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Abstract—This paper introduces multifractal theory into the 
research of chaotic channels, and a novel model of chaotic 
channel is established from nonlinear science standpoint. By 
studying the relationship between multifractal dimensions 
and work environments, increments probability distribution, 
and statistical self-similarity of low power line 
communication (L-PLC) channel which is a typical chaotic 
channel, we find that multifractal dimensions are key 
parameters for describing the chaotic channel, and reveal 
the inherent relationship between the chaotic channel and 
Fractional Brownian Motion (FBM) model. Finally, the 
multifractal model of chaotic channel based on FBM theory 
is established and applied to reconstructing received signals 
accurately. 
 
Index Terms—multifractal, chaos, modeling, Fractional 
Brownian Motion  

I.  INTRODUCTION 

 Due to frequency attenuation, noise interference, 
multipath interference, etc, communication channels 
usually show time-varying, and randomness. It is difficult 
to analyze communication channels quantitatively and 
model the channels effectively.  Reference [1] analyze 
low power line channel and channel modeling. But it 
discusses five kinds of noises models respectively. In fact, 
these noises act on channel together. Only a general 
analysis of these elements will describe channel 
characteristics synthetically. Reference [2] presents a 
multipath model for multipath channel, which uses linear 
method to imitate the complex channel. And the method 
can only describe the channel within specific limits. 
Actually, communication channels show not only 
unstable, but also inherent regularity. The phenomenon is 
similar with definition of chaos. As a matter of fact, many 
researches indicate that chaos are common in 
communication channels, such as low voltage power line 
communication (L-PLC) channel, multipath channel, 
wireless channel, etc [3-11]. Chaos is subject associated 
with the discipline of nonlinear dynamics: the study of 
systems that respond disproportionately to stimuli. It is in 
accord with research of fractal. A fractal consists of 
geometric fragments of varying size and orientation but 
similar shape. Fractal structures are often the remnants of 

chaotic nonlinear dynamics. Wherever a chaotic process 
has shaped an attractor, fractals are likely to be the 
attractor trajectories [12]. For the tight relationship 
between chaos and fractal, multifractal theory is 
introduced into the study of chaotic channels. 

We take L-PLC channel for example to research. 
Reference [3] has verified L-PLC channel is the result 
evolved by nonlinear chaotic system. In other words, L-
PLC channel is a typical chaotic channel. In this paper, a 
novel model of chaotic channel is established, based on 
Fractional Brownian Motion (FBM) model. By statistical 
analysis of observed L-PLC signal, we research 
multifractal characteristics, increments probability 
distribution, and statistical self-similarity of L-PLC 
channel. Then we discuss the relationship between 
multifractal dimensions and work environments, and 
reveal the inherent relationship between the chaotic 
channel and FBM model. At last the multifractal model 
of chaotic channel is established with multifractal 
parameters calculated and applied to reconstructing 
received signals accurately. 

II.  MULTIFRACTAL DIMENSIONS 

Geometrical properties of natural structure are the 
main areas of research for fractal theory which describes 
nonlinear dynamics mechanism of natural structure with a 
serial of fractal parameters. Scale invariability is the most 
important characteristic of fractal theory, which means 
that there are similar properties among various scales. 
Fractal theory already has been applied to expressing 
perplexing figures and processes [13-15]. However, 
monofractal dimension is only a unitary and average 
description of investigated subject, which is unable to 
reflect comprehensive and subtle information of different 
fractal structures caused by diverse areas, levels and local 
conditions. In this way, monofractal theory can not reveal 
the dynamic process of fractal structure. Therefore, 
concept of multifractal was proposed recently.  

Multifractal is an infinite set composed of singular 
measure of diverse scaling exponents, such as generalized 
fractal dimension, generalized Hurst parameter, and 
multi-fractal spectrum, etc. It depicts local scaling 
property of different distributions. Multifractal theory is, 
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as it were, popularization of simple fractal dimension. 
Multifractal dimensions can be used to describe the space 
probability distribution of geometrical graphs or physical 
parameters and express the complexity of investigated 
subject [16-18]. Larger dimension means subject is more 
complicated. They can give more information than 
monofractal dimension. Actually, simple fractal 
dimension is only a point in multi-fractal spectrum. Due 
to all of these merits, multifractal is often applied to 
describing distribution properties of physical parameters 
with self-similarity characteristic. Moreover, multifractal 
supplies an effective mathematical model which 
describes local singular properties and complicated local 
structure of signals. 

