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Abstract—Prosodic phrase prediction is important for both 
the naturalness and intelligibility of Text-to-Speech (TTS) 
systems. To automatically generate feature templates of 
prosodic phrasing models, this paper proposes a hybrid 
approach which converts the rules generated by 
classification and regression tree (CART) into templates of 
transformation-based learning (TBL), and designs a 
hierarchical clustering based feature combination algorithm 
for maximum entropy (ME) model. While minimizing 
human supervision, TBL templates automatically generated 
by CART can provide good alternatives or beneficial 
supplement to manually summarized templates, and ME 
templates automatically generated by the proposed feature 
combination algorithm not only make an improvement of 
3.1% on F-measure over manual templates, but also reduce 
the size of ME model by up to 79.0%. 
 
Index Terms—prosodic phrase prediction, feature template 
generation, keyword selection, classification and regression 
tree (CART), transformation-based learning (TBL), 
maximum entropy (ME). 
 

I.  INTRODUCTION 

In spoken language, prosodic phrases (hereinafter 
referred to as “PP”) are separated by breaks in the form of 
pauses. PP breaks divide utterances into information 
chunks to make understanding faster and easier. Variation 
in prosodic phrasing can change the meaning got by 
listeners from the same sentence. Situations where PP 
breaks are lost when necessary or added in wrong places 
make the synthetic speech sound unnatural and boring. 
Therefore, PP break prediction is of great importance for 
both the intelligibility and naturalness of Text-to-Speech 
(TTS) systems. 

The prediction of PP breaks is usually regarded as a 
classification problem, where a classifier is used to make 
decision whether each word boundary is a PP break or 
not. Various data-driven approaches, such as Markov 

model [1], classification and regression tree (CART) [2], 
transformation-based learning (TBL) [3], maximum 
entropy (ME) model [4] etc, have been investigated to 
predict PP breaks. Although most of them achieve state-
of-the-art performance, these methods still have their own 
shortcomings. Markov model can only use a few discrete 
features like part-of-speech (POS), and is based on the 
strict Markov assumption, which has a limited validity. 
CART recursively splits the data, and hence suffers from 
unreliable counts due to data fragmentation. For the task 
of PP break prediction, both TBL and ME model 
outperform CART [3] [4], but manually summarizing 
templates for them is time-consuming and laborious, and 
because of the limitation of human knowledge and ability, 
it is difficult to cover enough and accurate phrasing rules 
with manual templates. 

This paper also uses TBL and ME model, which have 
been proved outstanding in previous work, to predict PP 
breaks from unrestricted Chinese text. Furthermore, two 
kinds of objective methods, the CART rule conversion 
approach and the feature combination algorithm, are 
proposed to automatically generate feature templates of 
prosodic phrasing models. The former converts the rules 
generated by CART into TBL templates. Experimental 
results show that CART templates can provide good 
alternatives or beneficial supplement to manual templates. 
The latter chooses the optimal couples of features to 
combine into templates. While reducing human 
supervision during ME training, the feature combination 
algorithm not only obviously improves the accuracy of 
PP break prediction, but also significantly reduces the 
number of templates, thus greatly minifying the size of 
ME model. 

II.  FRAMEWORKS OF CLASSIFIERS 

A.  Transformation-Based Learning 
Transformation-based learning (TBL), first proposed 

by E. Bill [5], is a rule-based machine learning algorithm. 
It has been applied since to various natural language 
processing (NLP) tasks, including part of speech tagging 
[5], noun phrase chunking [6], parsing [7] etc, often 
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achieving state-of-the-art performance with a small and 
easily-understandable list of rules. 

The central idea of TBL is to learn an ordered list of 
transformation rules which progressively improve the 
current state of the training set. Fig. 1 illustrates the 
learning process. At first, an initial assignment is made 
based on simple statistics, and then transformation rules 
are greedily learned to correct the mistakes, until no net 
improvement can be made upon the training set. During 
the evaluation phase, the evaluation set is initialized by 
the same initial-state annotator. Each rule is then applied, 
in the order it was learned, to the evaluation set. The final 
classification is the one attained when all rules have been 
applied. 

