
A New Mechanism of Naming Topological
Entities for Semantic Feature Operations

Xue-Yao Gao

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
Email: gaoxueyao@hotmail.com

Chun-Xiang Zhang

School of Software, Harbin University of Science and Technology, Harbin, China

Ming-Yuan Ren
School of Software, Harbin University of Science and Technology, Harbin, China

Shang-Min Gao

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China

Yong Liu
School of Computer Science and Technology, Heilongjiang University, Harbin, China

Abstract—Naming topological entities and the validity
maintenance of model are two important issues in Computer
Aided Design, which can make a semantic feature model
conform to all constraints correctly. In this paper, a new
mechanism of naming topological entities based on face
features is proposed. Based on the corresponding
mechanisms for naming topological entities, the methods of
coding entities, sub-entities and virtual entities are given.
The mechanisms for maintaining the validity of semantic
feature operations are described. Sub-edges, sub-faces,
virtual faces and virtual sub-edges are applied to process the
problem of face obliteration. Sub-edges and virtual edges
are used to process the problem of edge obliteration. After
the mechanisms for naming topological entities and the
methods of validity maintenance are applied to HUST-
CAID system, its modeling performance is improved and
the feasibility of the proposed mechanisms and methods
above is also proved.

Index Terms—topological entities, validity maintenance,
semantic feature model, virtual entities, face obliteration,
edge obliteration

I. INTRODUCTION

Naming topological entities and the validity
maintenance of semantic feature model are two important
issues in Computer Aided Design(CAD) and Computer
Aided Manufacturing(CAM).

Marcheix identifies five common concepts that may be
found in studies of naming topological entities, and two
orthogonal criteria for classifying approaches of naming
entities persistently are proposed[1]. Wu analyzes the
design history of parts, and presents a face-based
mechanism for naming, recording and retrieving
topological entities. At the same time, parametric space

information is utilized to solve the ambiguity when
entities are recorded and retrieved[2]. This mechanism
provides a solid basis for replaying the design history
precisely. Jing analyzes four fundamental conditions to
solve the problems of naming topological entities
persistently and their internal relationships, based on the
model representation used in 3D parametric CAD
systems[3]. The problems of naming entities persistently
can be classified into two categories. The first category
includes two aspects. The first one is how to associate the
original name with the B-rep model, and the second one
is how to construct the reference name. The second
category involves two processing methods according to
the reference purposes. The first one is referring to the
geometric information in entities, and the second one is
referring to the entity itself. Chen proposes a new
approach to name and match topological entities, based
on the affected features and affected faces in topological
entities[4]. The usual topological entity is named by using
ID of the feature which it belongs to, and its index in the
B-rep of the feature. For the referenced topological entity,
the local topology information is added into the name.
The local topology information consists of the adjacent
faces relevant to the topological entity and the in-out
relationship among them. Zheng designs a face-based and
history-based naming mechanism which includes entity
naming and entity retrieval[5]. The necessary history
information of faces is kept by face’s name. All
topological entities are managed by three kinds of tables
which are face tables, edge tables and vertex tables.
Kripac gives a topological ID system, which
systematically assigns IDs to topological entities
including faces, edges and vertices in solid models[6].
When the solid model is edited and is re-evaluated
automatically from the history of modeling operations,

