
Efficient Mining Algorithms of Finding Frequent
Datasets

Lijuan Zhou

Department of Information Engineering College, Capital Normal University, Beijing, China
Zlj87@tom.com

Zhang Zhang

Department of Information Engineering College, Capital Normal University, Beijing, China
sherrytangtang@gmail.com

Abstract—This work proposes an efficient mining
algorithm to find maximal frequent item sets from
relational database. It adapts to large datasets.Itemset is
stored in list with special structure. The two main lists called
itemset list and Frequent itemset list are created by
scanning database once for dividing maximal itemsets into
two categories depending on whether the itemsets to achieve
minimum support number. Sub itemsets whose superset is
in itemset list are generated by recursion to make sure that
each sub itemsets appeared before its superset. As current
sub itemsets being joined to frequent itemset list, its sub
itemsets are pruned from the itemset list. At last, all sub
itemsets whose nearest superset is in frequent itemset list
are pruned from the frequent itemset list to hold all
maximal frequent itemsets.We compare our algorithms and
FP-Growth by two sets of time-consuming experiments to
prove the superiority of our efficient algorithm both not
only with increasing datasets but also with changing
mini-support.

Index Terms—data mining; relational database; maximal
frequent item sets

I. INTRODUCTION

Association rules is an important data mining issue for
describing the existing relationship among data items in
the database. Association rules can reflect the complex
and interesting links between the data in the database,
digging out the useful links between data, for improving
the practical work of great help. And the frequent item
sets generation algorithm is the key to determine the
efficiency of association rules mining.

Frequent itemset mining is a core data mining
operation and has been extensively studied over the last
decade [1]. Algorithms for frequent itemset mining form
the basis for algorithms for a number of other mining
problems, including association mining, correlations
mining, and mining sequential and emerging patterns.
Algorithms for frequent itemset mining have typically
been developed for datasets stored in persistent storage
and involve two or more passes over the dataset [2].
Recently, there has been much interest in reducing times
of scanning and stored memory to improve algorithms.

Apriori is a seminal algorithm for finding frequent
itemsets using candidate generation. It is characterized as

a level-wise complete search algorithm using
anti-monotonicity of itemsets, “if an itemset is not
frequent, any of its superset is never frequent”.

The most outstanding improvement over Apriori
would be a method called FP-growth (frequent pattern
growth) that succeeded in eliminating candidate
generation. And there are several other dimensions
regarding the extensions of frequent pattern mining such
as using richer expressions than itemset. The algorithm
proposed in this paper is based on the itemset set grid
space theory and inherits the prefix-based search strategy
of FP-growth.

Both Apriori and its improved algorithms spend lots of
time generating candidates or take up large memory
space to store redundant itemsets. This work describes a
new algorithm of finding maximal frequent itemset by
generating subsets instead of candidates. Specifically, our
algorithm create itemset node from each IS only once and
insert them in ISL or FISL only generating subset of
those IS not frequent by travel ISL not scanning database
again.

II. FP-GROWTH ALGORITHMS

It adopts a divide and conquer strategy by compressing
the database representing frequent items into a structure
called FP-tree (frequent pattern tree) that retains all the
essential information and dividing the compressed
database into a set of conditional databases, each
associated with one frequent itemset and mining each one
separately. It scans the database only twice. In the first
scan, all the frequent items and their support counts
(frequencies) are derived and they are sorted in the order
of descending support count in each record. In the second
scan, items in each record are merged into a prefix tree
and items (nodes) that appear in common in different
records are counted. Each node is associated with an item
and its count. Nodes with the same label are linked by a
pointer called node-link. Since items are sorted in the
descending order of frequency, nodes closer to the root of
the prefix tree are shared by more records, thus resulting
in a very compact representation that stores all the
necessary information. Pattern growth algorithm works
on FP-tree by choosing an item in the order of increasing
frequency and extracting frequent itemsets that contain

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 727

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.4.727-732

the chosen item by recursively calling itself on the
conditional FP-tree. FP-growth is an order of magnitude
faster than the original Apriori algorithm [2].