 
Figure 1.  Training process of TBL. 

A template of TBL consists of several features, such as 
“P-2&P-1:X Y”, where P denotes the POS, X and Y 
denote the break label (PP break or not) before and after 
the transformation respectively, and the subscript number 
denotes the offset from the current word boundary. 
Templates determine the predicates of rules, and have the 
greatest influence on the performance of TBL. 

B.  Maximum Entropy Model 
Maximum entropy (ME) model is a powerful statistical 

classification model, which has been successfully applied 
to a variety of tasks, including word segmentation [8], 
POS tagging [9], word sense disambiguation [10] etc. 

The central idea of ME model is to seek the probability 
distribution with the maximum entropy, over the set of 
the ones subject to certain constraints. Such constraints 
force the model to match its feature expectations with 
those observed in the training set. A feature of ME model 
is a binary-value function fi(x, y) as follows: 
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In the scenario of PP break prediction, x denotes the 
contextual information, and y denotes the break label. 
Given an event (x, y), the conditional probability ( | )y xp  
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Where iα  is the weight of feature fi, which can be 
estimated by GIS or IIS [11] algorithm, and Z(x) is the 
normalization factor: 
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A trained ME model is composed of its features and 
their weights, so the performance of ME model depends 
largely on the effectiveness of the features, which is 
extracted from the training corpus according to the 
feature templates. Therefore, feature templates determine 
the value space of features, and have the greatest 
influence on the behavior of ME model. 

III.  AUTOMATIC TEMPLATE GENERATION 

The common method of feature template acquisition is 
to select the basic features which are discriminative for 
classification, and then sum up the patterns of feature co-
occurrence by observing the annotated corpus. However, 
that process is time-consuming and laborious, and 
because of the limitation of human knowledge and ability, 
it is difficult to cover enough and accurate phrasing rules 
with manual templates. To overcome the shortcomings of 
manual template acquisition, we propose two objective 
approaches of automatic template generation. 

A.  Converting CART Rules into Templates 
As is well known, each non-leaf node of CART 

specifies a test about some discriminative features for 
classification, and the path from the root to a leaf node 
gives a decision rule which is composed of those features 
the path passes. The proposed approach attempts to 
convert the rules got from leaf nodes of CART into 
templates. As shown in Fig. 2, template “L-1&P1” can be 
derived from the leaf node A, and template “L-1&P1&P2” 
can be derived from the leaf node B. For abbreviation, the 
templates automatically generated by CART are referred 
to as the “CART templates” in the remainder of the paper. 

 
Figure 2.  Converting CART rules into TBL templates. 

However, CART templates have a flaw that can not 
include the specific word feature, which can provide 
important cues for identifying PP breaks [4]. It is because 
while splitting the data set in training process, CART 
needs to try various divisions of feature values to select 
the optimal division. Therefore, the word feature whose 
number of values is up to ten thousand can not be 
selected as the branch node of CART, due to the 
limitation of time and memory. In order to make CART 
can use the word feature, we try to reduce the number of 
word feature values to a small number of keywords. 
Keyword selection methods will be described in Section 
IV.C. 

Moreover, for generating TBL templates with CART 
rules, the different characteristics between these two 
algorithms should be considered. Rules learned by TBL 
are used to correct the errors made by the initial-state 
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annotator, whereas rules generated by CART are aimed at 
all the training data, including both the correct samples 
correctly initialized by the TBL initial-state annotator and 
the error samples the initial-state annotator incorrectly 
annotates. So TBL templates should meet two 
requirements. First, they should be able to correct errors. 
Second, they should not transform correct samples into 
the wrong ones. Since the majority of training set are 
correct samples, the CART rules based on all the training 
data mainly predict the PP breaks of correct samples, so 
templates converted from these rules (hereinafter referred 
to as the “training data templates”) may be weak in error 
correction. The CART templates only based on the error 
data in the training data (hereinafter referred to as the 
“error data templates”) are just the opposite. They are 
aimed at the error samples, and thus meet the first 
requirement very well, but are easy to make wrong 
transformations, due to lack of the supervision of correct 
samples. Therefore, both the training data templates and 
error data templates should be taken into consideration. 

