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Abstract—In order to make further researches on decision 
logic, a generalized form of decision reasoning called 
granular reasoning is introduced, which is induced by the 
inclusion relation over granules, and is connected with 
granule’s operations. The investigations on it shows that 
granular reasoning not only covers a wider range including 
decision reasoning, but also satisfies the rules of deduction 
in classical logic. Thus, granular reasoning can be taken as a 
foundation to support decision reasoning. On the other hand, 
granular reasoning has close links with a decision system. 
Based on granular reasoning, a decision system can be 
divided into sub-decision systems. Consequently, as a special 
form of granular reasoning, decision reasoning defined in a 
decision system becomes to rely on sub-decision systems. 
This makes decision reasoning easier. 
 
Index Terms—granular reasoning, granule, granular space, 
decision system, decision reasoning 
 

I.  INTRODUCTION 

Decision logic[1] based on a knowledge representation 
system achieves the goal of reasoning about knowledge. 
It reflects the idea of integrating reasoning with data 
information. Although decision logic succeeded in 
making data reasoning, the researcher did not pay 
attention to the discussion on the relationship between the 
reasoning in classical logic and the data reasoning. 
Actually, decision logic mainly focused discussions on 
reduction problems, such as reductions of decision rules, 
reductions of the decision algorithm, reductions of the 
knowledge representation system itself, etc. This 
therefore offers us an opportunity to make researches on 
the connections between classical logic and decision logic. 
Also, this encourages us to lay a foundation for the data 
reasoning. In order to do this, we will study data 
reasoning in a wider range covering decision logic. Thus, 
we need to review how data reasoning is carried out in 
decision logic. This will provide support for introducing a 
generalized form of data reasoning. For the sake of 

argument, we call a knowledge representation system a 
decision system, and we refer to the data reasoning in 
decision logic as decision reasoning. 

Consider a decision system S=(D, A, V, f ), where D is 
the universal set; A={c1,…, cn , d1,…, dm} is the attribute 
set, here c1,…, cn stand for condition attributes, and d1,…, 
dm for decision attributes; V, a finite set, is the range of f, 
each element in V is called a value; and f is the 
information function from D×A to V satisfying for each 
<z, b>∈D×A, there is a value v∈V , such that f(z, b)=v. 
Generally, f(z, b)=v is abbreviated to b(z)=v. Thus, each 
attribute b(∈A) is a function from D to V. 

Decision reasoning based on the decision system S 
=(D, A, V, f ) is closely connected with formulas which 
are composed of attributes in A and values in V. For 
example, when b∈A and v∈V, notation (b, v) is called 
an atomic formula[1]. For z∈D, if b(z)=v,  z is said to 
satisfy (b, v). Let |(b, v)|={z | z∈D and b(z)=v}. Hence, 
|(b, v)| consists of the data which satisfy (b, v), and |(b, v)| 
is a subset of D. In this paper, we call |(b, v)| a granule. 

Combining atomic formulas by connectives ﹁, ∧, ∨ 
or →, compound formulas can be obtained, such as ﹁(b1, 
v1), (b1, v1)∧(b2, v2), (b1, v1)∨(b2, v2) and (b1, v1)→(b2, 
v2) are formulas in decision logic, where b1, b2∈A, and v1, 
v2∈V. Applying induction on the length of formulas, we 
know that if φ and ψ are formulas, then ﹁φ, φ∧ψ, φ∨ψ 
and φ→ψ are also formulas. In order to describe decision 
reasoning, we need to consider such formulas which are 
of the form: 

(c1, v1)∧…∧(cn, vn) → (d1, u1)∧…∧(d m, um), 
where c1,…, cn are all condition attributes, d1,…, dm are 
all decision attributes in A, and v1,…, vn, u1,…, um∈V. 
This formula is called a decision rule[1] on S. 

For this decision rule, using granules |(ci , vi)|(i=1,…, n) 
and |(dj , uj)| (j=1,…, m), we can obtain |(c1, v1)∧…∧(cn, 
vn)| and |(d1, u1)∧…∧(d m, um)|, each of them is also 
called a granule in this paper, which are defined as 
follows: 

|(c1, v1)∧…∧(cn, vn)|= |(c1, v1)|∩…∩|(cn, vn)|, 
|(d1, u1)∧…∧(d m, um)|= |(d1, u1)|∩…∩|(dm, um)|. 

