
The Effect of Real-valued Negative Selection
Algorithm on Web Server Aging Detection

Yiwen Liang, Huan Yang, Jun Fu, Chengyu Tan�, Aolin Liu, Shiwen Zhu
School of Computer Science, Wuhan University, Wuhan, China

Email: ywliang@whu.edu.cn, happyfairy106@163.com,doctorfj@163.com, nadinetan@163.com,
aolin.liu@gmail.com, z-swen@163.com

Abstract— Several researchers have reported the fact that
web server systems executing continuously for a long time
show a degradation of their performance, and/or an in-
creased occurrence rate of hang/crash failures. This phe-
nomenon has been called ’web server aging’. To avoid this
problem, it becomes an important issue to detect web server
aging in web server maintenance. Existing technologies
depending on aging samples succeed in detecting known
web server aging, but fail to detect novel aging because
of the nondeterministic nature of the web server aging.
Given that normal samples are much easier to acquire from
running web server than aging samples, this paper proposed
an immune-inspired real-valued negative selection algorithm
to detect previously unseen web server aging, it only needs
normal samples to train detectors that have the ability to
classify a novel sample as web server aging or not. The
basis of the detection is aging causes performance deviation
from the normal state. Preliminary experimental results
showed that the method could improve the performance of
the detection of novel web server aging without responding
to normal status.

Index Terms— Real-valued Negative Selection Algorithm
(RNSA); Artificial Immune System (AIS); Web Server Aging
Detection; Software Aging

I. I
Long-running web server systems are prone to suffer

from software aging, which results in an increasing fail-
ure rate and/or degraded performance, such as increased
response time or even sudden crashes [1][2]. This phe-
nomenon usually results in huge losses, particularly to e-
commerce and safety/business-critical applications hosted
in the web server [1]. Unlike other types of faults, web
server aging is more nondeterministic and is difficult
to reproduce. This makes it hard to be predicted by
most testing and forecasting techniques [3][4]. Therefore,
detecting web server aging as early as possible is the basis
to prevent unexpected failure of application services.

Grottke et al. [1] and Li et al. [2] use statistic-based
detection techniques that compare current resource usage
to historical aging modes and trend model of a web server
to classify it ages or not. This method has high detection
efficiency of known aging cases. However, the dynamic
property of web server aging (e.g. non-deterministic)
brings this method a big challenge for detection of novel
aging [4][5].

To overcome the problem above, machine-learning-
based detection method is proposed to classify current

performance instance as aging or not, without the infor-
mation of known aging modes. This is realized through
measuring the performance deviation of a web server
by classifiers trained by normal & aging data [4][5].
Experimental results show that the method can detect
some unknown web server aging.

However, both methods above have some shortcomings.
They need a large amount of aging samples that can
only be obtained when aging occurs. But the transient
and occasional nature of the web server aging inevitably
makes the collection of aging samples a time-consuming
and costly task [4]. As a result, detecting aging with only
normal samples that can be easily acquired may be a
better approach to web server aging detection.

With this idea, Yang [3] uses an artificial immune
system approach, namely real-valued negative selection
algorithm (RNSA) to detect unknown web server aging
adaptively. The main idea of the RNSA is self/non-self
discrimination, considering self as the normal (healthy)
behavior of the system, and non-self as the abnormal
(unhealthy) [6]. RNSA is able to detect previously unseen
anomaly or fault with only self samples, this dramatic ad-
vantage makes it suitable for dealing with the difficulties
to collect aging samples in web server aging detection.
But the feasibility of this method hasn’t been validated.

Based on the work above, we analyzed the resource
usage and performance development of an Apache web
server system (which is one of the most popular used web
server systems), and discovered that the Apache shows
evidence of aging after inserting a memory leak into the
web site running in it. Therefore, in this paper, we carried
out experiments to evaluate the performance of RNSA on
web server aging detection, with an Apache web server
instance. In addition, we suggested some improvements
of the RNSA in [3] to enhance its performance for the
web server aging detection, and described the principles
to set the parameters that have an impact on the results
of our approach.

II. RW

Web server aging refers to the phenomenon that web
servers will show performance degradation, increasing
failure rate, even a paroxysmal crash after longtime con-
tinuous execution [1].

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 849

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.4.849-855

Match?