B.  Combining Features into Templates 
Leaf nodes of CART have dominating categories, so 

rules got from them make classification independently, 
and hence CART templates derived from these rules are 
independent of each other or even mutually exclusive. 
However, ME model integrates all the features into an 
exponential framework. If the feature templates of ME 
model are mutually exclusive, then its advantage that all 
the features contribute to classification together by their 
weight coefficients will not come out to play. Thus, it can 
be seen that CART templates may not be suitable for ME 
model. 

Based on the idea of hierarchical clustering, we design 
another iterative algorithm for automatic feature template 
generation. It uses the F-score of prosodic phrasing model 
to measure the effectiveness of a feature template. At 
each iteration, the pair of features whose combination 
most improves the F-score are combined into a feature 
template. This iteration is repeated until the combination 
of any pair of features in the current feature set can not 
achieve a higher F-score. The specific steps of our 
iterative algorithm are described as follows: 

a) Set the initial feature set FEASET0 to be the 
basic feature set, the current feature set FEASETcur to be 
FEASET0, the initial template set TPLSET0 to be empty, 
its F-score F0 to be 0, the current template set TPLSETcur 
to be TPLSET0, and its F-score Fcur to be F0. 

b) For each pair of features FEAi and FEAj in 
FEASETcur, try to merge them into a new template TPLi&j, 
temporarily add TPLi&j into TPLSETcur to get the 
temporary template set TPLSETtmp, and calculate its F-
score Fi&j. Then find out the maximum Fi&j (denoted by 
Fi&j max) and the corresponding template TPLi&j max. 

c) If Fi&j max is lower than Fcur, go to step d; 
otherwise, make Fcur equal to Fi&j max, formally add the 
new template TPLi&j max into TPLSETcur, add TPLi&j max 
into FEASETcur as a new feature too, and then return to 
step b. 

d) The iteration ends. Output the current template 
set TPLSETcur. 

IV.  FEATURE SELECTION 

A.  Feature Set 
According to Liu’s statistics [12], most Chinese 

prosodic phrases are of length of 3 to 6 syllables, that is, 
about 2 lexicon words long. Therefore, 4 kinds of 
contextual information in a window of -2~+2 words (the 
distance features are beyond the scope of this window) 
are employed in this work. All the features are listed in 
Table I, where W denotes the lexicon word, P, S and L 
denote the POS, semantic class and length in syllables of 
the lexicon word respectively, DB and DE indicate the 
distance in syllables to the beginning and ending of the 
sentence respectively, and the subscript number denotes 
the offset from the current word boundary. Note that the 
semantic classes of notional words are obtained through 
looking up in a semantic dictionary according to their 
POS. In case of semantic ambiguity, only the most 
frequent sense is adopted. 

TABLE I.  FEATURE SET 

Feature type Value range 
W-2, W-1, W1, W2 About 25,000 entries 
P-2, P-1, P1, P2 39 categories 
S-2, S-1, S1, S2 67 classes 
L-2, L-1, L1, L2 1~8 syllables 
DB, DE 1~32 syllables 

B.  Manual Template Set 
Based on empirical knowledge, the basic features 

listed in Table I are combined into 66 templates. Some 
features, like W, P, S, DB and DE, are also used as a 
template alone. Table II lists all the manual templates. 