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 705

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.3.705-711

IDs of topological entities in old version of the model are
mapped to IDs of topological entities in new version of
the model. This mapping defines the correspondence
between topological entities in old model and topological
entities in new model. Marcheix considers the naming
problem of aggregates like shells which are connected
sets of faces[7]. A complete framework for extending a
naming model of atomic entities is proposed in order to
identify and match any kinds of shells based on their
underlying topological structures. Yan develops a
semantic ID scheme based on geometry continuity to
solve the problem of naming persistency and improve
interoperability of CAD feature modeling[8].
Hierarchical namespaces localize entity creation and
entity identification. All geometric and topological
entities are referred uniformly based on IDs of the
surfaces, and topology semantics is retained in its ID.
During the process of re-evaluation, topological entities
may be split, merged and obliterated. Wang introduces a
data structure called as name propagation graph(NPG) to
represent the identity propagation of topological entities,
in order to trace such alterations of topological entities[9].
Rules and algorithms are also presented to identify the
genetic entities, which originate from the entities on the
original version of a part model. Identifications of sketch
share and regeneration are realized by appending
additional index and flag, and the presented naming
system has been implemented in a commercial feature-
based modeling system[10]. The naming techniques build
a bridge between design variants and design intents. Wu
presents a graph-based coding and decoding method with
parameter information to maintain the design intent in
constraint-based variational design system[11]. At the
same time, parameter vector field is used to describe a
mathematical definition on comparability between
original model and regenerated model. Bidarra proposes a
cellular representation for feature models that contains all
relevant information to solve effectively a variety of
current problems in feature modeling[12]. Much benefit
is gained from a coherent integration between shapes of a
feature model and cells in the cellular model. At the same
time, methods for modifying and querying the cellular
model are given, and their applications for feature
validity maintenance, feature interaction management,
feature conversion between multiple views, and feature
visualization are illustrated. Bidarra proposes the
mechanisms to maintain the validity of the semantic
feature model, in which each invalid situation is detected
and is reported to the user with appropriate explanation
on its causes and effects[13]. At the same time, the user is
provided with a convenient choice of reaction hints. Chen
proposes a representation for feature validity condition
based on the extended attributed adjacency graph, and
gives a novel approach for maintaining feature validity
using local feature recognition technique. The approach
can not only automatically detect whether the feature
validity is destroyed, but also determine accurately the
reason why the feature becomes invalid and the state of
the destroyed feature. Furthermore, the approach can

renovate the feature model automatically based on the
user’s intent[14].

In this paper, we propose a new mechanism for naming
topological entities based on face features. The methods
of coding topological entities, sub-entities and virtual
entities are given. At the same time, the maintenance
method of semantic feature model is given. Sub-edges,
sub-faces, virtual faces and virtual sub-edges are applied
to process the problem of face obliteration. Sub-edges
and virtual edges are used to process the problem of edge
obliteration. Experimental results show that after the new
naming mechanism and the maintenance method of
semantic feature operations are applied to HUST-CAID
system, the feasibility of the presented mechanism and
method is proved.

The rest of this paper is organized as follows: the
mechanism of naming topological entities based on face
features is described in section II. When the model is
edited and re-evaluated, the validity maintenance method
of semantic feature operations is proposed in section III.
Experimental results are given in section IV. Conclusions
of this paper are given in section V.

II. MECHANISM OF NAMING TOPOLOGICAL ENTITIES
BASED ON FACE FEATURES

When the semantic feature model is edited and re-
evaluated automatically, its topological structure may
change and the enumeration of topological entities
becomes invalid. So, the fundamental problem in process
of semantic feature modeling is how to name and identify
topological entities, in such a way that these entities can
still be identified even after the model has been re-
evaluated. Topological entities should be named,
including faces, edges and vertexes in model. When the
semantic feature model is edited and re-evaluated, these
names of topological entities could be maintained
correctly. Edge can be considered as the intersection of
two faces and vertex is also viewed as the intersection of
three faces. In this paper, we firstly name topological
faces. Then based on the names of face features,
topological edges and topological vertexes are named.

A. Naming Topological Faces
When the topological face is named, the name of

feature which it belongs to and its ID in this feature will
be considered together. The name of topological face is
expressed as feature_name.face_ID. Here, feature_name
is the name of feature which this face belongs to and
face_ID is the face’s ID in this feature. For example,
there are three topological faces in a cylinder, including
cylinder.top, cylinder.side and cylinder.bottom, as
described in Figure 1.