Definition of multifractal is as follows. 
Consider a unit interval with unit mass. Separate the 

interval into N subintervals. The length of each 
subinterval isδ , and weight of the k th subinterval is kμ . 
In this way, { , 1}k kμ ≥ stands for a random process. 
Define 0( )tα  as a singular exponent of kμ at 0t , 
and 0( )tα can be expressed as 

                        
..0 ..

0

lg( )
( ) lim
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k
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μα
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≡                           (1) 

Where kμ  is the weight of subinterval at 0t . If above-
mentioned limitation is not existed, then the singular 
exponent can not be defined. If series singular exponent 

( )tα  of { , 1}k kμ ≥ varies as t changes, then it can be said 
that series { , 1}k kμ ≥  has multifractal property. 

For received L-PLC signal, firstly, divide the signal 
into N voltage amplitude sets. Then the received signal is 
expressed as {( , ( )) : , 1, 2,... }iV v f v v i N= ∈ Δ = where v  
is voltage amplitude of received signal, and iΔ  is 
amplitude section of the i th point of received signal, and 

( )f v  is the probability of signal point fallen into iΔ . 
Secondly, suppose if i th subinterval calibration is r , 

and the number of amplitudes of received signal fallen 
into this subinterval is ( )iN r  during observation, then the 
multifractal dimension can be expressed as  

               (2) 
Where ( ) ( ) / ( )i i j

j
v r N r N r= ∑ , and q  is probability 

weighing exponent. As q is varied, different amplitude 
distribution of signal will determine qD . D+∞  corresponds 
to the region where the points are mostly concentrated, 
while D−∞  is determined by the region where the points 
have the least probability to be found. 0D  has nothing to 
do with the probability ( )iv r . Therefore, through process 

of weighing a complicated subject is separated into 
several regions with different singularity degrees. 

If qD  and r satisfy simple logarithm straight 
relationship with fixed  q  and various r , it can be said 
that the signal has property of multifractal. 

In L-PLC chaotic channel, influences caused by 
different environments are distinct. Moreover, the 
influences will affect the amplitude distribution of 
received signal. Suppose if qDr  is calibration of points 
fallen into one amplitude set, then qD  is the number of 
these points during a limited period of time. Multifractal 
analysis of chaotic L-PLC signal can reveal evolutionary 
processes that signal experiences complicated nonlinear 
affection, such as frequency attenuation, noise 
interference, and multipath interference, etc. In this way, 
analysis of multifractal can depict the substantive 
characteristics of L-PLC signal. Actually, multifractal 
dimension spectrum ~qD q  includes all dimensions 
involved fractal theory. For instance, 0D  is known as the 
capacity dimension, 1D as the information dimension, 2D  
as the correlation dimension. Therefore, an appropriate 

( | 1)qD q q ≥  can depict amplitude distribution and 
change of signal comprehensively and accurately. 

III.  MULTIFRACTAL ANALYSIS 

A. Signal sample  
Real-time measuring equipment of L-PLC signal is as Fig. 
1. Surveying spot is laboratory building of Hebei 
University. And the loads are mainly computers and 
precise instruments. In Fig. 1 the generator emits sine 
wave of 200kHz with peak-to-peak value 20V. The 
number of measured data is 2400 each time.  
 

Signal generator Line coupler

Line couplerOscillograph

L-PLC

~

 
Figure 1.  The real-time measuring equipment 

B. Calculation & analysis of fractal channel parameter 
Real-time measuring data mentioned above are 

adopted in this paper. We calculate multifractal 
dimensions of data by using correlation integral 
algorithm. The algorithm is defined as follows. 
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At one amplitude point jx , local density function is 
defined as  

               
( | |)

( ) k j
j

k j

r x x
p r

m
θ

≠

− −
=∑                    (3) 

Where m is the number of measured points, ( )xθ is 
the Heaviside step function defined as  

 

                         (4) 
With the generalized correlation function ( )qC r given 

by 

            (5) 
According to (2), qD  is supposed to satisfy under 

equation 

             1/ ( 1)
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Based on above equations, qD is the slope of each 
point in ( )qC r vs. r log-log plot. And the slope can be 
calculated by the least squares fitting. 

