows.

Index Terms—- Ontology, BDI Agent, Workflow, Semantic
Web Service.

I. INTRODUCTION

In traditional web, the objective of a web site is to
provide information for user. As web gradually evolves
into web 2.0, users not only share information to
constitute social group, such as Blog, but also integrate
distributed information from different sources. The web
service, described by Web Service Definition Language
(WSDL), is a popular approach to provide service on the
Web. Along with WSDL, the Simple Object Access
Protocol (SOAP) and Unified Discovery and Definition

Identify (UDDI) are suggested by the World Wide Web
consortium (W3C) to publish, access, and deploy services
on the Web. Furthermore, web services are published by
various service providers in different domains and are
statically existent in distributed environment. Thus, how
to coordinate, composite, or discover services is an
important issue [1, 34, 35].

We also see that Web gradually evolves into the
semantic web. The W3C recommends that web ontology
language (OWL) be used to encode semantic information
content over the Web [2, 3]. The OWL is a formal
language to define domain knowledge to generate an
OWL document called domain ontology, which defines
significant terms and their relationships within a specific
domain, such as software engineering [39, 40]. Moreover,
the ontology, called operational ontology, specifies the
operational concepts as terms, and their relationships as
property. A software entity can execute a task according
to this ontology. In particular, the Web Ontology
Language for Service (OWL-S) describes the semantics
for web service to generate semantic web services [22].
Unfortunately, the OWL-S based semantic web services
are static descriptions that are reactively invoked by users.

On the contrary, an agent is a program that proactively
cooperates with other agents to execute a complex task,
such as making appointment or scheduling, through a
sequence of communication acts [4, 5, 46]. And, the
foundation for intelligent physical agents (FIPA) is a
popular standard to define 22 communicative acts to
regulate the format of communication among agents [15-
21]. Moreover, the Belief-Desire-Intention (BDI) model
is a well-known approach to provide intelligent actions
according to the state of environment [23]. The BDI
model is applied to the development of a kind of agent
called BDI agent [43, 45]. “Belief” means what an agent
believes; “desire” represents a goal that user wants to
achieve; and “intention” is a plan that can be executed to
satisfy the goal. To achieve the user’s request (goal), an
agent selects the actions (plans) according to what it
believes. Some researchers argue that a web service is

884 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.4.884-894

like an action [24]. On the other world, when an agent has
to execute an action, it selects suitable web services to
match the action [41, 42]. Further, an agent also
communicates with other agents to coordinate the
selected web services to achieve the user’s request [7].
However, a goal to be achieved generates a lot of actions,
which form different workflows for various users. And, a
particular user follows a customized workflow to
dynamically bind web services.

This work proposes a ontology-based BDI agent
architecture, in which a BDI agent proactively binds web
services according to a customized workflow that is
dynamically generated to meet a user request. Notably,
the user ontology is defined to provide user’s preference
that includes both static and dynamic information.

II. RELATED WORK

The OWL-S annotates three kinds of semantics to a
web service to generate semantic web service: 1) service
profile, 2) service grounding, and 3) service process [22].
A service provider usually publishes unrelated service
profiles for user to browse. However, the user cannot
easily use the profiles to compose web services [6, 7, 8].
As the annotations are static descriptions, the autonomous
and social agents seem more suitable to compose the
services [7, 9, 33]. Further, workflow is a good approach
to describe the problem solution for a user [36, 37, 38].
Also, it is a static description as well. Sebastian et al.
proposed the semantic-based BDI agent to coordinate the
workflows [29]. However, it lacks the knowledge
representation of the workflow. This work thus proposes

a BDI agent to generate the customized workflow to
dynamically compose semantic web services.

Ontology is a formal language that defines knowledge
as resources, which can be easily shared over the web.
Further, the ontology is capable of integrating
heterogeneous information easily and provides the
standard interface for software entity to access [10, 31,
32]. Daud et al. developed an approach for learning a
semantic representation underlying a user’s interests
using his/her personal search history [11]. Xing Jian et al.
used a user model to provide customized information
services [12]. On the web, customization is important as
it provides suitable services to different users [13, 14, 30].
In our architecture, we define operational and application
ontology that assist the integration of agent and semantic
web services.