Features can also be generated by sweeping operation
and rotating operation. So, one feature may contain
multiple side faces. So, these side faces should be
distinguished correctly.

Because a sweeping path is made up of multiple line
segments, every contour edge in a sketch will be
corresponded with a side face. The steps of naming side

706 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

faces in feature generated by sweeping operation are
shown as follows:

(1) Number contour edges in a sketch serially.
(2) The sweeping path is divided into multiple line

segments, and these path segments are numbered serially.
(3) Based on the number of contour edges and the

number of path segments, side faces are named.
If a square is swept along a 3-dimension polyline, top

face, bottom face and 12 side faces will be gotten in
Figure 2. Based on the above method, the side face
determined by No.i path segment in sweeping path and
No.j contour edge in sketch is named as sweep.sideij.

Features generated by rotating operation are

determined by the contour and the axis, in which the
contour rotates in some angle along the axis. Contour
edges will be numbered serially. Based on the numbers of
contour edges, all side faces are named. When a contour
which has N contour edges rotates in some angle along
the axis, the steps of naming its side faces are shown as
follows:

(1) From all contour edges, select edge m whose
starting point is the nearest from the axis.

(2) Contour edge m is used as the datum edge.
(3) According to datum edge m and the trend of the

contour, all contour edges will be numbered serially.
(4) If the datum edge is not coincided with the axis,

side faces are named based on the numbers of contour
edges. Otherwise, the front N-1 side faces will be named
serially.

A feature generated by rotating operation is shown in
Figure 3. The names of its side faces are respectively
rotate.side1, rotate.side2, rotate.side3 and rotate.side4.

According to the method of naming faces, the
topological face is coded as follows:

Face_ID=(FeatureID, type, index, PID, bsplit, addi)

Here, FeatureID is the ID of feature which this face

belongs to and type is its category. When the value of
type is -1, it’s a bottom face. When the value of type is 0,
it’s a top face. When the value of type is 1, it’s a side face
in a feature generated by sweeping operation and PID is
the number of sweeping path segment. When the value of
type is 2, it’s a side face in a feature generated by rotating
operation and PID is the rotating angle. When there are
serial side faces, index is the number of side face. For top
face and bottom face, the value of index is 0. We use
bsplit to describe whether the face has been split or not.
When the model is edited, some topological faces maybe
disappear and they will not appear in the boundaries of
the model. These faces will become virtual ones and they
will be invisible for user. We use addi to describe the
states of faces. When the face becomes a virtual one, the
value of addi will be set to 0. Otherwise, the value of addi
is set to 1.

When the model is edited, some topological faces will
be split. These split sub-faces maybe merge in subsequent
feature operations. So, sub-faces should be coded in a
different way. Sub-face is coded as follows:

subFace_ID=(FaceID, type, index, PID, bsplit, fID,
addi)

Here, FaceID is its father face’s ID, and fID is the
number of sub-face. At the same time, addi is used to
explain whether the sub-face is a virtual one or not.

B. Naming Topological Edges
When the topological edge is named, face features

relevant to this edge will be considered together. The
name of topological edge is expressed as
((adjacent_feature_faces), (end_faces)).

Here, adjacent_feature_faces are the adjacent faces
relevant to this edge and end_faces are the starting face
and ending face in which two endpoints of this edge are
located. A block slot is opened in base block. Then edge
e1 is gotten as shown in Figure 4. Edge e1 is named as
((block.top, block.side1), (block.side4, blindslot.side1)).

Figure 4. Naming edge e1.

Figure 3. Naming side faces in a feature generated by rotating

operation.

Figure 2. Naming side faces in a feature generated by sweeping

operation.