Fig. 2 and Fig. 3 show multifractal dimensions of 
signal for different cases. Fig. 2 shows multifractal 
dimensions qD  vs. q  for signal with and without load. 
Fig. 3 shows multifractal dimensions qD  vs. q  or signals 
with different duration.  

Fig. 2 reveals that there are great distinct between 
two curves. It is apparent that dimension with load is 
larger than without load. That is because original signal 
becomes more complex after added load. And it causes 
original amplitude distribution more asymmetrical, so 
larger dimension is needed to describe the more complex 
signal. 

And then the shapes of these two curves are 
different. Curve 1 is convex, and curve 2 is concave. That 
means when q is small, qD is easily influenced by applied 
load. In other words, distribution of region with few 
points is easily influenced by applied load. And 
distributions of sets with lots of points are more stable. 

Fig. 2 and Fig. 3 show that diverse signal propagation 
environment lead to different distribution in each 
amplitude set. And variational singularity intensity of 
amplitude sets will effect change of qD . This is to say that 

qD  will be varied as the number of points distributed in 
each set changes. Therefore, qD reveals how propagation 
environments influence the intensity of received signal. 
In short, different environments show different 
propagation properties. And transmitted signals in 
different environments show various distributions of 
voltage amplitude sets. In this way multifractal 

dimensions of L-PLC signal are different in diverse 
conditions of propagation. And for the same channel 
propagation environment dimension remains 
fundamentally unchanged. This is because the same 
inherent characteristics of attenuation and multipath will 
cause similar distribution of amplitude sets.  

 

 
Figure 2.  Multifractal dimensions qD vs. q for  signal with and 

without load 

 
Figure 3.  Multifractal dimensions qD vs. q for  signal of different 

duration 

For above-mentioned reasons multifractal 
dimensions can be used as primary parameter for 
describing chaotic channel characteristics and modeling 
the channel. 

IV.  FRACTIONAL BROWNIAN MOTION 

Generally speaking, subjects mostly have complex 
details in microscopic size. Due to the limitation of 
measurement technology, investigated subject only can be 
observed and studied in comparatively large scale. 
Methods of linear interpolation and spline fit are often 
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used to estimate smaller scale data through the data 
observed in large scale when more detailed characteristics 
is needed [19-20]. The hypothesis of the method is that 
small scale details of subject are complex and nonlinear. 
Therefore, it is not accurate to analyze this kind of 
subjects inevitably. Besides, sometimes it is impossible to 
ensure the dimension of some subjects, such as L-PLC 
signal. Fractal theory describes the comparability of 
macrostructure and microstructure fitly. If fractal 
dimension of subject can be calculated accurately, the 
smaller scale information will be interpolated based on the 
data of large scale owing to the comparability of whole 
and part of anomalistic subject. In addition, according to 
fractal dimension the development trend of subject can be 
predicted. Therefore, fractal method is able to avoid 
above-mentioned faults. An interpolation method based 
on classical FBM is proposed as follows. 

FBM is a natural extension of ordinary Brownian 
motion. It is a Gaussian zero-mean nonstationary 
stochastic process ( )HB t , indexed by the Hurst parameter 
H in the interval (0, 1). It is a basic mathematical model 
for fractal process. A fractional Brownian motion ( )HB t is 
defined as follows. 

1) (0) 0HB = , and ( )HB t is continuous. 
2)for any 0t ≥ and 0tΔ > increment 

( )( ) ( )HB t B t t B tΔ = + Δ −  is a Gaussian process with 

zero-mean and 2 2( ) Htδ Δ -variation. It can be expressed 
as 

 

    ( ) ( )
[ ] ( )

| |
H H

r
B t t B t

p t F t
t

+ Δ −
< =

Δ
               (7) 

Where ( )F t is a distribution function of Gaussian 
random variable with zero-mean and 2δ -variance. 
0 1H< <  is fractional calibration parameter, namely 
Hurst parameter, which determines roughness 
concentration of FBM. 

FBM process can be realized by random midpoint 
displacement algorithm. The method is as follows. 