Self Samples

Yes

Match?
Detector

Set

Data Item
to be checked

Random
Candidate

No, Add to
Detector set

Discard

No

Yes

self

non-self

Figure 1. Mechanism of RNSA

Not only the causes are elusive [7], web server aging
also has the following non-deterministic characteristics
[4]:

1) performance of the web server depends on the
application service and the time-varying system
workload;

2) the aging profile changes along the time and the rate
at which the web server ages is usually not stable
or regular [5];

3) its causes are various and unpredictable, transient
fault is particularly difficult to predict and reproduce
[1][7].

Since statistic-based detection has nothing to do against
novel aging [3][4], software experts are now focusing
on intelligent techniques that measure and analyze the
performance deviation caused by behaviors exhibited by
a web server to classify it as aging or not.

As aging always causes performance degradation of the
web server and resource exhaustion of OS, Andrzejak
et al. [4][5] mine classification rules of the server’s
performance characteristics from normal & aging training
data sets. Then, the rules are applied to classifying new
performance state of the server as aging or not. Although
this conventional classification method is more robust
against some unknown aging, the detection rate is not
high, because samples for all classes (e.g. normal and
aging) are needed during the training phase [8]. However,
in web server aging application, aging samples are not
available for training purpose, as it is difficult to obtain
information about all possible aging [3][5][8].

Given that normal samples are much easier to acquire
from running web server than aging samples, Yang [3]
uses the immune-inspired real-valued negative selection
algorithm (RNSA) to detect unknown web server aging
adaptively requiring only normal samples. The RNSA
simulates the process of selecting non-autoreactive lym-
phocytes inside the human thymus. In this process (shown
in fig.1), lymphocytes that recognize body’s own elements
(self antigens) are eliminated, the remaining lymphocytes
(detectors) will identify only foreign molecules (non-self
antigens). The RNSA uses a real-valued representation
of the self/non-self space to map the generated detectors
back to the problem space easily [9][8]. More information
about RNSA please refer to [6][10].

The advantage of RNSA is that it detects previously
unseen anomalies with detectors trained from only self
samples. This makes it suitable for dealing with the
difficulties to collect aging (non-self) samples of a web
server. But the authors of [3] hasn’t validated their method

in real problems.

III. R-W S A D

Web servers are supposed to operate normally in 25
days [1] since the latest restart, we consider the per-
formance information of web servers in this period to
be the self antigens. The system resource usage, average
load, and performance of a web server are continuously
monitored, and detectors trained by RNSA are applied to
recognizing performance anomaly (non-self) of the web
server in the operating condition.

Based on the work of [3], we will discuss some key
issues of the RNSA-based web server aging detection
and some improvement in this session, e.g. the problem
space definition and the data normalization, the matching
rule, details of the detector population generation, and the
added detector evaluation.

A. the Problem Space Definition

The key idea of realizing web server aging detection
with RNSA is to classify the performance state of a
web server as healthy (self) or abnormal (non-self). For
this purpose, the antigen is considered to be the web
server performance state, which can be formalized as
Antigen(Ag) = {freeMemRatio, usedSwapSpace, loadAvg,
serviceRate, responseTimeAvg}. These indicators have the
ability to represent a web server’s performance deviation
[4][11], they and their corresponding formalized functions
are described as follows.
• freeMemRatio: it refers to the free physical memory

ratio of the system, it is normalized as follows:

f (x) =

100, x ≥ Nh (1a)

100 ∗
x − Nl

Nh − Nl
, Nl < x < Nh (1b)

0, x ≤ 0 (1c)

where x represents the free physical memory ratio,
Nh and Nl are its maximum and minimum value
respectively.

• usedSwapSpace: it refers to the swap space of OS
that have been used. It is normalized as follows:

f (x) =

 100, x ≥ Nsh (2a)

100 ∗
x

Nsh
, 0 ≤ x < Nsh (2b)

where x is the swap space used, and Nsh is its
maximum value.

• loadAvg: Average cpu load of the system, shows the
average number of processes in the cpu queue in
a specific period of time. It’s normalized similarly
to the usedSwapRatio, but with Nlh as its maximum
value.

• replyRatio: It shows the ratio of number of actually
served requests to number of incoming requests per
second, its value varies from 0 to 100.

• responseTimeAvg: It shows the average response
time of all requests in a specific period of time. It’s

850 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

c

r =D-Dfm

D

NearSelfs points

crc

nonself1

(a)detector expression.
nonself2 is detected

nonself2

(b)calculating the radius

Dfm

D

(c)moving a detector

Cnew

Cnearest

D1>r

D2<r

(d)cloning a detector

Cnew

Cold

Figure 2. Detector Generation Details

normalized similarly to the usedSwapRatio, but with
Nrth as its maximum value.