The Java agent development framework (JADE) is a
popular platform to develop a FIFA-compatible agent
[25]. And, the workflows and agents development
environment (WADE) is a software platform based on
Jade that provides support for the execution of task
defined according to the workflow metaphor [26].
However, JADE does not support to develop a BDI agent.
The JadeX extends JADE to support the BDI model
through describing BDI in extensible markup language
(XML) format and through developing plan as Java class
[27, 44]. Further, the JadeX process project also supports
business process modeling notation (BPMN) and goal-
oriented process modeling notation (GPMN) [28].
However, the workflows above are all statically designed
in advance, and do not support dynamic and customized
workflow.

Figure 1: The Ontology-based BDI Agent Architecture

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 885

© 2012 ACADEMY PUBLISHER

III. ONTOLOGY-BASED BDI AGENT ARCHITECTURE

This work proposes a ontology-based BDI agent
architecture, which has four main parts: 1) application
ontology, 2) ontology-based BDI agent engines, 3)
operational ontology, and 4) JadeX platform (see Figure
1).

Our architecture is based on JadeX platform, in which
the BDI agent handles user’s request (described as a goal),
which will be converted to a workflow according to the
beliefs (user ontology) of the agent. Further, the BDI
agent proactively binds web services according to the
workflow. And, the application ontology has: 1) domain
ontology, 2) event ontology, and 3) domain workflow
pattern ontology. The domain ontology describes the
terms of a specialized domain provided by an expert. The
event ontology illustrates an event that is triggered by a
condition in the domain. Finally, the domain workflow
pattern ontology defines a workflow about a task in the
domain. The BDI agent engines and the operational
ontology are described next.

A. Ontology-based BDI Agent Engine
The ontology-based BDI agent engines contain four

engines: 1) goal engine, 2) belief engine, 3) workflow
engine, and 4) action engine. First, the goal engine
processes user’s request to form a goal, which has three
types: 1) achieve goal, 2) execute goal and 3) maintain
goal (to be described). Second, the belief engine handles
the user ontology to create agent’s beliefs. Third, the
workflow engine generates a customized workflow
according to the user ontology and user’s goal. Last, the
action engine decides which semantic web services will
be matched to a workflow.

Figure 2 shows the process of ontology-based BDI
agent engines. The goal engine has two parts: 1) user
handler and 2) goal generator. The former is a listener to
receive user’s request. The latter generates a goal
description according to BDI agent ontology. Further, the
internal of workflow engine has two parts: 1) goal
handler and 2) workflow generator. The former processes
the goal description received from the goal generator. The
latter generates the workflow description according to
workflow and domain workflow pattern ontology. For
example, a user wants to buy a book and the goal
description about buying book will be received by the
goal handler. After that, the workflow generator will read
domain workflow pattern ontology to get the standard
workflow about buying book, which contains four basic
actions: 1) search book, 2) recommend book, 3) order
book, and 4) payment. Assume that a user just wants to
buy a book called “Fundamental of Data Structure”. The
workflow generator then reads user ontology and goal
description to generate the customized workflow, which
contains three actions: 1) search book, 2) order book, and
3) payment. Notably, the “recommend book” is not
included in this customized workflow.

Moreover, the belief engine has two parts: 1) belief
updater and 2) belief translator. The former updates the
post-condition of customized workflow and semantic web
services that user agent invokes. The latter reads user
ontology to create beliefs that stand for a user agent’s
belief. Finally, the action engine has two parts: 1)
workflow handler and 2) semantic web service match
maker. The former pre-processes a workflow description
received from goal generator. The latter binds semantic
web services according to the workflow description and
user ontology.

Figure 2: The Process of Ontology-based BDI Agent Engines

886 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

B. Operational Ontology
The operational ontology includes: 1) user ontology, 2)

BDI agent ontology, 3) service ontology, and 4)
workflow ontology. The user ontology expresses a user’s
preferences. The BDI agent ontology describes a BDI
agent that includes what it believes, what it should
achieve, and what it must do (Figure 3). The service
ontology provides service pools for registration of web
services. The workflow ontology defines elements of
workflow, such as sequence or iteration.

a. BDI Agent Ontology
This section depicts the high-level concepts of BDI

agent ontology (see Figure 3), which consist of: 1) the
goal that the agent wants to achieve, 2) the belief that it
believes in, and 3) the plan that it will execute. The three
parts are respectively defined as ”Goal”, “Belief” , and
“Workflow” classes. Together, the three classes compose
an “Agent” class. The ”Goal” class contains three sub-
classes: ”AchieveGoal” , “PerformGoal”, and “Maintain
Goal”. “AchieveGoal” specifies the condition that must
be satisfied after executing a user task. ”PerformGoal”
simply specifies executing a user task.
And, ”MaintainGoal” specifies the condition that must be
satisfied at every time interval.