Since |(ci , vi)|⊆D(i=1,…, n) and |(dj , uj)|⊆D(j=1,…, m), 
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we have |(c1, v1)∧…∧(cn, vn)|⊆D  and |(d1, u1)∧…∧

(d m, um)|⊆D . Granules |(c1, v1)∧…∧(cn, vn)| and |(d1, u1)
∧…∧(d m, um)| play a major role in the definition of 
decision reasoning. They can decide whether decision 
reasoning holds or not. Now consider the following 
definition: 

Definition 0[1] Let S=(D, A, V, f ) be a decision 
system, and let (c1, v1)∧…∧(cn, vn)→(d1, u1)∧…∧(d m, 
um) be a decision rule on S. if |(c1, v1)∧…∧(cn, vn)|⊆|(d1, 
u1)∧…∧(d m, um)|, then it is to say that this decision rule 
is true, or to say that (d1, u1)∧…∧(d m, um) can be 
deduced from (c1, v1)∧…∧ (cn, vn), denoted by the 
following expression: 

  (c1, v1)∧…∧(cn, vn) ⇒ (d1, u1)∧…∧(dm, um).    (1) 
The process of deciding whether (1) holds or not is 
referred to as decision reasoning.      □ 

Thus, in decision logic, decision reasoning is linked to 
decision rules, and is connected with the granules |(c1, v1)
∧…∧(cn, vn)| and |(d1, u1)∧…∧(d m, um)| which consist 
of data. Therefore, decision reasoning realizes the data 
reasoning. 

The following researches will be made in a wider range 
including a decision system. The aim is to establish a 
connection between the reasoning in classical logic and 
decision reasoning in decision logic. For this purpose, we 
are going to develop decision logic and to introduce a 
generalized form of decision reasoning. Fortunately, the 
developments in [2-12] have provided methods which 
could be adopted by us. Although there are quite 
differences among those, they all concern the study of 
reasoning, data processing, or granules. This naturally 
offers us research ideas for further investigations. 

Because decision reasoning correlates with granules, 
such as |(c1, v1)∧…∧(cn, vn)| and |(d1, u1)∧…∧(d m, 
um)|,  the generalized form of decision reasoning to be 
introduced must correlate with granules as well. So it is 
required to make it clear what is a granule. In fact, a 
series of concepts, such as formulas, granular space, 
granules, granular computing, and so on, have been 
defined in [2]. These concepts are preparations for the 
following study. Now, let us sketch them out.  

II.  GRANULAR SPACES AND GRANULES 

The concepts of a granular space and a granule have 
been defined in [2]. The following definitions 1 to 5 are 
merely a review for them. The aim is to consider the 
overall soundness of our technique. 

Let U be a finite set called a universal set. Let U n  (n≥
1) stand for the Cartesian product U×…×U of n factors of 
U. Each element in U n  is denoted by <a1,…, an>, and is 
called an n-tuple. When H⊆U n, H is referred to as an n-
place relation on U. If <a1,…, an>∈H, the elements 
a1,…, an have the property described by H. When n=1, 
the n-tuple <a1,…, an> is <a1> which is generally written 
as a1. Although n-place relations can express various 
actual problems, we need to consider combinations of 
relations because actual problems are complicated in 

many situations. As a formal language, logical formulas 
are very effective for expressing complicated concepts. 
So, we will construct formulas by applying n-place 
relations. According to the general steps in mathematical 
logic, it is required to introduce a symbolic system. 

Definition 1[2]. Let U be a universal set. The symbolic 
system on U consists of constants, variables, terms, 
relations and connectives which are given as follows: 

1) Constant: for a∈U, a is taken as a constant on U. 
2) Variable: x1, x2, x3, … are used to denote variables 

on U. 
3) Term: constants and variables are called terms on U, 

and ti (i=1, 2,…) is used to stand for any term. 
4) Relation: P, Q, S, H, R etc. or P1, P2, P3,… denote n-

place relations on U (n≥1). 
5) Connective: ﹁, ∧, ∨, →.            □ 
In mathematical logic, an n-place relation P in this 

definition is called a predicate interpreted as a relation. 
Because this paper only concerns the relations on U, an n-
place relation P can be viewed as the predicate which is 
interpreted as P itself.  