From the above, we can see that Ag is expressed as a
5-dimensional real-valued vector. Therefore, the problem
space of the web server aging detection can be seen as
a 5-dimensional space with its boundary in the domains
of all indicators above. In this space, an Ag is considered
as a point, a detector (antibody) is considered to be a
hypersphere with a 5-dimensional vector corresponding
to its center and a real parameter representing its radius.
Then, an antigen is recognized by a detector, once the
distance between them isn’t more than the radius of the
detector.

B. Detectors Expression

Detectors are the key components of the real-valued
negative selection algorithm, it is considered as a hyper-
sphere able to cover antigens in a certain domain. In this
paper, we define the detector as d=(c, r, distance):
• c = (c1, c2,···, c5) is the center of the detector.

It corresponds to a 5-dimensional point inside the
problem space of the web server aging detection. It
has the same presentation as the Ag in this paper.

• rεR (r > 0): It represents the radius of a detector
hypersphere which determines the size of the detec-
tor. As shown in fig.2(a), an antigen (Ag) satisfied
with distance(d, Ag) 6 r is recognized as non-self
(performance anomaly) by the detector d.

• distance: It refers to the matching rule, which eval-
uates the affinity between the detector and another
data item to measure whether they match or not. As
it’s described as a uniform membership function of
the detector in this paper, we describe the detector
as d=(c, r) briefly.

C. the Matching Rule

The matching rule describes the function that esti-
mates whether a detector matches an antigen (or another

detector). Generally speaking, RNSA requires a partial
matching rule to ensure the diversity of detectors with
the purpose of reducing holes [3].

Because the Euclidean distance employed in [3] causes
the evaluated distance out of boundary of the problem
space, we replace it by Minkowski distance which is also
suitable for real-valued representation but follows the rule
of the boundary, so as to make the computation intuitive
and exact.

Minkowski distance is computed as shown in equation
(3), and it equals to the Euclidean distance when n=2.
Thus, the distance/affinity (D) between a point x and
a detector, d=(c, r), is computed as in (3), where c is
the center of the detector. Matching is determined when
Minkowski(c, x) 6 r is true .

D(d, x) = Minkowski(c, x) = (
n∑

i=1

|ci − xi|
n)1/n (3)

D. the Detector Generation Algorithm

In order to maximize the coverage of non-self space,
the real-valued negative selection algorithm aims to train
a set of matured detectors that match none of self samples
and are away from each other. Fig.3 shows the basic steps
of the detector generation algorithm.

We propose some improvements of the detector gener-
ation algorithm used by [3] to make the algorithm more
appropriate for actual web server aging detection, such
as improving the training process, adjusting the moment
to clone better-fitted detectors, normalizing the center of
every detector, and restraining the boundary of the new
center generated by detector moving or clone.

1) Radius calculation for the detectors: With a set of
self antigens as input, the algorithm starts with a set of
candidate detectors, which are generated at random and
then matured through an iterative process. Especially, the
center of each candidate detector is chosen randomly but
different from each other, and the radius is a variable
parameter waiting to be assigned.

At each iteration, the radius of every candidate detector,
d=(c,r), should be calculated or updated adaptively based
on the Minkowski distance between this candidate and the
self points. The radius is calculated as follows (shown in
fig.2(b)):

r = D(d,MidS el f) − D(FarS el f ,MidS el f) (4)

MidS el f = (
∑

s)/k, sεNearS el f s (5)

Where MidSelf is the center point of NearSelfs which
refers to the k nearest self points to d, FarSelf is the
farthest self point from the MidSelf in the NearSelfs,
then, D(d,MidSelf) shows the Minkowski distance be-
tween d and MidSelf, D(FarSelf,MidSelf) (D f m) shows
the Minkowski distance between MidSelf and FarSelf.

A candidate detector is considered to match self and
will be discarded in subsequent iteration, once its radius
is negative; Otherwise, this candidate is matured if the

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 851

© 2012 ACADEMY PUBLISHER

Generate candidate
detectors randomly

match self?

Move x

no

Yes

no

Exit

overlaps with
other detectors
significantly?

yes

no

For each
candidate x

End for?

clone
better-fitted

detectors

Enough
Detectors?