The ”Belief” class specifies what facts an agent
believes. And, the facts are defined as “Facts” class,
which contains a sub-class ”Fact_Statement” that is
represented in a XML literal statement. Further,
the ”Fact_Statement” class has two subclasses:
1) ”Condition_Statement” and 2) “ValidTime_Statement”
class. The “Condition_Statement” class specifies a fact is
true when the condition is satisfied. And the condition is
defined as ”Condition” class. The
“ValidTime_Statement” class specifies that a fact is true

given a valid time, defined as ”ValidTime” class that is
described in “xds:datatime” type. The ”ValidInstant” and
“ValidPeriod” classes are subclasses of the “ValidTime”
and represent a time instant and time interval,
respectively. The “Workflow” class stands for a
workflow that is dynamically generated when a user
executing a task. A workflow entity, which is defined as
“WorkflowEntity” class, is a basic element of a workflow.
The detailed of workflow ontology will be described next.

The main concept of definition of BDI agent ontology
is to dynamically generate a customized workflow
according to various users when a user agent executing
tasks. Moreover, a customized workflow dynamically
binds semantic web services according to user ontology.
This provides intelligent and dynamic web services.

b. Workflow Ontology
This section shows the workflow ontology that defines

a workflow as a “Workflow” class (see Figure 4), which
has basic element “Workflow Entity” class that has two
sub-classes: 1) atom workflow entity, and 2) functional
workflow entity. The atom workflow entity has three
subclasses: 1) start entity, 2) end entity, and 3) activity
entity. The start entity, defined as “Start Entity”, stands
for the beginning of a workflow. The end entity is defined
as “End Entity” that stands for the end of a workflow.
The “Activity Entity” corresponds to a plan defined as
“Plan” class, or a service pool defined as “Service Pool”
class. The “Plan” class specifies an action that an agent
executes. For example, a user agent executes a web
service. The “Service Pool” class specifies an abstract
service that contains a lot of references referring to
various web services. Further, a service pool is classified
by service ontology for service providers to publish web
services to it.

Figure 3. The BDI Agent Ontology

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 887

© 2012 ACADEMY PUBLISHER

Figure 4 The Workflow Ontology

The functional workflow entity has three subclasses: 1)
sequence entity, 2) iteration entity, and 3) gateway entity.
The sequence entity has an action, which is defined as
“Activity Entity” class. The iteration entity has a
condition, which is defined as the “Condition” class that
specifies a condition. When it is satisfied, a workflow
will jump to another workflow entity. The gateway entity
is defined as “GatewayEntity” class, which is used to
control divergence and convergence of workflow.
Moreover, the workflow has pre-condition and post-
condition, which are respectively defined as
“PreCondition” class and “PostCondition” class. The pre-
condition describes a condition that must be satisfied
before executing the workflow. The post-condition
describes a condition that is satisfied after executing the
workflow.

c. User Ontology
This section shows the user ontology that records

user’s preferences, which include dynamic workflow and

web services information. The user ontology about
workflow is shown in figure 5.

In figure 5, the user preference is defined as
“UserPreference” class, which has workflow statement
defined as “WorkflowStatement” class. A workflow
statement describes that an agent, which is an actor,
executes a domain workflow that is defined as
“DomainWorkflow” class and belongs to a web site.
Further, the domain workflow has workflow entities,
which are classified into three categories: 1) executed
entity, 2) optional entity, and 3) failed entity. The
executed entity is defined as “ExecutedEntity” class,
which records executed workflow entities of the domain
workflow. The operational entity is defined as
“OptionalEntity” class, which presents the workflow
entities of the domain workflow that have been executed
by an agent, but the execution is not a necessity to the
completion of the workflow. The failed entity is defined
as “FailEntity” class, which records the workflow entities
of the domain workflow that causes failure.

888 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

Figure 5 User Ontology about Workflow

Moreover, each workflow entity has a reason, which is
defined as “Reason” class, for storing the condition and
reasoning about selecting optional entity and failed entity.
The workflow statement has a valid time to record the
time instant that an agent finishes executing this domain
workflow. Next, the service information about user
ontology is shown in figure 6.

Figure 6 User ontology about Service

In figure 6, the user preference has the service
statement, which is defined as “ServiceStatement” class.
A service statement describes that an agent executes an
activity workflow entity through the services. Again, it
also has a valid time instant to record when an agent
finishes executing the web services.

d. Servicer Ontology
This section illustrates the service ontology that

describes web service information for an agent as shown
in figure 7.