TABLE II.  MANUAL TEMPLATE SET 

W-2, W-1, W1, W2, W-2W-1, W-1W1, W1W2, W-2W-1W1, W-1W1W2 

P-2, P-1, P1, P2, P-2P-1, P-1P1, P1P2, P-2P-1P1, P-1P1P2 

S-2, S-1, S1, S2, S-2S-1, S-1S1, S1S2, S-2S-1S1, S-1S1S2 

W-2P-1, W-1P1, W1P2, P-2W-1, P-1W1, P1W2 

W-2P-1P1, W-1P1P2, P-2W-1P1, P-1W1P2, P-2P-1W1, P-1P1W2 

S-2P-1, S-1P1, S1P2, P-2S-1, P-1S1, P1S2 

S-2P-1P1, S-1P1P2, P-2S-1P1, P-1S1P2, P-2P-1S1, P-1P1S2 

L-2L-1, L-1L1, L1L2, L-2L-1L1, L-1L1L2 

P-2L-2, P-1L-1, P1L1, P2L2, P-2L-2P-1L-1, P-1L-1P1L1, P1L1P2L2 

DB, DE, DB&DE 

After extracting feature instances from the training set 
according to the feature templates, it is also needed to 
filter the features in order to remove noise. There are 
usually two algorithms to select features, CCFS (Count 
Cutoff Feature Selection) and IFS (Incremental Feature 
Selection) [13]. In CCFS algorithm, features which occur 
very sparsely in the training set are considered to be 
statistically unreliable, and should be excluded out of the 
feature set. A threshold (cutoff value) on frequency count 
is set to omit those features. IFS is an iterative algorithm 
which measures the effectiveness of a feature based on its 
contribution to the likelihood. At each iteration, the 
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feature which most increases the likelihood of the 
training data is added into the feature set. Adwait [13] 
pointed out that, IFS algorithm had heavy computation 
complexity, and took much long time to train the model, 
while did not always outperform CCFS algorithm. In this 
paper, CCFS algorithm is applied to feature selection. 

C.  Keyword Selection 
A word is considered as a keyword when its presence 

or absence gives more information than others. There are 
a variety of keyword selection techniques to measure the 
amount of this information in various domains. For 
instance, log-likelihood ratio is used to disambiguate 
word sense [14]. Mutual information and information 
gain, which are both well known as information 
measures, are used in text classification [15]. Cross 
entropy [16] is similar to information gain, with the 
difference that the former ignores the absence of feature. 
Odds ratio is commonly used in information retrieval 
[16]. All 5 keyword scoring measures mentioned above 
are listed in Table III, where P denotes the probability. 
For example, ( )P W  is the probability that word W occurs. 
W  means word W does not occur. B denotes the break 
label, B0 means the target word boundary is not a PP 
break, and B1 is the opposite. Since there are only two 
types of break labels, 0B = B1 and 1B = B0. 

TABLE III.  KEYWORD SCORING MEASURES 
1
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V.  CORPUS ANNOTATION 

A large corpus of 14,314 sentences and around 
196,600 syllables was collected from the “People’s 
Daily”, which had been automatically preprocessed by 
the front end of our Mandarin TTS system, including 
word segmentation and POS tagging. The F-score of 
word segmentation achieved 96.7%, and the precision of 
POS tagging was 92.3%. 

By reading the text transcriptions, PP breaks were 
annotated manually by two experienced annotators. To 
check the consistency of annotation between the two 
annotators, an exploratory experiment was carried out. 
The two annotators were first trained on the same 100 
sentences. At this stage, they were required to discuss the 
annotation criteria so that they could achieve agreement 
on most of the annotations in the 100 sentences. Then, 
they were asked to annotate a small subset of the corpus, 
which included 1,000 sentences. Taking one of the two 
annotators as the reference, the other one as a classifier, 
the F-score of manual annotation is 85.2%, which can be 

considered as the upper limit of the automatic allocation 
of PP breaks. 

This annotated corpus is divided into the training set, 
development set and test set according to an 8:1:1 ratio. 
The score threshold of TBL, the iteration times of ME 
model and the cutoff value are set on the development set. 
CART pruning and keyword selection are implemented 
on the development set too. 

VI.  EVALUATION AND DISCUSSION 

A.  Evaluation Criteria 
The performance of proposed approaches is measured 

by F-score, which is the harmonic mean of precision and 
recall. 