Yes

No

Yes

Calculate the
radius

match self?

Move cloned
detector

Yes

no

Store

store

Set of
Mature

detectors

Start

Detector overlap
evaluation

Figure 3. RNSA Detector Training

overlap between it and other existing detectors is not more
than threshold ξ (ξ: provides the maximum allowable
overlap among the detectors, adjusted by experiment).

2) Regeneration of discarded detectors: As mentioned
in [3], a discarded detector d=(c,r) matching self or
overlapping with existing detectors is moved to become
a new candidate detector to improve the efficiency of
detector generation. As shown in fig.2(c), this exactly
mean the center of d is moved.

The new center should be moved away from the near-
est neighbor detector and/or self point of the discarded
detector to maximize the coverage of the detectors. So,
the new center is calculated as follows:

cnew = c + η ∗ dir (6)
dir = (c − cnrest)/D(c, cnrest) (7)

Where dnrest=(cnrest, rnrest) is the nearest detector (or
self point) to d, η is a variable that provides the level to
move a detector away from self points or other existing
detectors. According to the experimental investigation,
cnew should be normalized as shown in section 3.A.

3) Better-fitted detectors clone: As shown in fig. 3,
if there aren’t enough matured detectors after the first
round of training, the population will be filled with the
clones of the better-fitted detectors (shown in fig. 2(d)).
A detector is considered as better-fitted detector, if it has
larger coverage but small overlap with other detectors
(evaluating method is shown in the next subsection).

Given that d=(c, r) is the detector to be cloned, and
dclone=(cclone, rclone) is the cloned detector which is far

C
'

C

D

δ

Figure 4. the overlap between two detectors

away from d’s nearest detector and located at a distance
r from d, rclone and cclone are defined as:
• rclone = r.
• cclone = c+ r ∗ (c− cnrst)/D(c, cnrst), where cnrst is the

center of the detector which is nearest to d.

E. the Detector Evaluation

In this paper, to generate more effective detectors, we
favor the detectors having larger coverage of the non-
self space (i.e. with big radii) but with minimum overlap
among them.

Detectors which do not match any self are sorted
according to their radii. The detector with large radius
gets selected for the next generation population if it has
small overlap with existing detectors, otherwise, it will be
moved. So, the overlapping measure W of a detector is
computed as the sum of its overlap with all other detectors
as follows:

W(d) =
∑
d,d′

w(d, d′), w(d, d′) = (exp(λ) − 1)m (8)

λ =

1, δ ≥ 1 (9a)
δ, 0 < δ < 1 (9b)
0, δ ≤ 0 (9c)

δ = (r + r′ − D)/2r

Where w(d,d’) is the overlap between two detectors
d=(c,r) and d’=(c’,r’), m is the dimension of the data
space, D is the distance between two detector centers c
and c’. As shown in fig. 4, the two detectors are disjoint
when δ ≤0, so λ = 0, w(d, d′) = 0; They are joint when
0 < δ < 1, and d is covered by d’ and should be moved
when δ ≥ 1.

F. the Life-cycle of Detectors

The detector population must have the ability to cover-
age dynamically and update periodically in order to adapt
to the change of the observed web server. In this respect,
supposing Pdeath to be the mortality rate of detectors, each
detector should get a life cycle Tli f e=1/Pdeath.

In this paper, we use the life cycle management method
suggested by Hofmeyr [12]. A matured detector is ac-
tivated, if it accumulates enough matches to exceed a

852 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

LAN

ClientServer

Server Client

Linux Linux

192.168.0.118192.168.0.116

role

OS

IP
Httperf
linuxAgent

Apachesoftware

Figure 5. Experimental deployment and components

threshold τ in the period of Tli f e. Otherwise, it dies and is
replaced with a new candidate detector shown in fig.2(c)
to update the detector set. The threshold τ can be adjusted
by experiment, here are some suggestions [1,5].

If an activated matured detector receives the confirma-
tion signal from the administrator, it becomes a memory
detector. The memory detector will be activated quickly
by once antigen matching, which improves the efficiency
of detecting known aging. More information about the
life-cycle management and the memory detector please
refer to [12].

IV. E

The aim of our experiments is to evaluate the ef-
fect of the real-valued negative selection algorithm on
the detection of web server aging. For the purpose of
experimentation, Apache is used as the web server to
be monitored. Apache is one of the most popular web
server systems [1], it usually responds to business requests
stably, but shows aging phenomenon when faults appear
in application software deployed in it.