In figure 7, an agent manages some web services,
which are defined as “Service” class. The “Publisher”
class records the service’s publisher. The
“ServiceProfile” class points to the profile of the OWL-S
service. The “Domain” class defines the domain the
service belongs to. The “Value” describes the popular
value of the service and is evaluated by the popular
formula as shown below:

V(s, t+1) = V(s, t)*δ-b +NoUser (s)t=month + Fre (s)t=month

where V(s, t+1) is the popular formula, s is a web

service, ti+1 is a new time at which a user uses this service,
and the δ-b is a decay function. The number of user
(NoUser(s)t=month) is the number of users using this
service in one month. The Fre(s)t=month represents the
usage frequency of the web service in one month.

In addition, the “Constraint” class defines the
constraints about using the web service. The
“Description” class expresses some information about the
web service for user to understand.

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 889

© 2012 ACADEMY PUBLISHER

Figure 7 Service Ontology

IV. TWO EXAMPLES

This section shows two users of online book buying
examples to illustrate dynamically generating a
customized workflow to meet user request (Figure 9).
The simple online book buying workflow is shown in
figure 8.

Figure 8 the simple online book buying workflow

In figure 8, there are six workflow entities defined to

form the simple online book buying workflow. And, each
user will follow this workflow to buy books. The
beginning of online book buying workflow is the start
entity. First, a user will do the “search book” entity to
search book he/she wants to buy, and then he/she selects

a book. After that, the system records the book into book-
list and goes to next workflow entity “Buy Book”. Of
course, the user could select another book until he/she
wants to pay for all the books he/she has selected. The
system thus could go to “Search Book” entity or to
“Payment” entity. Notably, a user selects a book by
searching the book or recommending the book according
to user presences. After payment, the online book buying
workflow is finished and the system goes to “End” entity.

Figure 9(a): User 1 buys book from Amazing Bookstore

Figure 9(b): User 2 buys book from Amazing Bookstore

Amazing book store website provides a “search book”
service for user. When a user wants to buy a data
structure book, he/she can delegate a user agent to send
“acquire Data Structure”. The user agent then invoke goal
engine to read BDI agent ontology to generate a goal
description. After that, the user agent invokes belief
engine to get what the user agent believes. And, the belief
engine will read user ontology to get user’s information.
The user agent then will invoke workflow engine to
generate the customized workflow, which is based on
domain workflow patter ontology and user ontology.
Finally, the user agent will send the customized workflow
to the Amazon agent that will binds semantic web
services to the customized workflow according to user
ontology to meet user request. Next, we will show how
two customized workflows can be generated in Figrue 9(a)
and 9 (b) respectively.

Figure 9(a) shows that the user 1 wants to buy a data
structure book and he/she delegates the user agent 1 to
send “acquire Data Structure”. After that the user agent 1
reads the user agent 1 ontology to get user information,

890 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

and then generates “buy data structure workflow”
(workflow 1 ontology). Finally, the user agent 1 sends the
workflow to Amazon agent. When Amazon agent
receives the workflow, it will bind the various semantic
web services according to the workflow as shown in
Figure 10(a). First, it invokes “search book” service to
obtain information of data structure book. After that, it
invokes “buy book” service to order a data structure book.
Finally, it gets user 1’s credit card number “001-255-663”
and then invokes “credit card” service that provided by
CitiBank web site.

<B0:BDI Agent rdf:ID=”User 1”>
 …
<W0:StratEntity rdf: ID=”start 1”>

<W0:toBeginEntity rdf:resource=”#SearchBook 1”>
 </W0:StartEntity>
 <W0:GatewayEntity rdf: ID=”SearchBook 1”>
 …

<W0:has Action>
<W0:ActivityEntity rdf:ID=”SearchBookAct”>

<W0:hasPlan>
<W0:Plan rdf:ID=”SearchBookActP1”>
http://AmazonWebSite/SearchBookService
</W0:Plan>

</W0:hasPlan>
 </W0:ActivityEntity>
 </W0:hasAction>
 </W0:GatewayEntity>
 <W0:IterationEntity rdf:ID=”BuyBook 1”>
 …
 <W0:goBackTo rdf:resource=”#SearchBook 1”/>
 <W0:toNextEntity rdf:resource=”#Sequence 1”/>
 <W0:has Action>