III. EFFICIENT ALGORITHMS

This section describes our algorithm for once scanning
database and time efficient frequent itemset mining.

We now describe our algorithm for maximal frequent
itemset mining on relational database. The main
algorithms description is:
(Database D)
global List ISL;
global List FISL;
local Sequence IS;
local SequencePoint ISP;
ISL=NULL; FISL=NULL;
foreach (IS∈D)

 Join(IS);
 for all ISP of ISL
 for all sub sequences SIS of ISP->IS
 Join(SIS);
 for all ISP in n-level of FISL
 for all sub sequences SIS of ISP->IS
 Prune(SIS,FISL);
Output(FISL);

END
And the important subroutines descriptions are:

Join (Sequence IS)
 local SequencePoint FISP;
FISP=Find(IS,FISL,false);
if (FISP!=NULL)
 FISP->count++;
 else

Insert(IS);
END
Make_Fre (SequencePoint ISP)
 local int i;
 i=GetLevel(ISP->IS);
if (ISP->count>=m_support_count)

 InsertToFISL(ISP);
 if (i==n)
 Prune(IS,ISL);
 else
 for all i-1 sub sequences SIS of ISP->IS
 ISP=Find(SIS,ISL,true);

if (ISP!=NULL)
Prune(SIS,FISL);
ISP->count=0;

END
Find (Sequence IS, List L, bool ISLOrFISL)
 local int start_index, FD_index;
 local List lh;
 local SequencePoint ISP, FISP;
start_index=GetStartIndex(IS);
if (ISLOrFISL)

 lh=GetLevelHead(IS,ISL);
ISP=lh->ISP[start_index];

 if (ISP==NULL)
 return ISP;

 else
 FD_index=start_index;
 while (ISP!=NULL)
 FD_index=
GetFDIndex(ISP->IS,IS,FD_index);
 if (FD_index==-1)
 return ISP;
 ISP=ISP->next[FD_index];
 return ISP;
 else

 lh=GetLevelHead(IS,FISL);
FISP=lh->ISP[start_index];

 if (FISP==NULL)
 return FISP;
 else
 FD_index=start_index;
 while (FISP!=NULL)
 FD_index=
GetFDIndex(FISP->IS,IS,FD_index);
 if (FD_index==-1)
 return FISP;
 FISP=FISP->fre_next[FD_index];
 return FISP;
END

We initially introduce some terminology. We are
mining a database of records D. Each record r in this
database comprises a sequence of n items. The algorithm
takes as input a parameter mini-support, i.e. the minimum
frequency with which an itemset should occur to be
considered frequent.

To store and manipulate the sub itemsets during any
stage of the algorithm, two lists ISL and FISL is
maintained.

IV. STORAGE AND CORE METHODS

In this section, we discuss the data structure and other
optimizations used for efficiently implementing our
algorithm. Particularly, we address the advantages in
efficient execution of Insert and Delete operations.

A. Stored level node and itemsets node
An efficient data structure is required to maintain the

itemsets. Frequent itemset mining implementations often
use a prefix tree for this purpose. However, our algorithm
requires the ability to delete the itemsets efficiently,
which is not possible using a prefix tree. An obvious
alternative is to use a multi-list. Firstly, itemsets of
different lengths can be placed in sub lists in different
level and stored there. However, this poses two problems.
First, the time of finding an itemset can be quite high.
Second, comparing two itemsets can be time consuming.
Thus, we need a data structure that is compact, and can
allow the following operations efficiently: 1) insertion of
a new itemset 2) deletion of an itemset 3) incrementing
the count of an itemset 4) traversal of the list. We have
developed a new data structure, which we refer to as
PrefixList.

Essentially, this data structure stores all itemsets using
two lists. It has the benefit of easy deletion and insertion

728 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

that a list allows, but it is also time-saving on finding
itemsets.

The level node structure was shown as Figure1 and
itemset node structure was shown as Figure 2.