As clients communicate with the Apache through
HTTP protocol, all experiments are performed in a small
local area network (LAN, shown as fig. 5). The LAN
consists of two machines, one is the server running
Apache version 2.0.54 on a Linux platform (version
RHEL 5, CPU: Pentium(R) Dual-Core 2.80GHz, RAM:
1GB), the other is the client operating Linux monitoring
tool developed by our research group (called linuxAgent)
and httperf [13].

The linuxAgent is designed to monitor the resource
usage information (e.g. phyMemory usage, swapSpace
usage and loadAvg) of the server through the /proc virtual
file system of the Linux OS. Httperf is well known not
only for its ability to generate workload, but also as
performance monitor of the web server, the replyRate and
responseTime of Apache that compose the antigen of this
paper can be provided by it.

The experiment is composed by three steps correspond-
ing to the RNSA: collecting self, training detectors and
detecting web server aging.

1) Collecting self: First, the server and the Apache
are restarted, and the httperf is executed periodically to
generate requests accessing web pages with sizes of 500
bytes, 5 kb, 50 kb and 500 kb (similar to [1]) in the
Apache with probabilities of 0.35, 0.5, 0.14 and 0.01
respectively. Then, the indicators composed the antigen
is collected as self samples by linuxAgent for 25 days
with an interval of 30 seconds.

To make the Apache run stably in this step, we employ
a value of 50 requests per second as the connect rate of
the httperf, and the configuration parameters MaxClients
and MaxRequestPerChild of the Apache is set to 250 and
100 respectively (as shown in table IV-A).

2) Training detectors: Matured detectors are trained
by the detector generation algorithm described in section
3 using self samples acquired in last step as input.

3) Detecting web server aging: In the phase of real-
time aging detection with RNSA, we employ the matured
detector population generated in last step to discriminate
the antigens that represent the web server status. The
result can classify the web server performance state as
healthy or abnormal. If the distance between the antigen
Ag and any matured detector is less than or equal to r, it
proves that the web server ages when Ag occurs.

Our experiment has two scenarios. The httperf is oper-
ated to generate requests as in step 1) for 4500 seconds
in each scenario. Each scenario is repeated for 5 times.

The aim of the first scenario (S1) is to verify our
detection method when the Apache runs normally because
of the absence of faults. So, the same parameters are set
as in step 1).

The aim of the second scenario (S2) is to verify our de-
tection method when the Apache shows evidence of aging
after being inserted into a memory leak accidentally. For
the purpose of speeding up the Apache aging, we should
make it overloaded. As a consequence of investigation,
the variable MaxRequestPerChild is adjusted to 0 [1], and
the connection rate of the httperf is set to a value of 800
requests per second.

A. Principles to Set Parameters

The parameters in the RNSA were set as follows:
Nh = 50.451(%), Nl = 7.787(%), Nsh = 575716(kb),Nlh =

1.01,Nrth = 2.936(ms). They were set based on the
statistical results of the monitoring values of the indicators
described in section 4.1. Take freeMemRatio for example,
the average monitoring value was 29.119(%), the standard
deviation was 21.332(%). Therefore, we set Nh = 50.163+
33.429 = 83.592(%), Nl = 29.119 − 21.332 = 7.787(%).
The population of detectors was set to more than 120, k
was set to 5, ξ was set to 12, η was set to 0.3 (as shown
in table IV-A).

B. Results

We analyzed the results of the experiments described
above. First, let’s have a look at the monitoring values of
indicators in every scenario. For both scenarios, the x-axis

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 853

© 2012 ACADEMY PUBLISHER

TABLE I.
P

Parameter Description

MaxClients maximum number of server processes allowed
to start

MxRqstPCld MaxRequestPerChild: maximum number of re-
quests a server process serves

connectRate number of requests the httperf sent to the server
(/s)

k the number of nearest self points considered
when calculating the radius

ξ
the maximum allowable overlap among the
detectors

η
variable that provides the level to move a
detector

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
o
rm

al
iz
ed

-v
al
u
e

Time(sec)

freeMemRatio usedSwapSpace loadAvg5Min

replyRatio responseTime

Figure 6. Status of the Apache in S1

represents time in seconds while the y-axis represents the
normalized value of the indicators.