<W0:ActivityEntity rdf:ID=”BuyBookAct”>
<W0:hasPlan>

<W0:Plan rdf:ID=”BuyBookActP1”>
http://AmazonWebSite/BuyBookService

</W0:Plan>
 </hasPlan>
 </W0:ActivityEntity>
 </W0:has Action>
 …
 </W0:IterationEntity>
<W0:SequenceEntity rdf:ID=”Sequence 1”>

<W0:hasAction>
<W0:ActivityEntity rdf:ID=”Payment 1”>

<W0:hasPlan>
<W0:Plan rdf:ID=”PaymentActP1”>
 http://CitiBankWebSite/CreditCardService
</W0:Plan>

</W0:hasPlan>
 <W0:/ActivityEntity>
 <W0:toNextEntity rdf:resource=”#End1”>
 </W0:has Action>
</W0:SequenceEntity>
<W0:End rdf:ID=”End1”/>

 …
</B0:BDI Agent>

Figure 10 (a) The segment of Workflow 1

<B0:BDI Agent rdf:ID=”User 2”>
 …
<W0:StratEntity rdf: ID=”start 2”>

<W0:toBeginEntity rdf:resource=”#SearchBook 2”>
 </W0:StartEntity>
 <W0:GatewayEntity rdf: ID=”SearchBook 2”>
 …

<W0:has Action>
<W0:ActivityEntity rdf:ID=”SearchBookAct”>

<W0:hasPlan>
<W0:Plan rdf:ID=”SearchBookActP2”>
http://AmazonWebSite/SearchBookService
</W0:Plan>

</W0:hasPlan>
 </W0:ActivityEntity>
 </W0:hasAction>
 <W0:has Action>
 <W0:ActivityEntity rdf:ID=”RecommendBook”>
 <W0:hasPlan>
 <W0:Plan rdf:ID=”RecommendBookAct”>
 http://AmazonWebSite/RecommendBookService
 </W0:hasPlan>
 </W0:hasPlan>
 </W0:AcitivtyEntity>
 …
</W0:GatewayEntity>

 <W0:IterationEntity rdf:ID=”BuyBook 2”>
 …

<W0:goBackTo rdf:resource=”#SearchBook 2”/>
 <W0:toNextEntity rdf:resource=”#Sequence 2”/>
 <W0:has Action>

<W0:ActivityEntity rdf:ID=”BuyBookAct”>
<W0:hasPlan>

<W0:Plan rdf:ID=”BuyBookActP2”>
http://AmazonWebSite/BuyBookService

</W0:Plan>
 </hasPlan>
 </W0:ActivityEntity>
 </W0:has Action>
 …
 </W0:IterationEntity>
<W0:SequenceEntity rdf:ID=”Sequence 2”>

<W0:hasAction>
<W0:ActivityEntity rdf:ID=”Payment 2”>

<W0:hasPlan>
<W0:Plan rdf:ID=”PaymentActP2”>
 http://FirstBankWebSite/CreditCardService
</W0:Plan>

</W0:hasPlan>
 <W0:/ActivityEntity>
 <W0:toNextEntity rdf:resource=”#End2”>
 </W0:has Action>
</W0:SequenceEntity>
<W0:End rdf:ID=”End2”/>

 …
</B0:BDI Agent>

Figure 10(b) The segment of Workflow 2

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 891

© 2012 ACADEMY PUBLISHER

Figure 9(b) shows that the user 2 also wants to buy a
data structure book. And the user agent 2 also sends “buy
data structure workflow” (“workflow 2 ontology”) to
Amazon agent. However, the user 2 wants to obtain
recommendation information about data structure. Thus,
the Amazon agent will invoke “recommend” service after
invoking “search book” service as shown in Fig. 10(b).
After that, it will also invoke “buy book” service to order
a data structure book. Finally, it gets user 2’s credit card
number “003-263-998” to and then invokes “credit card”
service that provided by FirstBank web site.

V. CONCLUSIONS

This work proposes a ontology-based BDI agent
architecture, which includes four parts: 1) Application
Ontology, which is description of a specialized domain, 2)
Operation ontology, which is description of BDI agent, 3)
Ontology-based BDI agent engines, which interpret
corresponding operational ontology to dynamically
generate workflows, and 4) Java agent development
environment extension (JadeX) platform that our
architecture is based on. We expect the advantages are as
below:

1. The workflow ontology provides the knowledge

representation to describe the domain workflow.
The agent with BDI ontology dynamically
generates customized workflow for users
according to the user ontology.

