
Formal Specification and Impementation of
RBAC Model with SOD

Su Yu
Shanghai University of Engineering Science/ College of Electronic and Electrical Engineering, Shanghai, China

 suyu_sh@hotmail.com

Jon. J. Brewster
 Lawrence Technological University/ Department of Mathematics and Computer Science, Southfield, USA

jbrewster@ltu.edu

Abstract—RBAC(Role-Based Access Control) is an efficient
and safe role_based access control mechanism. Separation
Of Duty (SOD) is one of the most expected characteristics of
RBAC system and also is one of the main characteristics of
secure system. This paper presents SOD’s attributes of
RBAC model by formal specification and their relations by
state graph. This paper also explains a program for
implementing SOD constraint in MIS by relationship
between tables.

Index Terms—-Role-Based Access Control(RBAC), formal
specification, Separation Of Duty (SOD), Security,
constraint

I. INTRODUCTION
The concept of access control, or authorization, is as

old as multiuser computers. Authorization allows users to
access computer system resources, and as it is usually
used in today’s information technology it maps the set of
users onto the set of permissions, that is,”who can access
what”. Access control continues to be a fundamental
security mechanism. It is a feature of virtually all IT
systems from the ubiquitous PC to the various enterprise
computing architecture and administrative management.
In decade and a half, Role-Based Access Control (RBAC)
[1] has come to play a growing role in authorization.

Compared with traditional lattice-based access control
policies, such as Discretionary Access Control (DAC) and
Mandatory Access Control (MAC) developed primarily
for military systems(see Sandhu [2] for a discussion of
these), RBAC can more effectively meet the needs of
commercial systems[3][4]. A set of roles is introduced in
RBAC, which is interposed between user and permission.
That is, users are mapped into roles, and roles in turn are
mapped into permissions, as shown in Figure 1. Security
administration is greatly simplified by the use of roles to
organize access privileges, because there are many users
that map to a given role, and the permissions for that role
need only be defined once for each role. For example, if
a user moves to a new functional role within the
organization, the user can simply be assigned to the new
role and removed from the old one, whereas in the
absence of an RBAC model, the user’s old permissions

would have to be individually revoked, and new
permissions would have to be granted. These permissions
would typically include access to role-specific files and
programs.

Another benefit of the RBAC access control model is
its use to implement Saltzer and Schroeder's principle of
“least privilege”. [5] The principle states that all users
should have only the privileges that they need to do their
work and no more. Because that refers to roles rather than
the identity of users as such, RBAC is far more convenient
and logical as an access control mechanism.

A further reduction in the privilege accorded each role
is described as “Separation of Duty” and is a familiar
technique employed in financial world. In order to reduce
the chance of fraud, key transactions, such as
disbursements, require the cooperation of two employees
to carry out two halves of the task. For example, one
employee may be tasked with verifying the receipt of
goods, while a second one receives the checked receipt
and actually transmits a payment to the vendor. Such
SOD systems can be created using the appropriate version
of RBAC system.

The RBAC96 model is actually a model composed of
four sub-family of models [6][7] (see also [8]), each sub-
model are given in the corresponding formal specification.
The two main extended fields of RBAC96 are SOD
constraints and delegation. [21]

SOD is very important in business system, also is one
of the most desired features in RBAC system.
Administration constraints may need to be enforced to
prevent information misuse and prevent fraudulent
activities. A typical authorization constraint, broadly
relevant and well recognized, is separation of duties
(SOD). Reducing the risk of fraud by not allowing any
individual to have sufficient authority within the system
to single-handedly perpetrate fraud is the intent of SOD.
Such constraints can be easily expressed using an RBAC
model through SOD constraints on roles, user-role
assignments, and role-permission assignments.
Furthermore, using constraints on the activation of user
assigned roles, users can sign on with the least privilege
set required for any access. In case of inadvertent errors,

870 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.4.870-877

such least privilege assignments can contain damage.
Simon[9] divided SOD into five categories: static SOD,
simple dynamic SOD, object-based SOD, operation-
based SOD, history-based SOD. Gligor, Gavrila and
Ferraiolo [10] gave the formal specification of separation
of duties policy and put forward some new SOD variants,
such as object-based static SOD, object-based dynamic
SOD and so on. Ahn and Sandhu [11] described the
separation of duty constraint by RSL99 language, and
proposed session-based SOD and user-based SOD.