 -
(1 )

P R
F score

P Rα α
×

=
− × + ×

. (3) 

Here, P and R denote precision and recall respectively. α  
is a factor determining the weighting of precision and 
recall. The value of α  = 0.5 has been used in the current 
evaluation for equal weighting of precision and recall. 

Note that the evaluation process only considers PP 
breaks within a sentence, irrespective of the ones at the 
end of the sentence. 

B.  Experiments of Keyword Selection 
Selection of keyword scoring measures: To compare 

the performance of keyword selection methods, 50 
keywords with the highest score are selected as the word 
feature values of CART from the training set, and tested 
on the development set. CART models are trained with 
the basic features listed in Table I. Table IV shows the 
results. 

TABLE IV.  COMPARISON OF KEYWORD SELECTION MEASURES 

Method F-score of CART 
Log-likelihood ratio 74.8% 
Mutual information 71.0% 
Information gain 73.6% 
Cross entropy 74.1% 
Odds ratio 74.6% 

Our Experimental results are generally consistent with 
that of Yang [15] and Mladenic [16]. Mutual information 
has inferior performance compared with the other 
methods due to its bias favoring rare terms. When a word 
occurs rarely in the corpus, it may only occasionally 
appear in the context of a particular type of break labels, 
leading to a very large mutual information value with this 
kind of labels. Hence a number of low-frequency words 
are chosen to be keywords by the mutual information 
measure, but they do not actually have the statistical 
significance. The main reason that information gain 
performs worse than cross entropy is that CART can 
hardly use the templates of word absence whose 
information accounts for a large proportion of 
information gain, so cross entropy which only uses the 
information of word presence is more suitable for CART 
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than information gain. The performance of odds ratio is 
slightly worse than that of log-likelihood ratio which is 
the simplest but also the most effective approach. 

Keyword number setting: Table V compares the 
performance of CART models with different number of 
keywords selected by log-likelihood ratio. The keyword 
number 0 means the CART model without word features, 
whose performance can be taken as the baseline. 

TABLE V.  KEYWORD NUMBER SETTING 

Keyword number F-score of CART 
0 71.2% 
50 74.8% 
100 72.0% 
150 70.3% 

As can be seen from Table V, the CART model with 
50 keywords makes an improvement of 5.1% on F-score 
over the one without word features, which proves the 
effectiveness of the specific word feature once again. 
However, with the increase in the number of keywords, 
the performance of CART decreases rapidly. When the 
number of keywords reaches 150, its F-score is even 
lower than not using word feature. The reason may be the 
increase of number of keywords makes word features 
more and more sparse, coupled with the data 
fragmentation problem in CART training, resulting in the 
performance of CART decreases significantly. Although 
fewer keywords seem to lead to better performance of 
CART, the purpose of keyword selection is to make 
CART can use the word feature. If keywords are too few, 
they will not have a general representation of the word 
feature, so we set the number of keywords 50. 

C.  Cutoff Value Setting 
In order to determine the optimal cutoff value, we 

compare the performance of ME models with various 
cutoff values on the development set. ME models are 
trained with the manual templates listed in Table II. Table 
VI shows the results. The best cutoff value is 2, that is, 
the features appear less than or equal to 2 times in the 
training set are thrown out. 

TABLE VI.  CUTOFF VALUE SETTING 

Cutoff Value F-score of ME 
0 74.6% 
1 74.5% 
2 74.8% 
3 74.6% 
4 74.7% 
5 74.5% 

It is observed that most of the discarded low-frequency 
features are word features. Although these features have a 
strong ability to distinguish between PP break labels, but 
they are not statistically stable enough, and easily lead to 
over-fitting, so it is helpful to delete them for improving 
the overall quality of feature set. However, if the cutoff 
value is set too high, a lot of useful information will be 
lost, thus reducing the performance of ME model. So it is 
necessary to choose a suitable cutoff value. 