2. The user ontology includes user’s usage

information, which contains two parts: 1)
workflow and 2) web service. Through JadeX,
our BDI agent can dynamically bind semantic
web services according to customized workflows.

ACKNOWLEDGMENT

The authors wish to thank the reviewers of the WASE
International Conference on Information Engineering.
This work was supported in part by a grant from NSC99-
2221-E-008-084.

REFERENCES
[1] Jiehan Zhou, Juha-Pekka Koivisto, and Eila Niemela, “A

survey on Semantic Web Service and a Case Study”, in the
Proceeding of the 10th International Conference on
Computer Supported Cooperative Work in Design, 2006

[2] OWL Web Ontology Language Overview, W3C
Recommendation, available at http://www.w3.org/TR/owl-
features, 10 February 2004.

[3] Ding, L., Kolari, P., Ding, Z., Avancha, S., & Finin, T.,
Using Ontologies in the Semantic Web: A Survey. UMBC
eBiquity Publication, October 2005.

[4] J. Hendler, “Agents and the Semantic Web”, Intelligent
systems, vol. 16, Issue 2, pp. 30-37, Mar-Apr, 2001.

[5] J, Yen, X. Fan, S. Sun, T. Hanratty, and J. Dumer, “Agents
with shared mental models for enhancing team decision

makings”, Decision Support Systems, vol. 41, pp. 634-653,
2006.

[6] W.T. Tsai, Jay Elstion, Yinong Chen, Composing Highly
Reliable Service-Oriented Application Adaptively, The
Fourth IEEE International Symposium on Service-Oriented
System Engineering, pages. 118-122, Jhong-Li, Taiwan,
R.O.C., 18-19 December 2008.

[7] C.H. Liu, Y.F. Lin, and J.Y. Chen, “Using Agent to
Coordinate Web Service,” the International Journal of
Computer Science and Information Security (IJCSIS), vol.
2, no. 1, pp. 18-25, 2009.

[8] Maximilien, E.M. and Singh, M.P., “A Framework and
ontology for dynamic Web services selection”, Internet
Computing, IEEE Volume 8, Issue 5, Sept.-Oct. 2004
Page(s): 84 – 93

[9] Francisco, G. S., Rafael V. G., Rodrigo, M. B., Leonardo,
C., and Jesualdo T. F. B., “An ontology, intelligent agent-
based framework for the provision of semantic web
services”, Expert Systems with Applications, 36(2): 3167-
3187, March 2009.

[10] A. Pease, I. Niles, and J. Li, The Suggested Upper Merged
Ontology: A Large Ontology for the Semantic Web and its
Applications, In Working Notes of the AAAI-2002
Workshop on Ontologies and the Semantic Web,
Edmonton, Canada, Jul.-Aug. 2002.

[11] Daoud, M., Tamine, L., Boughanem, M., Chebaro, B.,
“Learning Implicit User Interestes Using Ontology and
Search Histor for Personalization,” In International Web
Information System Engineering – International Workshop
on Personalized Access to Web Information (WISE=PAWI
2007), Nancy, France, 2007

[12] Xing Jian and Ah-Hwee Tan, “Learning and Inferencing in
User Ontology for Personalized Semantic Web Search”,
Information Sciences, pages 2794-2808, 2009.

[13] R.L. Roberto, S.R.P. da Silva, “An approach for
identification of user’s intentions during the navigation in
semantic websites”, The Semantic Web: Research and
Applications, 4th European Semantic Web Conference,
2007, pp. 371–383.

[14] A. Micarelli, F. Gasparetti, F. Sciarrone, S. Gauch,
“Personalized search on the world wide web”, P.
Brusilovsky, A. Kobsa, W. Nejdl (Eds.), The Adaptive
Web, Methods and Strategies of Web Personalization,
2007, pp. 195–230.

[15] Foundation for Intelligent Physical Agents, FIPA Contract
Net Interaction Protocol Specification, Dec. 6, 2002,
available at:
http://www.fipa.org/specs/fipa00029/SC00029H.pdf.

[16] Foundation for Intelligent Physical Agents, FIPA Iterated
Contract Net Interaction Protocol Specification, Dec. 6,
2002, available at:
http://www.fipa.org/specs/fipa00030/SC00030H.pdf.