In previous document, the technique of implementing
SOD was introduced. (See also [12].) This paper presents
a detailed implementation program, including time and
frequency on restrictions, with some innovative and
practical value. First section describes the basic model
RBAC96, section II describes the properties of SOD
constraint with formal specification, Section III presents
an execution program to achieve SOD constraint,
including time and frequency on restrictions, section IV
concludes the paper and propose future research
directions.

II. RBAC96 BASIC MODEL
RBAC96 is a model family, including four sub-

models: RBAC0, RBAC1, RBAC2 and RBAC3. RBAC0
is the basis for the other three sub-models. The basic
concept of RBAC0 is that users are assigned to roles,
permissions are assigned to roles, and users acquire
permissions by being members of roles. RBAC0 includes
requirements that user-role and permission-role
assignment can be many-to-many. Thus the same user can
be assigned to many roles and a single role can have many
users. For permissions, a single permission can be
assigned to many roles and a single role can be assigned to
many permissions. RBAC0 defined as follows:

user set: users(U), role set: roles(R), permission set:
permissions(p), session set: sessions(S).

PA⊆PR, permission-role assignment can be many-
to-many, thus a single permission can be assigned to
many roles and a single role can be assigned to many
permissions.

UA⊆U×R, user-role assignment can be many-to-
many, thus the same user can be assigned to many roles
and a single role can have many users.

user: S→U, a user can be assigned to many sessions
but a session can be only assigned to a user.

roles: S→2R, he function maps a session to a role
set.

roles(Si) ⊆{r| (user(Si), r)∈UA }, Session contains
the user’s active roles.

RBAC1 is known as hierarchical RBAC model.
Hierarchical RBAC1 adds requirements for supporting
role hierarchies. A hierarchy is mathematically a partial
order defining a seniority relation between roles, whereby
senior roles acquire the permissions of their juniors, and
junior roles acquire the user membership of their seniors.
The inheritance is partial order. that is transitive, reflexive
and anti-symmetry. RBAC1 increased the following two
entities : RH⊆R×R, A partial orders. Partial order can be
written as ≥, Such that r1 ≥ r2, r1 is r2’s superior role.

roles: S→2Rroles(Si)⊆{r|(∃r′≥r)[(user(Si), r′)∈UA]},
In the hierarchical model, a session contains a subset of
the role set (active role), the junior roles of active roles
also included in the session.

Figure 1 RBAC96 model

RBAC2 is also known as constrained RBAC model,
which is introduced based on the RBAC0 constraint
(constraint), RBAC constraints is a very important
concept, often with the view that the constraints are the
main driving force behind one of RBAC [13], Constraints
are also often an organization security strategy in the
development of a powerful protection mechanism.
Constraints can be divided into three categories:
separation of duty constraint (SOD), pre-request
constraints, cardinality constraints. RBAC3 known as
comprehensive RBAC model, which contains RBAC1 and
RBAC2, and indirectly includes RBAC0, is a
comprehensive role-based access control model. RBAC96
model shown in Figure 1.SOD constraints and
relationships described

SOD is one of the characteristics most desired in
RBAC system. SOD is very important for an organization,
through the implementation of SOD can significantly
reduce the incidence of fraud and error. The roles of
conflict relationship can not be assigned to a user. The
reasons caused all kinds of role conflict related to security
policy adopted by system, such as separation of duty or
conflict of interest, the principle of least privilege. In
NIST Standard RBAC model is based on the principle of
SOD, often divided into a static separation of duty SSD
(static role conflict) and dynamic separation of duty DSD
(dynamic role conflict) by the role conflict time. The
former refers to the roles of conflict can not be given a
user, this conflict does not depend on the time between
changes in change. The latter refers to the roles of conflict
in the same session can not be given the same user, that is,
conflict relationship will be generated at any given time,
and end with the termination of the activities. SSD is also
known as the repulsive, the DSD is known as the weak
exclusion. As too strict SSD has less chance to implement
in real organizations, DSD is relatively more flexible and
easy to implementnt.