Using this symbolic system, atomic formulas can be 
defined, and formulas will be based on atomic formulas.  

Definition 2[2]. Let U be a universal set, and let P 

(⊆U n) be an n-place relation. If t1,…, tn are n terms, 
then P(t1,…, tn) is called an atomic formula on U.    □ 

Definition 3[2]. Let U be a universal set, then the 
formulas on U are inductively defined as follows: 

1) Every atomic formula on U is a formula on U. 
2) If φ is a formula on U, then ﹁φ is a formula on U. 
3) If φ and ψ are formulas on U, then φ∧ψ, φ∨ψ and 

φ→ψ are formulas on U. 
4) Formulas are generated by using 1), 2) or 3) in finite 

steps.                          □ 
The formulas defined here cover the formulas in 

decision logic. We will make an explanation on this in a 
moment. 

Now, let Form(U) denote the set of all formulas on U. 
If φ∈Form(U) and there exist n variables x1,…, xn in φ, 
then φ is said to be an n-place formula(n≥1). In order to 
stress the n variables, φ is sometimes denoted by φ(x1,…, 
xn). For instance, consider an m-place relation P(⊆U m), 
if x1,…, xn, a1,…, am-n are m terms on U, where x1,…, xn 
are variables, a1,…, am-n are constants and 1≤n≤m, 
then P(x1,…, xn, a1,…, am-n) is an n-place formula. It is 
actually an atomic formula, and can be written as φ(x1,…, 
xn). 

Definition 4[2]. Let φ∈Form(U), and φ be an n-place 
formula(n≥1). Notation |φ| is used to represent a subset 
of U n, it is inductively defined as follows: 

1) If φ=P(x1,…, xn, a1,…, am-n)(n≤m) is an atomic 
formula, where P⊆U m, then define |φ|= |P(x1,…, xn, 
a1,…, am-n)|={<t1,…, tn> | <t1,…, tn>∈U n and <t1,…, tn, 
a1,…, am-n>∈P}. In this case |φ|⊆U n. 

2) If φ=﹁φ1, and |φ1|⊆U n, then define |φ|= |﹁φ1| = ～

|φ1| =U n
-|φ1|. 

3) If φ=φ1∧φ2, and |φ1|, |φ2|⊆U n, then define |φ| = |φ1
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∧φ2| = |φ1|∩|φ2|. 
4) If φ=φ1∨φ2, and |φ1|, |φ2|⊆U n, then define |φ| = |φ1

∨φ2| = |φ1|∪|φ2|. 
5) If φ=φ1→φ2, and |φ1|, |φ2|⊆U n, then define |φ| = 

|φ1→ φ2| = |﹁φ1|∪|φ2|. 
6) In particular, for n-place formula φ∈Form(U) and 

n=0(such as φ=P(a1,…, am), where a1,…, am are all 
constants), then define |φ|=∅. In this case, |φ|⊆U m for 
any m≥0.              □ 

This definition shows that for each n-place formula φ
∈Form(U), |φ| is a subset of U n, i.e. |φ|⊆U n. When 
<t1,…, tn>∈|φ|, we say that n-tuple <t1,…, tn> satisfies φ. 
So, |φ| consists of the n-tuples satisfying φ. 

We have mentioned above that the formulas in 
definition 3 cover the formulas in decision logic. Now we 
return to consideration of this fact. Let S=(D, A, V, f ) be 
a decision system. Consider an atomic formula (b, v) in 
decision logic, where b∈A and v∈V (see section 1). 
Formula (b, v) can be regarded as an atomic formula in 
definition 2. In fact, since attribute b is a function from D 
to V, defined by b(z)= f (b, z) where z∈D, and f(b, z)∈V, 
if let f(b, z)=v(∈V) and U=D∪V, then b can be viewed 
as a binary relation on U, i.e. b⊆U×U, such that for <z, 
v>∈U×U, <z, v>∈b if and only if b(z)=v. In this case, 
the atomic formula (b, v) can be denoted by b(x1, v), 
where x1 is a variable, and v is taken as a constant, they 
are all terms in definition 1. Moreover, for z∈U, z 
satisfies (b, v), if and only b(z)=v (see section 1), if and 
only if <z, v>∈b, if and only if z satisfies b(x1 v)(see 
definition 4). This means |(b, v)|= |b(x1 v)|. Thus (b, v) can 
be viewed as formula b(x1 v) which is an atomic formula 
in definition 2. Because the formulas in definition 3 are 
based on n-place relations which contain binary relations, 
the formulas in definition 3 cover the formulas in 
decision logic, or the formulas in decision logic are only a 
part of the formulas in definition 3. 