[17] Foundation for Intelligent Physical Agents, FIPA Request
Interaction Protocol Specification, Dec. 6, 2002, available
at: http://www.fipa.org/specs/fipa00026/SC00026H.pdf.

[18] Foundation for Intelligent Physical Agents, FIPA Request
When Interaction Protocol Specification, Dec. 6, 2002,
available at:
http://www.fipa.org/specs/fipa00028/SC00028H.pdf.

[19] Foundation for Intelligent Physical Agents, FIPA
Brokering Interaction Protocol Specification, Dec. 6, 2002,
available at:
http://www.fipa.org/specs/fipa00033/SC00033H.pdf.

[20] Foundation for Intelligent Physical Agents, FIPA
Recruiting Interaction Protocol Specification, Dec. 6, 2002,
available at:
http://www.fipa.org/specs/fipa00034/SC00034H.pdf.

[21] Foundation for Intelligent Physical Agents, FIPA
Communicative Act Library Specification, Dec. 6, 2002,
available at:
http://www.fipa.org/specs/fipa00037/SC00037J.pdf.

892 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

http://www.fipa.org/specs/fipa00029/SC00029H.pdf
http://www.fipa.org/specs/fipa00030/SC00030H.pdf
http://www.fipa.org/specs/fipa00026/SC00026H.pdf
http://www.fipa.org/specs/fipa00028/SC00028H.pdf
http://www.fipa.org/specs/fipa00033/SC00033H.pdf
http://www.fipa.org/specs/fipa00034/SC00034H.pdf
http://www.fipa.org/specs/fipa00037/SC00037J.pdf

[22] OWL-S: Semantic Markup for Web Services, November
22, 2004, available at:
http://www.w3.org/Submission/OWL-S/

[23] Birgit Burmeister, M. Arnold, Felicia Copaciu and
Giovanni Rimassa, “BDI-agents for Agile Goal-oriented
Business Processes”, Proceedings of the 7th international
joint conference on autonomous agents and multi-agent
system: industrial track (AAMAS 08), 2008, pp. 37-44.

[24] P.A. Buhler, J.M. Vidal., “Semantic Web Service as Agent
Behaviors”, Agentcities: Challenges in Open Agent
Environments, Springer-Verlag, 2003.

[25] JADE Java Agent DEvelopment Framework, available at
http://jade.tilab.com/, May 2003.

[26] WADE Workflows and Agents Development Environment
Tutorial, 04, February, 2009, available at
http://jade.tilab.com/wade/doc/tutorial/WADE-Tutorial.pdf

[27] JADEX User Guide, 1, June, 2007, available at
http://jadex-agents.informatik.uni-hamburg.de/docs/jadex-
0.96x/userguide/userguide.pdf

[28] BPMN Business Process Modeling Notation Tutorial, 22,
Dec. 2010, available at http://jadex-
processes.informatik.uni-
hamburg.de/xwiki/bin/export/BPMN+Tutorial/BPMN+Tut
orial

[29] Sebastian Richly, Sandro Schmidt, and Uwe Assmann, “A
Semantic-BDI-Based Approach to Realize Cooperative,
Reflexive Workflow”, Proceedings of the 8th world
congress on Intelligent Control and Automation, July 6-9,
2010, Jian, China, pp. 1680-1685.

[30] Hao Liu, Ben Salem, and Matthias Rauterberg, “A Survey
on User Profile Modeling for Personalized Service
Delivery Systems”, In Proceeding of IADIS International
Conference on Interfaces and Human Computer Interaction
2009, pp.45-51.

[31] Samuil Nikolov and Anatoliy Antonov, “Framework for
Building Ontology-based Dynamic Applications”,
Proceedings of the 11th International Conference on
Computer Systems and Technologies – CompSysTech’10,
pp. 83-88.

[32] Sheng-Yuan Yang, “A New Ontology-Supported Interface
Agent”, TENCON 2007 IEEE Region 10 Conference,
Taipei, Taiwan, pp. 1-4.

[33] Hao Yang, Junliang Chen, Xiangwu Meng, and Ying
Zhang,“A Dynamic Agent-based Web Service Invocation
Infrastructure”, ACHI’08 Proceedings of the First
International Conference on Advances in Computer-
Human Interaction, pp. 206-211

[34] E. Sirin, J. Hendler, and B. Parsia, “Semi-Automatic
Composition of Web Service using Semantic Descriptions”,
in Web Service: Modeling, Architecture and Infrastructure
Workshop in ICEIS 2003, April, pp. 17-24.