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 871

© 2012 ACADEMY PUBLISHER

In 1995, Ferraiolo et al [13] defines three types of
SOD: the static separation of duty SSD, , and dynamic
separation of duty DSD, separation of duty based on the
operation OpSOD. Simon and Zurko [9] increased the
variety of types of SOD: obect-based separation of duties
ObjSOD and history-based separation of duties HSD.
Sandhu et al [13] proposed a session-based SOD and
user-based SOD.

A. SOD formal specification
RBAC current research focuses on the description and

expressed. One way is by proposing a new language or by
using an existing language to express constraints, Such as
formal language RSL99 (role-based separation of duty
language) [14][15] and its successor languages RCL 2000
(role-based constrains language 2000) [16] for that role-
based authorization constraints. Another way is to use a
more intuitive graphical to illustrate, Such as the use class
diagrams and object diagrams in UML; The researches
also use roles to describe conflict and find conflict, and
use exclusive collection [17] or Algebra [18] to study the
conflict constraints. This paper discusses common conflict
constraints using formal specification to describe the role
of different constraints on the operation of different
models. Formal specification can express these constraints
unambiguous, explicit the time of constraints, describe the
accuracy of operation to ensure the correct
implementation of RBAC. This paper further discusses the
practical application of scenarios to verify the system
using the formal specification of conflict to the availability
of this method. The Formal specification described as
follows:

Users, Roles, Ops, Obs, Sessions are finite sets
respectively for users, roles, operations, objects and
sessions ; The partial order of role is called the dominance
relationship. Hierarchical relationships between the roles
possess reflexive, transmission and anti-symmetry.

1) Non-strict partial order, or reflexive partial order
Given set S, "≤" is a binary relation on S, if the "≤" is

satisfied:
Reflexive: ∀a∈S, there is a ≤ a; Anti-symmetry:

∀a, b∈S, a ≤ b and b ≤ a, then a = b;
Transitive: ∀a, b, c ∈S, a ≤ b and b ≤ c, then a ≤ c;
That, "≤" is Called non-strictly partial order or

reflexive partial order on the S.
2) Strict partial order, or anti-reflexive partial order
Given set S, "<" is a binary relation on S, if "<" is

satisfied;
Anti-reflexive: ∀a∈S, S there is a ≮ a; Non-

symmetry: ∀a, b∈S, a <b ⇒ b≮a;
Transitive: ∀a, b, c∈S, a <b and b <c, then a <c;
That, "≤" is Called strict partial order or anti-reflexive

partial order on S.
Strict partial order and directed acyclic graph (dag)

has a direct correspondence. A set of strict partial order
on the relationship between the graph is a directed acyclic
graph. The transitive closure is its own.

3) Partial order
Easy to prove the following conclusions:

Given set S on a (non-rigorous, reflexive) partial
order "≤", S can be naturally induced on a (strict, anti-
reflexive) partial order "<", simply defined: <= ≤ \ {(a, a)
| a ∈ S};

Given set S on a (strict, anti-reflexive) partial order
"<", S can be naturally induced on a (non-rigorous,
reflexive) partial order "≤", simply defined: ≤ = <∪ {(a,
a) | a ∈ S};

Given set S on a (non-rigorous, reflexive) partial
order "≤", the inverse relation "≥" S is a (non-rigorous,
reflexive) partial order on the S;

Given set S on a (non-rigorous, reflexive) partial
order "<"and its inverse relationship ">"is also an (non-
rigorous, reflexive) partial order on the S.

From the above we can see, as long as the definition
one of the "≤ ", "<", " ≥ ", ">", remaining three relations
can be defined out naturally. These four relationships can
actually be seen as one.

Therefore not strictly distinguish between the cases,
only one can be defined (usually "≤"), called partial order
on set S. ("partial order" is usually used to refer to non-
strict partial order.)

4) UA, PA and others
Role Hierarchy set ⊆ Roles; Op （ Permission:

Permissions)-> {op ⊆Ops}, after mapping of
permissions to operate, there’ll be back operations set
related to Permission; UA ⊆Users x Roles is a many to
many set of distribution relationship between roles and
users; PA ⊆ Permission x Role is a many to many set of
distribution relationship between permissions and roles;
Session_users is a set of user configuration for session.