D.  Experiments of TBL Template Generation 
As analyzed in Section III.A, CART templates for 

TBL include the error data templates and the train data 
templates. The former is good at error correction, but 
easy to make wrong transformations, while the latter is 
just the opposite. Their performance is compared in Table 
VII, where the basic features listed in Table I are referred 
to as the atom templates, whose performance can be 
taken as the baseline. All the CART templates make 
significant improvement on F-score over the atom 
templates. The error data templates have inferior 
performance compared with the training data templates. 
Combining the two achieves the best F-score. That is 
because it combines the advantages of both two kinds of 
CART templates. 

TABLE VII.  COMPARISON OF CART TEMPLATES IN TBL 

Template type F-score of 
TBL 

Relative 
improvement 

Atom templates 69.6% - 
Training data templates 77.7% 11.6% 
Error data templates 76.4% 9.8% 
Training data templates 
& error data templates 78.4% 12.6% 

Table VIII compares the performance of manual 
templates in TBL with that of CART templates (including 
both the training data templates and the error data 
templates). The F-score of CART templates almost 
reaches the level of manual templates, which proves the 
effectiveness of our CART rules conversion method. 
Combining the two achieves the best performance. 
Therefore, CART templates can be used as good 
substitutes for manual templates, and are still able to 
provide beneficial supplement for manual templates even 
if manual templates have been summarized. 
TABLE VIII.  COMPARISON BETWEEN CART TEMPLATES AND 

MANUAL TEMPLATES IN TBL 

Template type F-score of 
TBL 

Relative 
improvement 

Atom templates 69.6% - 
CART templates 78.4% 12.6% 
Manual templates 78.7% 13.1% 
CART templates & 
manual templates 79.5% 14.2% 

E.  Experiments of ME Template Generation 
Given the good performance of CART templates in 

TBL, we try to apply them to ME model. Since ME 
model does not need to correct error samples, the CART 
templates used by ME model are trained from all the 
training data, that is, the training data templates. Table IX 
compares the performance of training data templates in 
ME model with that of manual templates. 
TABLE IX.  COMPARISON BETWEEN CART TEMPLATES AND MANUAL 

TEMPLATES IN ME MODEL 

Template type F-score of 
TBL 

Relative 
improvement 

Atom templates 75.4% - 
CART templates 76.3% 1.2% 
Manual templates 78.2% 3.7% 
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As can be seen from Table IX, the performance of 
CART templates in ME model is not very good. Its F-
score is only 1.2% higher than that of the atom templates, 
and almost 2.4% lower than that of manual templates. 
The effect of CART templates in ME model is not as 
obvious as in TBL for two reasons. First, all the features 
of ME model are integrated within the exponential 
framework and contribute to the classification together by 
their weight coefficients. However, rules learned by 
CART are independent of each other or even mutually 
exclusive. Like CART, TBL is also a rule learning 
algorithm, and E. Bill [5] has theoretically proved that the 
decision tree algorithm can be regarded as a special case 
of TBL. Therefore, CART templates are suitable for TBL, 
but not for ME model. Second, most of CART templates 
are very complicated, and even consist of more than ten 
basic features sometimes. The feature instances extracted 
from these complicated CART templates will be 
discarded in the feature cutoff due to their low frequency 
of occurrence. In other words, most of CART templates 
don’t actually generate valuable features of ME model. 

The performance of templates automatically generated 
by the feature combination algorithm (hereinafter referred 
to as the “feature combination templates”) and that of 
manual templates are compared in Fig. 3, where the 
horizontal axis gives the number of feature combination 
templates, which increases from 1 to 12, and the vertical 
axis gives the F-score of the ME models trained with the 
feature combination templates. The dashed line indicates 
the F-score of manual templates, which is 78.2%. 
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Figure 3.  Performance of feature combination templates. 

Along with the increase of the feature combination 
templates, the F-score of ME model grows by and large. 
When the number of feature combination templates is 
increased to 8, its F-score reaches the level of 66 manual 
templates. When the number of feature combination 
templates increases to 12, its F-score reaches 80.6%, 
3.1% higher than that of 66 manual templates. It is thus 
clear that the feature combination algorithm is very 
effective. While obviously improving the accuracy of PP 
break prediction, it greatly reduces the number of feature 
templates. 