Figure 1. Level Node Structure

Figure 2. Itemset Node Structure

They are defined as following:
typedef struct ItemSeqNode
{
 ItemSequence IS[MAXLEVEL];
 int count;
 struct ItemSeqNode *next[MAXLEVEL];
 struct ItemSeqNode *fre_next[MAXLEVEL];
}*ItemSeqPoint;
typedef struct level
{
 struct level *down;
 ItemSeqPoint ISP[MAXLEVEL];
}*LevelPoint;
Mining dates are stored in rational database which is a

set of tables containing data fitted into predefined
categories. Each table (which is sometimes called a
relation) contains one or more data categories in columns.
Each row contains a unique instance of data for the
categories defined by the columns.

By scanning the database, we are a first time for each
IS to create an ISP and insert it to ISL. When the same IS
appears to this ISP count is incremented by 1, and if the
count is reaching to the mini-support count it is pruned
from ISL at the same time joined to FISL. So in the
scanning, we depart itemsets to two kinds one not
frequent joining to itemset list and others to frequent
itemset list.

And then travel itemsets list (ISL) in which the
itemsets are not frequent to generate k-level (i range from
1 to n) sub itemsets (SIS) from small to large for finding

frequent ones at the same time prune its k-1 sub itemsets
from the frequent itemset list.

At the end of algorithm, all maximal frequent itemsets
are stored in the FISL to output.

B. Core methods
Two key operations in implementing our algorithm are

inserting itemsets that occur frequently into FISL and
deleting ones that do not occur frequently.

 Insert operations are divided into two steps: location
and connection. Location through 2-3 steps to achieve the
results divided into three kinds. First, locate to level node
through the number of items in the sequences as ‘lh’.
Then, locate to the head node of sub list by getting index
of item ‘lh->ISP[start_index]’. Last, if needed locate to
the insert position of list. In these steps, search results can
be described as the following three kinds of situations: 1)
not find the same or similar itemset 2) find the similar
itemset with which it was different start at index i 3) find
the same itemset. According to different location result,
connection of current itemset point and list happens in the
former two situations. For the first situation it would be
the head point of the sub list and for the second one it
would be the ith next point of the last similar itemset.

We also do not remove the infrequent itemset every
time. Subsequence routine is invoked. The deletion
happens in the following three ways. First, when we
insert an existed n-itemset whose count reaching to
mini-support count to FISL, it will be removed from ISL.
Secondly, after each k-sub itemset generated we remove
all frequent (k-1)-sub itemsets of it in the FISL by
examining the k-1 level sub list. Finally, when the
traversal of ISL is finished, frequent sub itemsets whose
n-superset is frequent are removed.

V. EXPERIMENTAL RESULTS

We use two sets of experiments to compare our
algorithm with FP-Growth in time performance. The first
set of experiments fixed the minimum support to compare
efficiency by the number of itemsets range from 200
to2000, and the second set of experiments fixed the
number of itemsets to make comparison in different
minimum support.

Data source is mushroom dataset. In the two sets of
experiments we select the former 6 attributes of each
record as itemsets.

Figure 3 to 6 shows the experimental results that
compare the execution time with increasing dataset size.
For comparing our algorithm against the fp-tree based
algorithm, the mini-support range from 0.2 to 0.02, we
can see that algorithm in time-efficient were significantly
increased with FP-growth in variety mini-support, and as
the data sets increases, the execution time of algorithm
varying more steady than FP-growth.