5) Role-based static separation of duty SSD
Two conflicted roles can not be assigned same role at

the same time. Expressed as a formal specification:
∀ri, rj∈Roles, i≠j, ∀u∈Users, (ri, rj)∈SSD
==>(u, ri) ∉ UA or (u, rj) ∉UA
6) Role-based dynamic separation of duty DSD
Session_permission is a set of permission for session;

Session_UA is a many to many set of distribution
relationship between users and roles for
session;Session_PA is a many to many set of permission.

Two conflicted roles can not be activated in the same
session, expressed as a formal specification:

∀ri, rj∈Roles, i≠j, ∀u∈Users, (ri, rj)∈DSD,
(u, ri)∈Session_UA, (u, rj)∈Session_UA,
==>(u, ri)∉ Session_UA or (u, rj) ∉ Session_UA
The set intersected between SSD and DSD is empty.

Expressed as a formal specification:
∀ri, rj ∈ Roles , i ≠ j, (ri, rj)∈ SSD ==> (ri, rj) ∉

DSD
7) history-based separation of duties HSD
Two conflicted roles in the history can not be

assigned same role at the same time. Expressed as a
formal specification:

∀ri, rj ∈ Roles , i ≠ j , (ri, rj)∈hsd,
∀u ∈ Users,
ri ∈ User_Role_History,
 ==> (u, rj) ∉ ua

872 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

8) Inherited
Inherited the role is still to maintain conflicting

relationships, expressed as a formal specification:
∀ri, rj, rm, rn∈Roles , i≠j≠m≠n,
(ri, rj)∈SSD rm≥rj , rn≥rj
 ==> (rm, rn) ∉ SSD
Conflicting roles can not have a common ancestor

roles, expressed as a formal specification:
∀ri, rj∈Roles , i≠j, (ri, rj)∈SSD , rk≥ri , rk≥rj

==>rk ∉ Roles
Conflicting roles can not be inherited each other,

expressed as a formal specification:
∀ri, rj∈Roles , i≠j, (ri, rj)∈SSD , rk≯=ri , rk≯=rj

B. SOD constraint relationship and its description
Based on RBAC96 model , the design in this paper

will be integrated into HSD, SSD, DSD, event and
frequency limit of role and so on.

Separation of duty relations are used to enforce
conflict of interest policies. Conflict of interest in a role-
based system may arise as a result of a user gaining
authorization for permissions associated with conflicting
roles. One means of preventing this form of conflict of
interest is though static separation of duty(SSD), which
enforce constraints on the assignment of users to roles. An
example of such a static constraint is the requirement that
two roles be mutually
exclusive; for example 1, if one role requests
expenditures and another approves them, the organization
may prohibit the same user from being assigned to both
roles. For example 2, a user is assigned the role of
accounting, then he may no longer be assigned the role of

cashier. Because the accounting and cashier are mutually
exclusive. The SSD policy can be centrally specified and
then uniformly imposed on specific roles. Because of the
potential for inconsistencies with respect to static
separation of duty relations and inheritance relations of a
role hierarchy, we
define SSD requirements both in the presence and
absence of role hierarchies.

Static Separation of Duty relations reduce the
number of potential permissions that can be made
available
to a user by placing constraints on the users that can be
assigned to a set of roles. Dynamic separation of duty
(DSD) relations, like SSD relations, are intended to limit
the permissions that are available to a user. However
DSD relations differ from SSD relations by the context in
which these limitations are imposed. DSD requirements
limit the availability of the permissions by placing
constraints on the roles that can be activated within or
across a user’s sessions. DSD allows a user to be
authorized for two or more roles that do not create a
conflict of interest when acted on independently, but
produce policy concerns when activated simultaneously.
For example, a user is assigned role A who receives
money from customers and role B who supervises how
much money to be received in role A’s open cash
drawer. If the individual acting in the role A attempted to
switch to the role B at the same event, DSD would
require user to drop the role A before assuming the role
B. As long as the same user is not allowed to assume both
of these roles at the same time, a conflict of interest
situation will not arise.