Figure 1. Naming topological faces in a cylinder.

e1 e2
e3 e4

L1

L2

L3

sweep.side11

sweep.side21

sweep.side31

cylinder.top

cylinder.side

cylinder.bottom

rotate.side1

rotate.side2

rotate.side3

rotate.side4

e1

block.side4 block.top

blindslot.side1

block.side1

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 707

© 2012 ACADEMY PUBLISHER

If edges determined by surfaces are named based on
the above method, some edges will not be distinguished
correctly. Reference line need be introduced in order to
distinguish these edges. So, edges determined by surfaces
are named as ((adjacent_feature_faces), (end_faces,
reference.orientation)). Here, reference is a reference line
and reference.orientation is the orientation of the
reference line. It is used to describe that edge is located in
left side or right side of the reference line.

When we open a round slot on top face of a cylinder,
parallel edges e1 and e2 are obtained. In order to name
parallel edges correctly, a reference line is introduced to
describe the positions of two parallel edges. Reference
line reference1 is defined, which is located on top face of
cylinder and is paralleled with edge e1 and e2 as shown
in Figure 5.

Then edge e1 and e2 are named as follows:
e1: ((cylinder.top, roundslot.side), (cylinder.side,

roundslot.side, reference.positive))
e2: ((cylinder.top, roundslot.side), (cylinder.side,

roundslot.side, reference.negative))
Sometimes, the reference line maybe closed. When a

round slot is opened on top face of base block, two
parallel edges e1 and e2 are gotten. In order to name e1
and e2 correctly, a closed reference line reference3 is
introduced here. It is shown in Figure 6.

Then edge e1 and e2 are named as follows:
e1: ((block.top, roundslot.side), (reference.positive))
e2: ((block.top, roundslot.side), (reference.negative))
According to the method of naming edges, topological

edges are coded as follows:
Edge_ID=(adjFaceIDs, endFaceIDs, RefOriCode, addi)
Here, adjFaceIDs are IDs of two adjacent faces whose

intersection is this edge, and endFaceIDs are IDs of the
starting face and ending face in which two endpoints of
this edge are located. If the edge is closed, the value of
endFaceIDs will be set to 0.

RefOriCode is used to describe that the topological
edge is located in left side or right side of the reference
line. When the value of RefOriCode is -1, the topological
edge is located in right side of reference line. When the

value of RefOriCode is +1, the topological edge is
located in right side of reference line. If the reference line
is not needed, RefOriCode will be set to 0. We use addi
to describe whether the topological edge is a virtual one
or not. When the value of addi is 0, this edge does not
belong to the model boundary and it is a virtual edge.
When the value of addi is 1, this edge belongs to the
model boundary.

When the model is edited and re-evaluated, some
topological edges will be split. These split sub-edges
maybe merge in subsequent feature operations. So, sub-
edges should be coded in a different way. Sub-edge is
coded as follows:

subEdge_ID=(EdgeID, adjFaceIDs, endFaceIDs, addi)
Here, EdgeID is ID of the topological edge which

these sub-edges belong to, and adjFaceIDs are IDs of two
adjacent faces relevant to this sub-edge. We use
endFaceIDs to describe the starting face and ending face
in which two endpoints of this sub-edge is located, and at
least one of these faces is the starting face or ending face
in which its father edge is located. At the same time, addi
is used to explain whether the sub-edge is a virtual edge
or not.

C. Naming Topological Vertexes
A vertex can be viewed as intersections of three

adjacent faces, which describes its topology property. The
topological vertex is named as ((adjacent_feature_faces),
(reference.orientation)).