In S1, although without source of aging injected, we
noticed that the performance status of the Apache is
changing over time, and there is specificity among the
indicators. The loadAvg5Min shows big variation, while
the usedSwapSpace, the responseTime and the replyRatio
are relatively stable in fig.6. The data is from a randomly
selected experiment because there is a small variation
among the data from the repeated experiments. In addi-
tion, we observed an seasonal feature of the freeMemRa-
tio, this may be due to the child process is killed by the
Apache after handling scheduled number of requests (con-
trolled by configured parameter MaxRequestsPerChild
(=100 in S1)) , then the memory it employs is released.

In S2, a memory leak is injected into the web site in the
Apache, we observed abnormal states of the OS resource
usage and the performance of the Apache. As shown in
fig. 7, we found a sharp decline of the freeMemRatio,
and an abrupt increase of the usedSwapSpace with a little
variation, but the replyRatio and the loadAvg are similar
to 6. We also noticed that there is a large variation of the
responseTime.

Table IV-B shows the results from the RNSA for the
detection of the aging of the Apache. The values in the
table are the average and the standard deviation in five
repeated experiments. The most notable observation about

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
o
rm

al
iz
ed

-v
al
u
e

Time(sec)

freeMemRatio usedSwapSpace loadAvg5Min
replyRatio responseTime

Figure 7. Status of the Apache in S2

TABLE II.
R E

Scenario AgType Num
of Ag

Num of Ag
detected

FP/FN
rate(%)

S1 self 151 0 FP=0(0)

S2 non-
self 151 135.7(0.58) FN=9.49(0.38)

the data in the table is that the algorithm performs much
better in practice than we expected with low FP and FN
rate. The FP (false positive) rate corresponding to the
ratio of self antigens that be mistaken as non-self antigens
by detectors. The FN (false negative) rate corresponding
to the ratio of non-self antigens that be mistaken as self
antigens by detectors.

C. Discussions

The results of the experiments show that the RNSA
could identify the aging state from the normal state when
the Apache is running. The RNSA is able to recognize
previously unseen aging, as the detectors are trained to
match the the aging (non-self antigen) independent of
aging samples. In addition, the coverage of the detec-
tor is not constant because the radius of the detector
is calculated according to its ’position’ relative to self
antigens and other detectors dynamically. This makes it
able to identify various aging conditions of the web server
systems. It could be concluded that the RNSA has a high
detection rate and low false alarm rate (including FP and
FN rate) when applied to the detection of web server
aging.

During the experiments, we discovered that the Eu-
clidean distance was not suitable for n-norm problem
space where n ≥ 2, as the distance may overstep the
boundary. But Minkowski distance Minkowski(c, x) =
(
∑
|ci − xi|

n)1/n which equals to the Euclidean distance
when n=2 follows the rule of the boundary. We also
noticed that the detector that has been moved would be
out of boundary if its new center hasn’t been normalized.
However, it’s difficult to avoid that part of the detector
with center normalized falls outside of the boundary of

854 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

the application problem, these detectors may be called
boundary detectors. The future work is to explore how to
restrain the number of the boundary detectors.

V. C

Experience is the best teacher. In this paper, we carried
out experiments to evaluate the performance of RNSA on
web server aging detection, with an Apache web server
instance. In the experiments, the httperf is used to generate
artificial workload and collect performance indicators of
the Apache. The linuxAgent designed by our research
group is used to monitor the resource usage information
from the /proc virtual system of Linux. In addition, we
described the principles to set the parameters that have an
impact on the results of our approach.

Due to the investigation of the experiments, we pro-
posed some improvements of the RNSA in [3] to make it
more suitable for real problems. They are the adjustment
of the detail algorithm process, the normalization of the
antigen and the center of every detector, improvement of
the matching rule and the evaluation of the overlap among
detectors.

Experimental results show that the improved RNSA
has a high detection rate and low false alarm rate when
applied to web server aging detection. The future work
is to explore how to restrain the number of the boundary
detectors to enhance the performance of our method.

VI. A

This work is supported by the Defense Industrial
Technology Development Program (No. A1420080183)
from Ministry of Education of China. This work is also
supported by the Research Grant (No. 61170306) from
National Natural Science Foundation of China (NSFC).

R

[1] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Anal-
ysis of software aging in a web server,” IEEE Transactions
on Reliability, vol. 55, no. 3, pp. 411–420, 2006.

[2] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for
estimation of software aging in a web server,” in Inter-
national Symposium on Empirical Software Engineering
(ISESE’02). IEEE Computer Society, 2002.