Definition 5[2]. Let U be a universal set, and Form(U) 
be the formula set on U. The structure consisting of U 
together with Form(U), denoted by <U, Form(U)>, is 
called the granular space on U. For each n-place formula 
φ∈Form(U), φ is also referred to as a formula in <U, 
Form(U)>, and the set |φ|, a subset of U n, is called a 
granule corresponding to φ.       □ 

Ref. [2] shows that granular space <U, Form(U)> is an 
extension of the decision system S=(D, A, V, f ), where 
U=D∪V. Besides, notice that the formula set of decision 
logic can be viewed as a part of Form(U). So, granular 
space <U, Form(U)> revolves a wider range containing 
the decision system.  

By an informal explanation, a granule is regarded as a 
part of a whole[8]. Definition 4 shows that |φ| is a subset 
of U n. If U n is taken as a whole, then |φ| is a part of the 
whole. This means that |φ| defined as a granule coincides 
with the ordinary understanding.  

At first glance, <U, Form(U)> would not seem to 
involve any granules at all. However, for any formula φ
∈Form(U), φ produces the granule |φ|. Thus, granules 

have close links with the formulas in <U, Form(U)>. 
Since these formulas are connected with granules and 
cover the formulas of decision logic, it is possible to 
define a generalized form of decision reasoning which 
will operate among the formulas in <U, Form(U)>, and 
will be determined by granules. 

III.  GRANULAR REASONING 

The operations of granules in definition 4, such as |φ1|
∩|φ2|= |φ1∧φ2| , |φ1|∪|φ2|= |φ1∨φ2|  etc., are one kind of 
granular computing which is a current research topic in 
computer science, and was defined in [2]. So, definition 4 
gives properties about granular computing. The reasoning 
to be defined in this paper will involve these properties, 
also, it will be linked to the inclusion relation ⊆ over 
granules, which are all thought of as granular computing 
in this paper.  

A.    Definition of Granular Reasoning 
We now define a generalized form of decision 

reasoning which is connected with the formulas in <U, 
Form(U)>, and concerns granules and granular 
computing. Consider the following definition. 

Definition 6. Let <U, Form(U)> be the granular space 
on U, ∑⊆Form(U) and φ∈Form(U). If there exist finite 
formulas ψ1,…, ψn∈∑, such that |ψ1∧…∧ψn|⊆|φ|, then 
it is to say that φ is granularly deduced from ∑, denoted 
by ∑╞ φ, and the process of deciding whether ∑╞ φ 
holds or not is referred to as granular reasoning.   □ 

∑╞ φ, granular reasoning, establishes a connection 
between finite formulas ψ1,…, ψn in ∑ and formula φ. 
This connection is determined by granules and granular 
computing, i.e. it depends on whether granule |ψ1∧…∧
ψn| is contained in granule |φ|. 

If ∑╞ φ, then there exist finite formulas ψ1,…, ψn∈

∑, such that |ψ1∧…∧ψn|⊆|φ|. When ∑={γ 1,…, γm} is 
a finite formula set, ∑╞ φ is usually written as γ 1,…, γm

╞ φ. In this case, we have the following property: 
γ 1,…, γm╞ φ if and only if  |γ 1∧…∧γm|⊆|φ|, if and 

only if γ1∧…∧γm╞ φ. 
As the analysis between definition 4 and definition 5, 

the formulas in decision logic based on the decision 
system S=(D, A, V, f ) can be viewed as the formulas in 
Form(U), where U=D ∪ V. Thus, decision reasoning 
induced by the inclusion relation ⊆ over granules(see 
definition 0) is a special form of granular reasoning 
because according to definition 6, expression (1) can be 
expressed in terms of granular reasoning: 

(c1, v1),…, (cn, vn)╞ (d1, u1)∧…∧(d m, um). 
Also, it can be characterized as follows: 

(c1, v1)∧…∧(cn, vn)╞ (d1, u1)∧…∧(d m, um). 
This representation is the form of granular reasoning. 
Hence, granular reasoning is a generalized form of 
decision reasoning.  