Here, adjacent_feature_faces are adjacent faces
relevant to this vertex and reference.orientation is the
orientation of the reference line. Intersections of
cylinder.top, roundslot.side and cylinder.side are vertexes
v1, v2, v3 and v4 as shown in Figure 5. Reference line
reference2 vertical to reference1 is introduced to
distinguish these vertexes. Then vertexes v1, v2, v3 and
v4 are named as follows:

v1: ((cylinder.top, roundslot.side, cylinder.side),
(reference1.positive, reference2.negative))

v2: ((cylinder.top, roundslot.side, cylinder.side),
(reference1.negative, reference2.negative))

v3: ((cylinder.top, roundslot.side, cylinder.side),
(reference1.negative, reference2.positive))

v4: ((cylinder.top, roundslot.side, cylinder.side),
(reference1.positive, reference2.positive))

According to the method of naming vertexes,
topological vertexes are coded as follows:

VertexID=(adjFaceIDs, RefOriCode, addi)
Here, adjFaceIDs are three adjacent faces which are

relevant to this vertex. RefOriCode is used to describe
that the vertex is located in left side or right side of the
reference line. When the value of addi is 1, this vertex is
located in the model boundary, and when the value of
addi is 0, it is not located in the model boundary and it is
a virtual vertex.

III. VALIDITY MAINTENANCE OF SEMANTIC FEATURE
MODEL

Model validity maintenance is a process of monitoring
each feature operation in order to ensure that all features

Figure 6. Closed reference line.

Figure5. Apply reference line to distinguish parallel edges.

e2 e1

reference1

cylinder.top

cylinder.side

roundslot.side

v3

v1 v2

v4

reference2

e1

roundslot.side

block.top e2

reference3

708 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

and topological entities conform to the semantics
specifications. When semantic feature model is edited
and re-evaluated, some topological entities including
faces and edges will be split, emerged and obliterated. In
order to maintain the validity of semantic feature model,
faces, edges and vertexes should be managed efficiently
in feature operations. Here, virtual faces, sub-edges and
virtual vertexes are used to process the problem that
topological entities are split, emerged and obliterated. In
the process of semantic feature modeling, three
mechanisms are given to manage the topological entities,
including inheritance of topological entities, split of
topological entities and obliteration of topological entities.

A. Inheritance of Topological Entities
All topological entities have specific semantics which

are unchangeable in the process of modeling. When a
face or an edge splits, sub-face or sub-edge will inherit
the property of its father feature and the property of
feature which it belongs to.

To figure axis labels, use words rather than symbols.
Do not label axes only with units. Do not label axes with
a ratio of quantities and units. Figure labels should be
legible, about 9-point type.

Color figures will be appearing only in online
publication. All figures will be black and white graphs in
print publication.

B. Split of Topological Entities
The split of topological entities consists of face split

problem and edge split problem. Sub-face or sub-edge
inherits all properties of its father feature, and are coded
as described in section II. Face split table(FST) and edge
split table(EST) are used to manage the split topological
entities. In FST and EST, there are records for describing
the topological entity which has been split in the process
of modeling and the pointer of chain in which codes of
the spit entities are stored. The split topological entity is
changed into a virtual one. FST and EST can help to
describe the correspondence between topological entities
in new model and topological entities in old model.

C. Obliteration of Topological Entities
Because vertex obliteration is viewed as the

obliteration of faces and edges, we only consider the face
obliteration and edge obliteration.

The steps of processing face obliteration are shown as
follows:

(1) Based on constraints in model, decide whether
there is obliteration part between face f1 and face f2 or
not. If the obliteration part is empty, the codes of f1 and
f2 are kept unchangeable. Otherwise, go to (2).

(2) Split boundary edges into sub-edges and code these
sub-edges as described in section II. At the same time,
sub-edges in obliteration part between face f1 and face f2
are coded as virtual sub-edges. The codes of boundary
edges and sub-edges are processed and inserted into edge
split table(EST).

(3) The sub-faces which are enclosed by these sub-
edges in obliteration part between f1 and f2, are coded as

virtual faces. The codes of this face and sub-faces are
processed and inserted into face split table(FST).

The steps of processing edge obliteration are shown as
follows:

(1) Based on constraints in model, decide whether
there is the obliteration part between edge e1 and edge e2
or not. If the obliteration part is empty or a vertex, the
codes of e1 and e2 are kept unchangeable. Otherwise, go
to (2).