Figure 2 RBAC extended model

SSD provides the capability to address potential
conflict of interest issues at the time a user is assigned to a
role. DSD allows a user to be authorized for roles that do
not cause a conflict of interest when acted on
independently, but which produce policy concerns when
activated simultaneously. Although this separation of duty
requirement could be achieved through the establishment
of a static separation of duty relationship, DSD

relationships generally provide the enterprise with greater
efficiency and operational flexibility.

The conflict could be from user who was assigned a
role that is mutually exclusive with the role he is
assigned. It is HSD(Historical Separation of Duty). For
example, A user who works in the consulting company is
assigned a role A that analyzes company A in sale market.
He was assigned a role B that analyzed company B in sale
market some years ago. But now there is a competitive

USERS

SESSIO
NS

OBS OPS ROLES
UA

PA

EVENT
S

HDS, DSD, SSD
frequency limit

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 873

© 2012 ACADEMY PUBLISHER

relationship between company A and company B. So, the
user shouldn’t be assigned a role A because of HSD. A
user can’t have a role conflicted with roles in history.
Event, that is, the user-role-privilege system is running
under events. Such a work, by a representative name as
event name, the event have an event_ID. All users
associated with the event will work under this event_ID.
The events are marked by their respective departments.

Only division is responsible for the initiation of events.
Events could be very good to enhance operability and
flexibility of the whole system. Events are very important
to enhance ability of practical application of system.

Frequency limit of role is pre-set time limit and
frequency of use for selected role.

The model Included HSD. SSD, DSD and other
elements is described in Figure 2.

TABLE 1 SOD constraints attribute

Operation

Object

Static State（Authorizing) Dynamic State（running)

Authorized to an
Operation

Authorized
Operation<Number of

Operation Set

Performed an
Operation

Performed
Operation<Number of

Operation Set
A Object HSD SSD HSD SSD DSD DSD

Many Objects HSD SSD HSD SSD DSD DSD

Figure 3 SOD constraint relationship

According to three key factors: operation, object and
static /dynamic state in separation of duties constraints,
attribute table of separation of duties is listed to describe
the relationship between properties of separation of duties,
as shown in Table 1.

The relationship between SOD constraints is
described in Figure 3.

The strongest constraint is in the state diagram at the
bottom, with the arrow up, followed by reduced binding.
While implementing the strategy of SOD, the weak
constraints of SOD is more flexible and more easy to
implement separation of duties, the strong constraints is
more difficult to achieve due to too strict.

DSD constraint is mainly carried out in the event. For
example, an usre need enter an event, such as the nnumber
of roles that user is assigned is greater than or equal two,
the

DSD constraint will be drived, if the role of user is in
DSD, the role is a constraint role and then user can’t be
enter

When user is assigned a role, SSD constraint’ll be
judged. In case of its own role and selected role in the
SSD, the role is a constraint role and role should be
assigned selected role.

III. A PROGRAM FOR IMPLEMENTING SOD
CONSTRAINT RELATIONSHIP

The system’s main functions are the following:
• Make users associated with the roles and roles

associated with permissions.
• Make restriction constrains of Static Separation of

Duty (SSD) and Historical Separation of Duty
(HSD) while establishing the relationship between
users and roles.

• Make restriction constrains of Time and
Frequency while establishing the relationship
between users and roles.

• Make restriction constraints of Dynamic
Separation of Duty(DSD) after user is assigned
roles and while the event is entered.

• Set users, roles and permissions.
• Configure binary relation to SSD, HSD and DSD.
• Maintain system data.
The design is divided into two parts: the system

administrator management and user management. The
system administrator management includes how to
manage information set, user assignment, role assignment,
permission assignment, and how to configure binary
relation for SSD and HSD, how to maintain system data.
User management mainly starts configuring binary
relation for DSD when event happened. The case diagram
is shown in Figure 4.

Taking into account role-based access control, system
adopts the following tables associated with the control
competence. The relationship of tables is shown in Figure
5.

Visitors are divided into two normal users and
administrator. They first enter their ID. If ID is correct and

SSD

DSD

HSD running/permission

running/permission

running/permission

 permission

 permission

w
eak binding strong

874 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

is normal users, they obtain the corresponding user roles
and then get operational permission of various functional
modules, and enter the corresponding subsystems operate;
If ID is correct and is administrator, they obtain the
authority to manage user assignment, role assignment,

permission assignment and so on. If ID is not correct, they
are refused.

