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Abstract—This work proposes an efficient mining 
algorithm to find maximal frequent item sets from 
relational database. It adapts to large datasets.Itemset is 
stored in list with special structure. The two main lists called 
itemset list and Frequent itemset list are created by 
scanning database once for dividing maximal itemsets into 
two categories depending on whether the itemsets to achieve 
minimum support number. Sub itemsets whose superset is 
in itemset list are generated by recursion to make sure that 
each sub itemsets appeared before its superset. As current 
sub itemsets being joined to frequent itemset list, its sub 
itemsets are pruned from the itemset list. At last, all sub 
itemsets whose nearest superset is in frequent itemset list 
are pruned from the frequent itemset list to hold all 
maximal frequent itemsets.We compare our algorithms and 
FP-Growth by two sets of time-consuming experiments to 
prove the superiority of our efficient algorithm both not 
only with increasing datasets but also with changing 
mini-support. 
 
Index Terms—data mining; relational database; maximal 
frequent item sets 

I.  INTRODUCTION  

Association rules is an important data mining issue for 
describing the existing relationship among data items in 
the database. Association rules can reflect the complex 
and interesting links between the data in the database, 
digging out the useful links between data, for improving 
the practical work of great help. And the frequent item 
sets generation algorithm is the key to determine the 
efficiency of association rules mining.  

Frequent itemset mining is a core data mining 
operation and has been extensively studied over the last 
decade [1]. Algorithms for frequent itemset mining form 
the basis for algorithms for a number of other mining 
problems, including association mining, correlations 
mining, and mining sequential and emerging patterns. 
Algorithms for frequent itemset mining have typically 
been developed for datasets stored in persistent storage 
and involve two or more passes over the dataset [2]. 
Recently, there has been much interest in reducing times 
of scanning and stored memory to improve algorithms. 

Apriori is a seminal algorithm for finding frequent 
itemsets using candidate generation. It is characterized as 

a level-wise complete search algorithm using 
anti-monotonicity of itemsets, “if an itemset is not 
frequent, any of its superset is never frequent”. 

The most outstanding improvement over Apriori 
would be a method called FP-growth (frequent pattern 
growth) that succeeded in eliminating candidate 
generation. And there are several other dimensions 
regarding the extensions of frequent pattern mining such 
as using richer expressions than itemset. The algorithm 
proposed in this paper is based on the itemset set grid 
space theory and inherits the prefix-based search strategy 
of FP-growth. 

Both Apriori and its improved algorithms spend lots of 
time generating candidates or take up large memory 
space to store redundant itemsets. This work describes a 
new algorithm of finding maximal frequent itemset by 
generating subsets instead of candidates. Specifically, our 
algorithm create itemset node from each IS only once and 
insert them in ISL or FISL only generating subset of 
those IS not frequent by travel ISL not scanning database 
again. 

II.  FP-GROWTH ALGORITHMS 

It adopts a divide and conquer strategy by compressing 
the database representing frequent items into a structure 
called FP-tree (frequent pattern tree) that retains all the 
essential information and dividing the compressed 
database into a set of conditional databases, each 
associated with one frequent itemset and mining each one 
separately. It scans the database only twice. In the first 
scan, all the frequent items and their support counts 
(frequencies) are derived and they are sorted in the order 
of descending support count in each record. In the second 
scan, items in each record are merged into a prefix tree 
and items (nodes) that appear in common in different 
records are counted. Each node is associated with an item 
and its count. Nodes with the same label are linked by a 
pointer called node-link. Since items are sorted in the 
descending order of frequency, nodes closer to the root of 
the prefix tree are shared by more records, thus resulting 
in a very compact representation that stores all the 
necessary information. Pattern growth algorithm works 
on FP-tree by choosing an item in the order of increasing 
frequency and extracting frequent itemsets that contain 
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the chosen item by recursively calling itself on the 
conditional FP-tree. FP-growth is an order of magnitude 
faster than the original Apriori algorithm [2]. 