(2) Decide whether starting face and ending face of e1
are the same as those of e2. If the starting and ending
faces of e1 are the same as those of e2, e1 or e2 is coded
as a virtual edge. Otherwise, go to (3).

(3) Based on constraints in model, decide whether
there is intersection between edge e1 and edge e2.
According to the intersection, e1 and e2 are divided into
several sub-edges and these sub-edges are coded as
described in section II. One of sub-edges in obliteration
part between edge e1 and edge e2 is kept, and others are
coded as virtual edges. Codes of e1, e2, and sub-edges are
processed, and inserted into edge split table(EST).

IV. EXPERIMENT

The mechanisms of naming topological entities and the
methods of validity maintenance are applied to HUST-
CAID system, in order to solve the problem that
topological entities are split, merged and obliterated
during the process of modeling. Here, HUST-CAID is a
semantic feature modeling system which is developed by
Research Institute of Computer Applied Techniques in
Harbin University of Science and Technology. The
methods of coding topological entities are defined and
integrated into data structure in HUST-CAID system. The
steps of processing face obliteration and edge obliteration
are implemented and integrated in HUST-CAID system.

Then we model a part in improved HUST-CAID
system. There are slot1, slot2, cylinder and block in this
part model. Firstly, we open two slots in base block. Here,
slot1 is a round slot and slot2 is a block slot. Secondly,
we append a cylinder on slot2. At the same time, cylinder
is not intersected with slot1. Initial model of this part is
shown in Figure 7.

Figure 7. Initial model.

block slot2

slot1
cylinder

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 709

© 2012 ACADEMY PUBLISHER

When the part model is edited, the height of slot2 is
decreased and intersections between cylinder and slot1
are two parallel edges. One of these two parallel edges is
edited by filleting operation. In HUST-CAID system, the
methods of naming topological entities and validity
maintenance proposed in this paper are used to code
topological entities and maintain them correctly in part.
So, we can distinguish these two parallel edges. After the
part is edited by filleting operation, the model is shown in
Figure 8.

V. CONCLUSIONS

In this paper, the problems of naming and identifying
topological entities are analyzed. The new mechanisms of
naming topological entities based on face features are
proposed. At the same time, the methods of coding
topological entities, sub-entities and virtual entities are
given. In order to maintain the validity of the model,
three mechanisms including inheritance of topological
entities, split of topological entities and obliteration of
topological entities in semantic feature operations are
described. Sub-edges, sub-faces, virtual faces and virtual
sub-edges are applied to process the problem of face
obliteration. Sub-edges and virtual edges are used to
process the problem of edge obliteration. After the
mechanisms of naming topological entities and the
methods of validity maintenance are applied to HUST-
CAID system, its modeling performance is improved and
it can process entities’ split, emerge and obliteration. At
the same time, the feasibility of the proposed mechanisms
and methods above is proved.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China under Grant Nos. 60903082,
60975042, Chun-Hui Cooperated Project of the Ministry
of Education of China under Grant Nos. S2009-1-15002,
and Science and Technology Research Funds of
Education Department in Heilongjiang Province under
Grant Nos. 11541045. The authors also gratefully
acknowledge the helpful comments and suggestions of
the reviewers.

REFERENCES
[1] D. Marcheix, and G Pierra, “A survey of the persistent

naming problem,” Proceedings of the Symposium on Solid
Modeling and Applications, pp. 13–22, 2002.

[2] J. Wu, T. Zhang and X. Zhang, “A face based mechanism
for naming, recording and retrieving topological entities,”
Computer-Aided Design, 33(1), pp. 687–698, 2001.

[3] S. X. Jing, F. Z. He, and H. J. Liu. “A survey of persistent
naming problem for topological entities,” Journal of
Computer Aided Design and Computer Graphics, 19(5),
pp. 545–552, 2007.