 Figure 3 shows that when the minimum support
degree to take 0.2, execution time has been better than the
FP-growth. As the number of itemsets increase, the
FP-growth execution time is growing, while the
MFISS-FP remaining at around 10ms. In Figure 4, the
minimum support is taken to be 0.1, as the itemsets

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 729

© 2012 ACADEMY PUBLISHER

number increasing, the implementation cost of FP-growth
significantly rises, while the able to maintain stable and
far superior to FP-growth. As shown in Figure 5, as the
itemsets number increases in the minimum support of
0.05, the implementation cost of FP-growth is almost
linear growth, but is always less than and next to 15ms.
In Figure 6 the minimum support degree taking to 0.02,
we can see as the FP-growth implementation cost more
and more time up to 125ms with increasing itemsets, at
the same situation the can still remain the implementation
cost at less than 15ms. Comparing Figure 3, 4, 5 and 6 we
can sum up, as the minimum support degree between 0.02
and 0.2, the execution time of can be always maintained
at less than 16ms, and ensure its stability to avoid
obvious growth with the increasing number of itemsets;
and the implementation cost of FP-growth is almost
linear growth as the number of itemsets increasing, and
the execution time up to 125ms when the itemsets
number get to 2000. By contrast can be drawn, with
changing minimum support, performance is far superior
to FP-growth, and has a very high stability.

Figure 7 to 10 shows the experimental results that
compare the execution time with changing mini-support.
In this set of experiment, data sets were selected 8K, 4K,
2K and 1K from which we find that algorithm is more
time-efficiency than FP-growth especially as mining

large number of instances. This is because our algorithms
have better stability.

As shown in Figure 7, in the experiment with size of
8k data set, and FP-growth has been stability in the
implementation cost, but with the changing minimum
support degree, implement to cost stably around 60ms,
however the FP-growth has the execution time between
390ms-440ms. Figure 8 shows the comparison of against
FP-growth in time consuming under the experimental
data sets of size 4k, it can be seen the minimum support
ranging from 0.2 to 0.05, the implementation cost of
FP-growth has continued growth while remaining stable
as the mini-support between 0.05 to 0.01. can maintain its
execution time around 26ms in different level of
mini-support. In the Figure 9 experimental data set size of
2k, with changing support, the implementation cost of
FP-growth presents a growing state, while nearly hold
about 15ms. Figure 10 describes the experimental results
with 1k size of experimental data set, from which we can
see that as minimum support changing, FP-growth keep
its execution time about 63ms, but the maximum time of
is 12.4ms when the minimum support being 0.1. Through
the comparison of these four figures can be seen in
different data set size have been markedly better than the
FP-growth.

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of itemsets

Ti
me

(m
s)

FP-Growth

MFISS-FG

Figure 3. Execution Time with Increasing Dataset Size

(mini-support=0.2)

0

10

20

30

40

50

60

70

80

90

100

110

120

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of itemsets

Ti
me

(m
s)

FP-Growth

MFISS-FG

Figure 4. Execution Time with Increasing Dataset Size

(mini-support=0.1)

0

10

20

30

40

50

60

70

80

90

100

110

120

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of itemsets

T
im

e(
ms

)

FP-Growth

MFISS-FG

Figure 5. Execution Time with Increasing Dataset Size

(mini-support=0.05)

0

10

20

30

40

50

60

70

80

90

100

110

120

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of itemsets

T
im

e
(m

s)

FP-Growth
MFISS-FG

Figure 6. Execution Time with Increasing Dataset Size

(mini-support=0.02)

730 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

0

50

100

150

200

250

300

350

400

450

500

20 10 5 2 1

minimum support(%)

Ti
m
e(

m
s
)

FP-
Growth

Figure 7. Execution Time with Changing Mini-support (8K Dataset)

0

20

40

60

80

100

120

140

160

180

200

220

240

20 10 5 2 1

minimum support(%)

Ti
me

(m
s) FP-Growth

MFISS-FG

Figure 8. Execution Time with Changing Mini-support (4K Dataset)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

20 10 5 2 1

minimum support(%)

T
im

e
(m

s)

FP-Growth
MFISS-FG

Figure 9. Execution Time with Changing Mini-support (2K Dataset)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

20 10 5 2 1

minimum support(%)

Ti
me

(m
s) FP-Growth

MFISS-FG

Figure 10. Execution Time with Changing Mini-support (1K Dataset)

VI. CONCLUSIONS

In this paper, one of the most important ideas to
improve the speed of algorithm is to use a new data
structure adapting to maximal frequent itemsets mining.
And by using recursion to generate sub itemsets
determine whether the current itemset is maximal
frequent itemsets. We inherited the Join and Prune
strategy of ISS-DM to create a new algorithm based on
our own data structure. In addition, the searching speed
was greatly increased by using prefix-list evolved from
FP-growth. At last, we prove the superiority of our own
new algorithm by comparing with FP-Growth through
two sets of experiments on time-consuming.