III.  EFFICIENT ALGORITHMS 

This section describes our algorithm for once scanning 
database and time efficient frequent itemset mining. 

We now describe our algorithm for maximal frequent 
itemset mining on relational database. The main 
algorithms description is: 
(Database D) 
global List ISL; 
global List FISL; 
local Sequence IS; 
local SequencePoint ISP; 
ISL=NULL; FISL=NULL; 
foreach (IS∈D) 

     Join(IS); 
 for all ISP of ISL 
     for all sub sequences SIS of ISP->IS 
         Join(SIS); 
 for all ISP in n-level of FISL 
     for all sub sequences SIS of ISP->IS 
         Prune(SIS,FISL); 
Output(FISL); 

END 
And the important subroutines descriptions are: 

Join (Sequence IS) 
 local SequencePoint FISP; 
FISP=Find(IS,FISL,false); 
if (FISP!=NULL) 
    FISP->count++; 
  else 

Insert(IS); 
END 
Make_Fre (SequencePoint ISP) 
 local int i; 
 i=GetLevel(ISP->IS); 
if (ISP->count>=m_support_count) 

     InsertToFISL(ISP); 
     if (i==n) 
         Prune(IS,ISL); 
     else 
       for all i-1 sub sequences SIS of ISP->IS 
           ISP=Find(SIS,ISL,true); 

if (ISP!=NULL) 
Prune(SIS,FISL); 
ISP->count=0; 

END 
Find (Sequence IS, List L, bool ISLOrFISL) 
 local int start_index, FD_index; 
 local List lh; 
 local SequencePoint ISP, FISP; 
start_index=GetStartIndex(IS); 
if (ISLOrFISL) 

     lh=GetLevelHead(IS,ISL);  
ISP=lh->ISP[start_index]; 

     if (ISP==NULL) 
         return ISP; 

       else 
         FD_index=start_index; 
         while (ISP!=NULL) 
             FD_index= 
GetFDIndex(ISP->IS,IS,FD_index); 
             if (FD_index==-1) 
                 return ISP; 
             ISP=ISP->next[FD_index]; 
         return ISP; 
   else 

   lh=GetLevelHead(IS,FISL);  
FISP=lh->ISP[start_index]; 

     if (FISP==NULL) 
         return FISP; 
       else 
         FD_index=start_index; 
         while (FISP!=NULL) 
             FD_index= 
GetFDIndex(FISP->IS,IS,FD_index); 
             if (FD_index==-1) 
                 return FISP; 
             FISP=FISP->fre_next[FD_index]; 
         return FISP; 
END 

We initially introduce some terminology. We are 
mining a database of records D. Each record r in this 
database comprises a sequence of n items. The algorithm 
takes as input a parameter mini-support, i.e. the minimum 
frequency with which an itemset should occur to be 
considered frequent. 

To store and manipulate the sub itemsets during any 
stage of the algorithm, two lists ISL and FISL is 
maintained. 

IV.  STORAGE AND CORE METHODS 

In this section, we discuss the data structure and other 
optimizations used for efficiently implementing our 
algorithm. Particularly, we address the advantages in 
efficient execution of Insert and Delete operations. 

A.   Stored level node and itemsets node 
An efficient data structure is required to maintain the 

itemsets. Frequent itemset mining implementations often 
use a prefix tree for this purpose. However, our algorithm 
requires the ability to delete the itemsets efficiently, 
which is not possible using a prefix tree. An obvious 
alternative is to use a multi-list. Firstly, itemsets of 
different lengths can be placed in sub lists in different 
level and stored there. However, this poses two problems. 
First, the time of finding an itemset can be quite high. 
Second, comparing two itemsets can be time consuming. 
Thus, we need a data structure that is compact, and can 
allow the following operations efficiently: 1) insertion of 
a new itemset 2) deletion of an itemset 3) incrementing 
the count of an itemset 4) traversal of the list. We have 
developed a new data structure, which we refer to as 
PrefixList. 