[35] A. Brogi, S. Corfini, and R. Popescu, “Semantics-based
Composition-Oriented Discovery of Web Services”, ACM
Trans. Interet Technol., Vol. 8, no. 4, pp. 1-39, 2008.

[36] Francisco Burbera, Matthew Duftler, Rania Khalaf, and
Douglas Lovell, “Bite: Workflow Composition for the
Web”, ICSOC 2007 International Conference of Service-
Oriented Computing, Volume 4749, pp. 94-106.

[37] Khalid Belhajjame, Suzanne M. Embury, Norman W.
Paton, Robert Stevens, and Carole A. Goble, “Automatic
Annotation of Web Services based on Workflow
Definitions”, ACM Transactions on the Web (TWEB),
Volume 2, Issue, 2, April 2008, Article 11

[38] Qiang He, Jun Yan, Hai Jin, and Yun Yang, “Adaptation of
Web Service Composition Based on Workflow Patterns”,
ICSOC 2008 International Conference of Service-Oriented
Computing, Volume 5364, pp. 22-37.

[39] F. Correa da Silva, W. Vasoncelos, D. Robertson, V.
Brilhante, A. De Melo, M. Finger, and J. Agusti, “On the
Insufficiency of Ontologies: Problems in Knowledge
Sharing and Alternative Solutions”, Knowledge Based
Systems, 15(3):147-167, 2002.

[40] Villanueva-Rosales N and Dumontier M, “Describing
Chemical Functional Groups in OWL-DL for the
Classification of Chemical Compounds”, in OWL:
Experiences and Directions (OWLED 2007), co-located
with European Semantic Web Conference (ESWC 2007),
Innsbruck, Austria.

[41] Matskin M, Kungas P, Rao J, Sampson J, Peterson SA.
“Enabling Web Services Composition with Software
Agents”, Proceedings of the ninth IASTED International
Conference on Interest and Multimedia Systems and
Applications (IMSA 2005), 2005 August 15-17, Honolulu,
Hawaii, USA.

[42] Maamar Z, Mostefaoui SK, Yahyaoui H, “Toward an
Agent-based and Context-oriented Approach for Web
Services Composition”, IEEE Transaction of Knowledge
Data Engineering, 2005, 17(5), pp. 686-697.

[43] Liu Yong, Pu Shuzhen, Cheng Daijie and Cao Zehan,
“Belief Characteristic’s Research of BDI Model”, Journal
of Computer Research and Development, 2005, 42(1),
pp.54-59.

[44] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: A
BDI Reasoning Engine”, In Bordini et al. [5], chapter 6,
pages 149-174

[45] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf,
“Goal Representation for BDI Agent Systems”, In
Proceedings of the Second Workshop on Programmin
Multiagent Systems (Pro-, MAS04), 2004, pp. 44-65.

[46] Eric Platon, Marco Mamei, Nicolas Sabouret, Shinichi
Honiden, and H. Van Dyke Parunak, “Mechanisms for
Environments in Multi-agent Systems: Survey and
Opportunities”, Autonomous Agents and Multi-Agent
Systems, 2007, Volume 14, Number 1, pp. 31-47.

Chih-Hao Liu was born in 1980,
Liu received his Master degree of
Information Engineering from
Chao-Yang University of
Technology in Taichung, Taiwan.
He is currently a PhD candidate of
the Nation Central University in
Taiwan. He joined the Software
Engineering laboratory in 2005 and
researched on the Semantic Web
and Agent. He has participated in

several projects about semantic web and agent such as Service-
oriented Information Market-place (SIM) project from 2005 to
2007, Agent Authoring Environment project from 2008 to 2009,
and Dynamic Composition of Web Service Based on Semantic
Agent Framework project from 2009 to 2010.

Jason Jen-Yen Chen is with the
Department of Computer Science
and Information Engineering in
National Central University in
Taiwan. He earned international
recognition by winning Top, Third,
and Fifth Scholar in the world in
the field of System and Software
Engineering in 1995, 1996, and
1997, respectively. The ranking is

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 893

© 2012 ACADEMY PUBLISHER

http://jade.tilab.com/

based on cumulative publication of six leading journals in that
field. His current research interests include agile method and
agent technology. He established a web site to advocate agile
method called “Agile Method Nursery”, which is a pioneering
initiative in Taiwan. He also organized an Agile Method

Symposium in Taiwan. His vision is to help transform the
hardware-centered computer industry in Taiwan into a software-
centered industry.

894 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