[4] Z. M. Chen, S. M. Gao, and F. J. Zhang, “Approach to
naming and identifying topological entities,” Chinese
Journal of Computers, 24(11), pp. 1170–1177, 2001.

[5] J. J. Zheng, M. Fan, and R. F. Tong, “A mechanism for
persistently naming topological entities,” Proceedings of
the 8th International Conference on Computer Supported
Cooperative Work in Design, pp. 84–89, 2004.

[6] J. Kripac, “A mechanism for persistently naming
topological entities in history-based parametric solid
models,” Computer-Aided Design, 29(2), pp. 113–122,
1997.

[7] D. Marcheix, “A persistent naming of shells,” Proceedings
of the Ninth International Conference on Computer Aided
Design and Computer Graphics, pp. 259–265, 2005.

[8] Y. Wang and B. O. Nnaji, “Geometry-based semantic ID
for persistent and interoperable reference in feature-based
parametric modeling,” Computer-Aided Design, 37(17),
pp. 1081–1093, 2005.

[9] Y. W. Wang, J. J. Wu, and L. P. Chen, “Identity
propagation method for tracing alterations of a topological
entity in a history-based solid modeling system,” Journal
of Advanced Manufacturing Technology, 27(3–4), pp. 305–
312, 2005.

[10] Y. W. Wang, J. J. Wu, and L. P. Chen, “Naming of sketch
entities in feature based modeling system,” Journal of
Engineering Graphics, 28(1), pp. 66–71, 2007.

[11] T. Wu, Y. S. Xi, and Z. Li, “Coding and decoding of
topological entities in constraint-based variational design,”
Proceedings of the 2008 International Conference on
Advances in Product Development and Reliability, pp.
201–208, 2008.

[12] R. Bidarra, K. J. Kraker, and W. F. Bronsvoort,
“Representation and management of feature information in
a cellular model,” Computer-Aided Design, 30(4), pp. 301–
313, 1998.

[13] R. Bidarra, and W. F. Bronsvoort, “Validity maintenance
of semantic feature models,” Proceedings of the
Symposium on Solid Modeling and Applications, pp. 85–
96, 1999.

[14] Z. M. Chen, S. M. Gao, and Q. S. Peng, “Feature validity
maintaining approach based on local feature recognition,”
Journal of Software, 13(4), pp. 552–560, 2002.

Xue-Yao Gao is Ph.D. and graduates
from School of Computer Science and
Technology, in Harbin University of
Science and Technology. She is also a
lecturer in Harbin University of Science
and Technology. Her research interests
are computer graphics, CAD, and natural
language processing. She has authored
and coauthored more than ten journal

Figure 8. The modified model.

filleting operation slot1

slot2

block

cylinder

710 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

and conference papers in these areas.

Chun-Xiang Zhang is Ph.D. and graduates from MOE-MS
Key Laboratory of Natural Language Processing and Speech,
School of Computer Science and Technology, in Harbin
Institute of Technology. He is also an associate professor in
Harbin University of Science and Technology. His research
interests are computer graphics, CAD, and natural language
processing. He has authored and coauthored more than twenty
journal and conference papers in these areas.

Ming-Yuan Ren is Ph.D. candidate in School of Astronautics,
in Harbin Institute of Technology. He is also a lecturer in
Harbin University of Science and Technology. His research

interests are computer graphics, CAD, and natural language
processing. He has authored and coauthored more than ten
journal and conference papers in these areas.
Shang-Min Gao is an associate professor in Harbin University
of Science and Technology. His research interests are computer
graphics, CAD, and natural language processing. He has
authored and coauthored more than ten journal and conference
papers in these areas.

Yong Liu is Ph.D. and graduates from School of Computer
Science and Technology, in Harbin Institute of Technology. He
is also a lecturer in Heilongjiang University. His main research
interests include computer graphics, data mining and graph data
management. He has authored and coauthored more than ten
journal and conference papers in these areas.

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 711

© 2012 ACADEMY PUBLISHER