[3] H. Yang, Y. Liang, C. Tan, and J. Fu, “Detecting software
aging of web servers with real-valued negative selection
algorithm,” in the 2nd International Conference on Data
Storage and Data Engineering. IEEE, 2011, pp. 298–302.

[4] A. Andrzejak and L. Silva, “Using machine learning for
non-intrusive modeling and prediction of software ag-
ing,” in Network Operations and Management Symposium
(NOMS ’08). IEEE, 2008, pp. 25–32.

[5] A. Andrzejak, L. Silva, and D. E. Inform¢tica, “Robust
and adaptive modeling of software aging,” 2008.

[6] J. Greensmith, A. Whitbrook, and U. Aickelin, “Artificial
immune systems,” in International Series in Operations
Research & Management Science, 2010, pp. 421–448.

[7] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Soft-
ware rejuvenation: Analysis, module and applications,” in
Twenty-Fifth International Symposium on Fault-Tolerant
Computing. IEEE Computer Society, 1995.

[8] F. Gonzalez and D. Dasgupta, “Anomaly detection using
real-valued negative selection,” Genetic Programming and
Evolvable Machines, pp. 383–403, 2003.

[9] F. Gonzalez, D. Dasgupta, and J. Gomiz, “The effect of
binary matching rules in negative selection,” in Genetic
and Evolutionary Computation (GECCO ’03), 2003, pp.
198–198.

[10] J. Zhou, “Negative selection algorithms: from the thymus
to v-detector,” Ph.D. dissertation, The University of Mem-
phis, 2006.

[11] Y. Jia, J. Su, and K. Cai, “A feedback control approach for
software rejuvenation in a web server,” in International
Conference on Software Reliability Engineering Work-
shops. IEEE, 2009, pp. 1–6.

[12] S. Hofmeyr and S. Forrest, “Architecture for an artificial
immune system,” Evolutionary Computation, vol. 8, no. 4,
pp. 443–473, 2000.

[13] D. Mosberger and T. Jin, “httperf: a tool for measuring web
server performance,” ACM SIGMETRICS Performance
Evaluation Review, vol. 26, no. 3, pp. 31–37, 1998.

Author Biographies
Yiwen Liang received a B.S., a Master and a PhD degree in
computer science from Wuhan University, Wuhan, China, in
1983, 1990 and 2002, respectively. Since 1983 he works for the
Wuhan University in the School of Computer Science where
he is now a Professor, doctoral supervisor of Computer Science
and the leader of the Department of Computer Application.

Prof. Liang currently holds a NSFC Fellowship focusing on
AIS, health management of the information system and anomaly
detection. He has been awarded three NSFC research funding as
principal investigator on topics including AIS, Danger Theory,
Network Security and Anomaly Detection. Prof. Liang is an
associate Secretary General of the Natural Computing Commit-
tee of Chinese Association for Artificial Intelligence (CAAI), a
member of the council of the IEEE education association China
sub-commission.

Huan Yang is a PhD student in School of Computer Science
at Wuhan University. She received a B.S. degree in Computer
Science and Technology from Huazhong Normal University,
Wuhan, China in 2007, and she is in a combined M.S.-P.H.D.
program at Wuhan University from 2007. Her research interests
are in the field of software reliability, artificial immune system,
and software health management. Currently, she focuses on
applying the AIS on web server aging.

Jun Fu is a PhD student in School of Computer Science at
Wuhan University. He received a B.E. degree in Computer
Science from Wuhan University in 2006, and he is in a combined
M.S.-P.H.D. program at Wuhan University from 2006. His
research interests include artificial intelligence, artificial immune
system, network security and malware detection.

Chengyu Tan is currently an associate professor in the School
of Computer Science at Wuhan University. She received a B.E.
(1990) and a M.S. (1996) degrees from Wuhan University of
Hydraulic and Electrical Engineering, and completed a PhD
in software and theory at Wuhan University in 2007. Her
research interests include artificial immune system and natural
computation.

Aolin Liu is a Master student in School of Computer Science
at Wuhan University. She gained a B.E. degree from Wuhan
University in 2010.

Shiwen Zhu is a Master student in School of Computer Science
at Wuhan University. He received the B.E. degree from Wuhan
University,Wuhan, China in 2011, and at present he is pursing
his M.S. degree in Wuhan University.

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 855

© 2012 ACADEMY PUBLISHER