Define a fractional Brownian motion ( )HB t . 
(0)HB and (1)HB  are known. Then (1/ 2)HB  can be 

constructed by  
               1(1/ 2) [ (0) (1)] / 2H H HB B B= + + Δ              (8)          

Where 1Δ is a Gaussian random variable with zero-

mean and 2
1δ -variance. According to the definition of 

FBM, 2 1[ ( ) ( )]H HVar B t B t−  is expressed as 
             2 2

2 1 2 1[ ( ) ( )] | | H
H HVar B t B t t tδ− = −             (9)  

Then 2
1δ  can be calculated by  

   (10) 

Based on (8) and (10), (1/ 2)HB can be calculated. 
Similarly, 2

nδ can be expressed as  
2

2 2 2
2 (1 2 )

(2 )
H

n n H

δδ −= −                 (11) 

In this way subtle structure can be constructed in any 
scalar. This is to say that constructed structure is subtler 
as the number of (1) iterated more times. 

V.  EXPERIMENT RESULTS & DISCCUSIONS  

L-PLC chaotic signal can be reconstructed by FBM 
model with multifractal parameters calculated. 

Firstly, multifractal dimension qD  must be calculated.  
Secondly, Housdorff dimension hD will be determined  

by 
                    ( 1)q qv q D= −                         (12) 

Then the Hurst parameter H can be computed by  
                     2 hH D= −                             (13) 

In this way 2
1δ  will be calculated by (10).  

Thirdly, increment is supposed to be satisfied 
statistical self-similarity. In this experiment the number 
of data points is 2400, and suppose if the data is 
expressed as ( )( 1, 2,..., 2400)x n n = shown in Fig. 4, then 
the increment ( ) ( 1) ( )d n x n x n= + − shown in Fig. 5. And 
Fig. 6 shows statistical probability distribution of ( )d n . It 
can be seen that the statistical probability distribution of 

( )d n  is similar to Gaussian distribution. That means 
received signal is matched with FBM. Therefore, FBM 
model can be applied to dealing with received signal data. 

Finally, FBM model is established through the 
multifractal parameters calculated. Fig. 7, Fig. 8, Fig. 9 
and Fig. 10 show reconstructed signals with different 
numbers of interpolated points. N stands for the number 
of interpolated points in each interpolation. 

 

 
Figure 4.  The original signal 

 

Figure 5.  The amplitude of increment d(n)  

2
1

1[ (1/ 2) (0)] [ (1) (0)]
4H H H HVar B B Var B Bδ = − − −

2
2 2

2 (1 2 )
2

H
H

δ −= −

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 721

© 2012 ACADEMY PUBLISHER



 

Figure 6.  The statistics distribution of increment d(n)  

 
Figure 7.  The reconstructed signal (n=1) 

 
Figure 8.  The reconstructed signal (n=3) 

 
Figure 9.  The reconstructed signal (n=5) 

 
Figure 10.  The reconstructed signal (n=7) 

Mean square error (MSE) of different reconstructed 
time series are shown in Fig. 11 which indicates that 
MSE will rise as the number of interpolation increasing. 
The reason is that more interpolated points mean less 
sampled points. Therefore, MSE will increase 
accordingly.  However, when n  is more than 5, the 

change of MSE is not that great. Table1 is the true value 
of MSE in Fig. 11.  

 

 

Figure 11.  The MSE of different time series 

VI.  CONCLUSION 

Due to frequency attenuation, noise interference, 
multipath interference, etc, communication channels 
often show chaotic characteristic. For the tight 
relationship between chaos and fractal, multifractal 
theory is introduced into the research of chaotic channels 
in this paper, and a FBM model of chaotic channel is 
established. We take L-PLC channel, which is a typical 
chaotic channel, as an example to illustrate the method of 
modeling chaotic channels. By analyzing increments 
probability distribution, statistical self-similarity, and 
multifractal dimensions of L-PLC observed signal, we 
indicate the inherent relationship between chaotic channel 
and FBM model, and find that multifractal dimensions 
can describe the characteristics of chaotic channel 
effectively and synthetically. Finally, the multifractal 
model of chaotic channel based on FBM generating 
algorithm is established with the multifractal parameters 
calculated and used to reconstruct received signals 
accurately. 

TABLE I.  THE MSE OF  RECONSTRUCTED  SIGNALS 

Time Series 
n 

1 2 3 

1 0.0021 0.0019 0.0013 

3 0.0049 0.0028 0.0054 

5 0.0057 0.0046 0.0084 

7 0.0058 0.0063 0.0081 

9 0.0058 0.0067 0.0077 

11 0.0059 0.0067 0.0083 
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