Essentially, this data structure stores all itemsets using 
two lists. It has the benefit of easy deletion and insertion 
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that a list allows, but it is also time-saving on finding 
itemsets. 

The level node structure was shown as Figure1 and 
itemset node structure was shown as Figure 2. 

 
Figure 1. Level Node Structure 

 
Figure 2. Itemset Node Structure 

They are defined as following: 
typedef struct ItemSeqNode 
{ 
 ItemSequence IS[MAXLEVEL]; 
 int count; 
 struct ItemSeqNode *next[MAXLEVEL];  
 struct ItemSeqNode *fre_next[MAXLEVEL]; 
}*ItemSeqPoint; 
typedef struct level 
{ 
 struct level *down; 
 ItemSeqPoint ISP[MAXLEVEL]; 
}*LevelPoint; 
Mining dates are stored in rational database which is a 

set of tables containing data fitted into predefined 
categories. Each table (which is sometimes called a 
relation) contains one or more data categories in columns. 
Each row contains a unique instance of data for the 
categories defined by the columns. 

By scanning the database, we are a first time for each 
IS to create an ISP and insert it to ISL. When the same IS 
appears to this ISP count is incremented by 1, and if the 
count is reaching to the mini-support count it is pruned 
from ISL at the same time joined to FISL. So in the 
scanning, we depart itemsets to two kinds one not 
frequent joining to itemset list and others to frequent 
itemset list. 

And then travel itemsets list (ISL) in which the 
itemsets are not frequent to generate k-level (i range from 
1 to n) sub itemsets (SIS) from small to large for finding 

frequent ones at the same time prune its k-1 sub itemsets 
from the frequent itemset list. 

At the end of algorithm, all maximal frequent itemsets 
are stored in the FISL to output. 

B.   Core methods 
Two key operations in implementing our algorithm are 

inserting itemsets that occur frequently into FISL and 
deleting ones that do not occur frequently. 

 Insert operations are divided into two steps: location 
and connection. Location through 2-3 steps to achieve the 
results divided into three kinds. First, locate to level node 
through the number of items in the sequences as ‘lh’. 
Then, locate to the head node of sub list by getting index 
of item ‘lh->ISP[start_index]’. Last, if needed locate to 
the insert position of list. In these steps, search results can 
be described as the following three kinds of situations: 1) 
not find the same or similar itemset 2) find the similar 
itemset with which it was different start at index i 3) find 
the same itemset. According to different location result, 
connection of current itemset point and list happens in the 
former two situations. For the first situation it would be 
the head point of the sub list and for the second one it 
would be the ith next point of the last similar itemset. 

We also do not remove the infrequent itemset every 
time. Subsequence routine is invoked. The deletion 
happens in the following three ways. First, when we 
insert an existed n-itemset whose count reaching to 
mini-support count to FISL, it will be removed from ISL. 
Secondly, after each k-sub itemset generated we remove 
all frequent (k-1)-sub itemsets of it in the FISL by 
examining the k-1 level sub list. Finally, when the 
traversal of ISL is finished, frequent sub itemsets whose 
n-superset is frequent are removed. 

V.  EXPERIMENTAL RESULTS 

We use two sets of experiments to compare our 
algorithm with FP-Growth in time performance. The first 
set of experiments fixed the minimum support to compare 
efficiency by the number of itemsets range from 200 
to2000, and the second set of experiments fixed the 
number of itemsets to make comparison in different 
minimum support. 

Data source is mushroom dataset. In the two sets of 
experiments we select the former 6 attributes of each 
record as itemsets. 

Figure 3 to 6 shows the experimental results that 
compare the execution time with increasing dataset size. 
For comparing our algorithm against the fp-tree based 
algorithm, the mini-support range from 0.2 to 0.02, we 
can see that algorithm in time-efficient were significantly 
increased with FP-growth in variety mini-support, and as 
the data sets increases, the execution time of algorithm 
varying more steady than FP-growth. 