The following shows SQL statement of the main
database. They are UA, PA, SSD, DSD, HSD, Session
and event.

Figure 4 Case diagram

CREATE TABLE `ua` (
 `User_ID` varchar(50) NOT NULL,
 `Role_ID` varchar(50) NOT NULL,
 `Description` varchar(50) default NULL,
 `Role_Time` varchar(50) default '-',
 `Role_Frequency_Limit` varchar(50) default '-',
 `Role_Frequency_Now` varchar(50) default '-',
 PRIMARY KEY (`User_ID`, `Role_ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `pa` (
 `Role_ID` varchar(50) NOT NULL,
 `Permission_ID` varchar(50) NOT NULL,
 `Description` varchar(120) default NULL,
PRIMARY KEY (`Role_ID`, `Permission_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `ssd` (
 `Role_ID1` varchar(50) NOT NULL default '',
 `Role_ID2` varchar(50) NOT NULL default '',
 `Description` varchar(120) default NULL,
 PRIMARY KEY (`Role_ID1`, `Role_ID2`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `dsd` (
 `Role_ID1` varchar(50) NOT NULL default '',
 `Role_ID2` varchar(50) NOT NULL default '',
 `Description` varchar(120) default NULL,

 PRIMARY KEY (`Role_ID1`, `Role_ID2`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `hsd` (
 `Role_ID1` varchar(50) NOT NULL default '',
 `Role_ID2` varchar(50) NOT NULL default '',
 `Description` varchar(120) default NULL,
 PRIMARY KEY (`Role_ID1`, `Role_ID2`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `sessions` (
 `Session_Total_ID` int(10) NOT NULL default '0',
 `Session_Event_ID` varchar(20) default '0',
 `Session_Users_ID` varchar(50) default NULL,
 `Session_Roles_ID` varchar(50) default NULL,
 `Session_Permission_ID` varchar(50) default NULL,
 `Session_Time` varchar(50) default NULL,
 PRIMARY KEY (`Session_Total_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE `event` (
 `Event_ID` varchar(50) NOT NULL,
 `Event_Bool` varchar(20) default NULL,
 `Event_User_ID` varchar(50) default NULL,
 `Department_ID` varchar(50) default NULL,
 PRIMARY KEY (`Event_ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

<<system>>

User Assignmet Administrator

Shared resource

Permission Assignmet

session

Users

Role Assignmet

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 875

© 2012 ACADEMY PUBLISHER

Figure 5 The relationship between tables

IV. CONCLUSION
Role-based access control is a flexible, easy-to-

manage, low-cost access control method. It is a good
reflection of function and structure of actual organization.
RBAC is used widely as a access control method.

SOD is very important in business system, also is one
of the most desired features in RBAC system. The system
can achieve the desired security policy and security
objectives. This paper describes basic model RBAC96 and
properties of SOD constraint with formal specification,
presents an execution program to achieve SOD constraint
with relationship of tables, including time and frequency
on

restrictions. Some SQL statements are given to explain
what’s relationship between SOD constraints.

This paper analyzes the properties of various
separation of duty constraint, but it does not consider the
objects and other details, which need to research in the
future.

ACKNOWLEDGMENT
Here special thanks to the two foundations for funding

the project. Research and Innovation Projects Of Shanghai
Municipal Education Commission, project number is
11YZ212 (The writer is the head of the project);
Technology Development Fund of Shanghai University of
Engineering of Science , project number is 2008xy20 (The
writer is the head of the project).

REFERENCES

[1] David Farraiolo and Richard Kuhn, “Role-Based Access
Control, ” 15th NIST-NCSC National Computer Security
Conference, 1992.

[2] Ravi Sandhu, “Lattice Based Access Control Models, ”
IEEE Computer, 26: 11, November 1993.

[3] David D. Clark and David R. Wilson, “A Comparison of
Commercial and Military Computer Security Policies, ”
Proceedings of the 1987 IEEE Symposium on Research in
Security and Privacy (SP'87), May 1987

[4] Michael J. Nash and Keith R. Poland, “Some Conundrums
Concerning Separation of Duty”, IEEE Symposium on
Research in Security and Privacy, May 1990.