ACKNOWLEDGEMENTS

This research was supported by China National Key
Technology R&D Program (2009BADA9B02),

This research was supported by Beijing Nature Science
Foundation (4092011) ，

This research was supported by Beijing Educational
Committee science and technology development plan
project(KM200810028016),

This research was supported by the Open Project
Program of Key Laboratory of Digital Agricultural

Early-warning Technology ， Ministry of Agriculture,
Beijing, 100037.

REFERENCES
[1] Jin R, Agrawal G. An algorithm for in-core frequent

itemset mining on streaming data. In Proceeding of the
2005 international conference on data mining (ICDM’05),
Houston, 2005, TX, pp 210–217.

[2] Wu Xindong, Vipin Kumar, J. Ross Quinlan, Joydeep
Ghosh, Yang Qiang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus Ng, Liu Bing, Philip S. Yu, Zhou
Zhihua, Michael Steinbach, David J. Hand, Dan
Steinberg. “Top 10 algorithms in data mining”, Knowl Inf
Syst (2008) 14:1–37.

[3] Agrawal Ret al. Fast algorithms for mining association
rules. In: Proc the 20th International Conference on Very
Large Data Bases. Santiago de Chile, 1994. 478-499.

[4] Nicolas Pasquieret al. Efficient mining if association rules
using closed itermset lattices. Information Systems, 1999,
24(1):25-46.

[5] Agrawal Ret al. Mining association rule between sets of
items in large database. In: Proc the ACM SIGMOD
International Conference on Management of Data,
Washington, 1993. 207-216.

[6] Cheung Det al. Efficient mining of association rules in
distribut-ed databases. IEEE Trans Knowledge and Data
Engineering, 1996,8(6):911-922.

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 731

© 2012 ACADEMY PUBLISHER

[7] Chen M Set al. Data mining:An overview from a database
per-spective. IEEE Trans Knowledge and Data
Engineering, 1996, 8(6):866-883.

[8] Han J W, Yin Y W. Mining frequent patterns without
candidate generation. In: Proc SIGMOD Conference,
2000, 1-12.

[9] Cheng J Het al. Multi-strategy approach to mining
interesting rules. Chinese Journal of Computers, 2000,
23(1): 47-51(in Chinese).

[10] Zhu Jiaxian. “A Mining Algorithm of Association Rule
Based on Linked List”. Journal of Shaoxing University,
2004, 8(24):19-22, 59.

[11] Bao Zhengyi, Wang Zhoujing. “MLCI Algorithm for
Mining Lower Closed Itemsets”, Computing Technology
and Automation, 2005.12,4(24):73-76.

[12] Yang Qiang, Wu Xindong. “10 Challenging Problems in
Data Mining Research”, International Journal of
Information Technology & Decision Making, 2006,
4(5):597-604.

[13] Han Wang, Lingfu Kong, "A Constrained Maximum
Frequent Itemsets Incremental Mining Algorithm",
Network and Parallel Computing Workshops, IFIP
International Conference on, pp. 743-747, 2007 IFIP
International Conference on Network and Parallel
Computing Workshops (NPC 2007), 2007.

[14] Mao Guojun, Liu Chunnian. Mining of Association Rules
Based on the Operators of Set of Itemsets, Chinese
Journal of Computers, 2002, 25(4): 417-422(in Chinese).

[15] Wang Xianjun, Song Jingjing, Jiang Baoqing. Mining
frequent closed itemsets in unidirectional FP-tree.
Computer Engineering and Applications, 2008, 44(10):
150- 153(in Chinese).

732 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