 Figure 3 shows that when the minimum support 
degree to take 0.2, execution time has been better than the 
FP-growth. As the number of itemsets increase, the 
FP-growth execution time is growing, while the 
MFISS-FP remaining at around 10ms. In Figure 4, the 
minimum support is taken to be 0.1, as the itemsets 
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number increasing, the implementation cost of FP-growth 
significantly rises, while the able to maintain stable and 
far superior to FP-growth. As shown in Figure 5, as the 
itemsets number increases in the minimum support of 
0.05, the implementation cost of FP-growth is almost 
linear growth, but is always less than and next to 15ms. 
In Figure 6 the minimum support degree taking to 0.02, 
we can see as the FP-growth implementation cost more 
and more time up to 125ms with increasing itemsets, at 
the same situation the can still remain the implementation 
cost at less than 15ms. Comparing Figure 3, 4, 5 and 6 we 
can sum up, as the minimum support degree between 0.02 
and 0.2, the execution time of can be always maintained 
at less than 16ms, and ensure its stability to avoid 
obvious growth with the increasing number of itemsets; 
and the implementation cost of FP-growth is almost 
linear growth as the number of itemsets increasing, and 
the execution time up to 125ms when the itemsets 
number get to 2000. By contrast can be drawn, with 
changing minimum support, performance is far superior 
to FP-growth, and has a very high stability. 

Figure 7 to 10 shows the experimental results that 
compare the execution time with changing mini-support. 
In this set of experiment, data sets were selected 8K, 4K, 
2K and 1K from which we find that algorithm is more 
time-efficiency than FP-growth especially as mining 

large number of instances. This is because our algorithms 
have better stability. 

As shown in Figure 7, in the experiment with size of 
8k data set, and FP-growth has been stability in the 
implementation cost, but with the changing minimum 
support degree, implement to cost stably around 60ms, 
however the FP-growth has the execution time between 
390ms-440ms. Figure 8 shows the comparison of against 
FP-growth in time consuming under the experimental 
data sets of size 4k, it can be seen the minimum support 
ranging from 0.2 to 0.05, the implementation cost of 
FP-growth has continued growth while remaining stable 
as the mini-support between 0.05 to 0.01. can maintain its 
execution time around 26ms in different level of 
mini-support. In the Figure 9 experimental data set size of 
2k, with changing support, the implementation cost of 
FP-growth presents a growing state, while nearly hold 
about 15ms. Figure 10 describes the experimental results 
with 1k size of experimental data set, from which we can 
see that as minimum support changing, FP-growth keep 
its execution time about 63ms, but the maximum time of 
is 12.4ms when the minimum support being 0.1. Through 
the comparison of these four figures can be seen in 
different data set size have been markedly better than the 
FP-growth. 
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Figure 3. Execution Time with Increasing Dataset Size 

(mini-support=0.2) 
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Figure 4. Execution Time with Increasing Dataset Size 

(mini-support=0.1) 
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Figure 5. Execution Time with Increasing Dataset Size 

(mini-support=0.05) 
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Figure 6. Execution Time with Increasing Dataset Size 

(mini-support=0.02) 
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Figure 7. Execution Time with Changing Mini-support (8K Dataset) 
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Figure 8. Execution Time with Changing Mini-support (4K Dataset) 
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Figure 9. Execution Time with Changing Mini-support (2K Dataset) 
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Figure 10. Execution Time with Changing Mini-support (1K Dataset)

VI.  CONCLUSIONS 

In this paper, one of the most important ideas to 
improve the speed of algorithm is to use a new data 
structure adapting to maximal frequent itemsets mining. 
And by using recursion to generate sub itemsets 
determine whether the current itemset is maximal 
frequent itemsets. We inherited the Join and Prune 
strategy of ISS-DM to create a new algorithm based on 
our own data structure. In addition, the searching speed 
was greatly increased by using prefix-list evolved from 
FP-growth. At last, we prove the superiority of our own 
new algorithm by comparing with FP-Growth through 
two sets of experiments on time-consuming.  
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