[5] Jerome H. Saltzer and Michael D. Schroeder, “The
Protection of Information in Computer Systems, ”
Communications of the ACM, 17: 7, 1975.

[6] Ravi Sandhu et al. “Role Based Access-Control Models”,
IEEE Computer, February 1996.

[7] Ravi Sandhu, “Rationale for the RBAC96 Family of
Access Control Models.” Proceedings of the first ACM
Workshop on Role-based access control”, February 1996.

[8] David Ferraiolo et al., “Proposed NIST Standard for Role-
Based Access Control, ” ACM Transactions on
Information and System Security, 4: 3, August 2001.

[9] Simon, R. and Zurko, M. E. 1997. Separation of duty in
role based access control environments [C]. In Proceedings
of the 10th IEEE Workshop on Computer Security
Foundations (Rockport, MA, June 10-12). IEEE Computer
Society Press, Los Alamitos, CA, 183–194

[10] Virgil D. Gligor, Serban I. Gavrila, and David Ferraiolo.
On the formal definition of separation-of-duty policies and
their composition [C]. In Proceedings of IEEE Symposium

876 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

on Research in Security and Privacy, pages 172-183,
Oakland, CA, May 1998.

[11] Gail-Joon Ahn & Ravi Sandhu, “Role-based authorization
constraints specification, ” J. ACM Transactions on
Information and System Security., 2000

[12] Chunyang Yuan et al., “A Verifiable Formal Specification
for RBAC, ” Lecture Notes in Computer Science,
2006, Volume 4318/2006,

[13] Ferraiolo, D., Cugini, J., Kuhn, D. R. “Role-Based Access
Control (RBAC): Features and Motivations” [C]. Proc.
1995 Computer Security Applications Conference, 241-
248, December 1995.

[14] Ahn, G. -J. AND Sandhu, R. 1999. The RSL99 language
for role-based separation of duty constraints [C]. In
Proceedings of 4th ACM Workshop on Role-Based Access
Control (RBAC ’99, Fairfax, VA, Oct. 28-29). ACM, New
York, NY, 43–54.

[15] G.J. Ahn, R. Sandhu. The RSL99 language for role-based
separation of duty constraints. ACM Workshop on Role-
Based Acces Control, Fairfax, Virginia, USA, 1999

[16] G.J. Ahn, R. Sandhu. Role-based authorization constraints
specification. ACM Trans on Information and System
Security, 2000, 3(4) : 207-226

[17] D. R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control system. The 2nd ACM Workshop on Role-Based
Access Control, Fairfax, VA, 1977

[18] N H Li, Q H Wang, M V Tripumitara. Beyond separation
of duty: An algebra for specifying high-level security
policies. Purdue University, CERIAS, Tech Rep: 2005-75,
2005

[19] Joon S.Park et al., “Role-based access control on the web s,
” J. ACM Transactions on Information and System
Security, April 2001.

[20] Jean Bacon et al., “A model of OASIS role-based access
control and its support for active security , ”, J. ACM
Transactions on Information and System Security., April
2002

[21] Jason Crampton, “Delegation in role-based access control ,
” J. International Journal of Information Security, 2007.

[22] Zhang Zhiyong, “Collaboration Access Control Model for
MAS Based on Role and Agent Cooperative Scenarios, ” J.
IEEE International Conference on Mechatronics and
Automation, 2006

 Su Yu, Female , was born in
China, graduated from Lawrence
Technological University in 2007 for
master’s degree in Computer Science.
Lawrence Technological University is
located at 21000 West Ten Mile Road,
Southfield, MI 48075-1058, USA.

She works in Engineering
Training Center, Shanghai University
of Engineering Science as a deputy
director and associate professor.

Shanghai University of Engineering Science is located at Long
Teng Lu 333, Shanghai 201620, China. She engages in teaching
and research in computer security, computer networks and
database applications.
 Ms. Yu is a member of committee of computer textbook of
undergraduate. She is responsible for a project “Research and
Application of information system security in RBAC” from
foundation of Shanghai Municipal Education Commission now.

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 877

© 2012 ACADEMY PUBLISHER