However, the feature combination algorithm has the 
disadvantage that its convergence time is too long. At 
each iteration, it tries to merge every pair of features in 
order to find the new template which most improves the 
F-score. Therefore, if there are n features in the current 
feature set, to find the best new template of current 
iteration will require 2

nC  times feature combinations and 

2
nC  times ME model training, which will take an 

intolerably long training time. The basic feature set listed 
in Table I contains a total of 18 features. To automatically 
generate 12 feature templates, for example, the times of 
ME model training reaches 2 2 2 2

18 19 29 30C C C C+ + + + = 
3679 times. In order to shorten the convergence time of 
the algorithm, we replace the convergence condition “Fi&j 

max lower than Fcur” with “Fi&j max − Fcur≤ FΔ ”, and take 
the threshold FΔ  as 0.1%. Even so, the iteration ends 
after almost 3 days when 12 feature combination 
templates are generated. 

The good news is that the rewards of long training are 
considerable. Compared with 66 manual templates, 12 
feature combination templates not only obviously 
improve the performance of ME model, but also reduce 
the number of ME features from 116,841 to 24,996, and 
decrease the size of ME model by up to 79.0%, from 
1.02M to 219K, thereby significantly minifying the space 
and memory consumption of the PP break prediction 
module in TTS systems. 

F.  Comparison of Classifiers 
The performance of CART, TBL and ME model are 

compared in Table X, where all the 3 algorithms don’t 
use manual templates. CART models are trained with the 
basic features listed in Table I, TBL rules are learned 
from the CART templates, and ME models are trained 
with the feature combination templates. ME model 
achieves the best performance which is approaching the 
consistency of manual annotation, TBL ranks second, and 
CART is the worst. 

TABLE X.  COMPARISON OF CLASSIFIERS 

Classifier F-score 
CART 74.1% 
TBL 78.4% 
ME 80.6% 
Manual annotation 85.2% 

CART has inferior performance compared with TBL 
due to its serious fragmentation problem. Recursively 
splitting the data set with sparse attributes in CART 
training will generate too small sub-sample sets, thus 
easily leading to model over-fitting. The reason ME 
performs better than TBL is because ME model has a 
good ability of quantitative description. By the weight 
coefficient, ME model can accurately describe the 
contribution of each feature to the classification. Thus all 
the features are integrated effectively within the same 
framework, rather than only several features being simply 
merged together into a rule just as in TBL. 

VII.  CONCLUSION 

In this paper, transformation-based learning (TBL) and 
maximum entropy (ME) model are investigated to predict 
prosodic phrase (PP) breaks. In order to reduce human 
supervision during the training process, we propose two 
approaches of automatic feature templates generation. 
The CART rule conversion approach converts the rules 
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got from leaf nodes of CART into feature templates. The 
excellent performance of CART templates in TBL 
indicates that they can provide good alternatives or 
beneficial supplement to manual templates. Furthermore, 
comparative experiments on TBL template generation 
demonstrate that it is very important to consider the error-
driven characteristic of TBL. The feature combination 
algorithm combines the optimal pairs of features into 
feature templates iteratively. While obviously improving 
the accuracy of PP break prediction, it greatly reduces the 
size of ME model, thus effectively optimizing the model 
size and memory consumption of prosodic phrasing. 

Compared with inter-annotator agreement, the F-score 
of ME model seems to be approaching the up limit of PP 
break prediction based on our corpus. To further increase 
the prediction accuracy needs to improve the consistency 
of manual annotation, which is not so high maybe due to 
lack of corresponding speech. So the next step is to 
record the PP corpus and then proofread the annotation 
according to the speech reference. In addition, this work 
only adopts the objective evaluation criteria. The 
prediction results inconsistent with the annotation are 
considered absolutely wrong. However, there may be 
more than one acceptable phrasing pattern for the same 
sentence. The prediction results inconsistent with the 
annotation may be acceptable in the sense of hearing. 
Therefore, for PP break prediction, the subjective 
evaluation seems to be more reasonable, but much more 
laborious than the objective evaluation. 
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