In section 5, we will apply granular reasoning to 
separate a decision system into sub-decision systems. 
This will show an application of granular reasoning. 
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B.   Rules of Deduction 
Granular reasoning is determined by the inclusion 

relation ⊆ over granules. It is very different from formal 
reasoning in classical logic. We know that formal 
reasoning based on the natural deduction system[8] in 
classical logic is produced by rules of deduction which 
form the natural deduction system. How is the 
relationship between granular reasoning and the rules of 
deduction? We now investigate this problem. Let us 
review the rules in the natural deduction system. Suppose 
that ∑ or ∑’ stands for a formula set, and φ, ψ and β are 
formulas. For the sake of simplicity, we adopt the 
notation “∑, φ” to denote set ∑∪{φ}, and “∑, ∑’ ” to 
denote set ∑∪∑’. The rules of deduction in classical 
logic are listed as follows[8]: 

(∈)    ∑, φ ├ φ. 
( + )     If ∑├ φ,  then ∑,∑’├ φ. 
(﹁- ) If ∑,﹁φ├ ψ and ∑,﹁φ├ ﹁ψ,  then ∑├ φ. 
(→ +) If ∑, ψ├ φ, then ∑├ ψ → φ. 
(→ - ) If ∑├ ψ and ∑├ ψ → φ,  then ∑├ φ. 
(∧ + ) If ∑├ ψ and ∑├ φ,  then ∑├ ψ∧φ. 
(∧ -) If ∑├ ψ∧φ,  then ∑├ ψ and ∑├ φ. 
(∨ +) If ∑├ ψ,  then ∑├ ψ∨φ and ∑├ φ∨ψ. 
(∨ -) If ∑, ψ├ β and ∑, φ├ β, then ∑, ψ∨φ├ β. 
In classical logic, the system consisting of these rules 

is called the natural deduction system[8]. For any formula 
set ∑ and a formula φ, expression ∑├ φ can be 
described as follows: 

There is a sequence ∑1├φ1,…, ∑n├φn(n ≥ 1), 
where ∑i(i=1,…, n) is a formula set, φi(i=1,…, n) is a 
formula, and ∑i├φi (i=1,…, n) is obtained by using one 
of the rules in the natural deduction system, satisfying 
∑n=∑ and φn=φ. The process of getting sequence 
∑1├φ1,…, ∑n├φn is referred to as formal reasoning[8], 
denoted by ∑├ φ. 

Thus ∑├ φ, formal reasoning, stands for a process of 
getting sequence ∑1├φ1,…, ∑n├φn. Note that “∑1├ 

φ1” in this sequence must be obtained by using rule (∈), 
that is φ1∈∑1. Formal reasoning is produced by the 
rules in the natural deduction system, also, it is relevant 
to formula’s form. 

Comparing granular reasoning ∑ ╞ φ with formal 
reasoning ∑├ φ, we notice that one is determined by the 
inclusion relation ⊆ over granules, and the other is 
generated by the rules of deduction in the natural 
deduction system. Their deduction processes are very 
different. 

However, granular reasoning has connections with 
formal reasoning. Let us examine the rules in the natural 
deduction system. Each of them is an abstraction for a 
deduction pattern occurring in some disciplines, such as 
mathematics, physics, computer science, etc. So formal 
reasoning actually imitates the deduction processes 
appearing in the disciplines. If ∑├ φ implies ∑╞ φ, then 
granular reasoning will keep the deduction processes. The 
key to deriving ∑╞ φ from ∑├ φ depends on whether 

symbol “├ ” in rules (∈), ( + ), (﹁- ), (→ +), (→ -), (∧
+), (∧-), (∨+) and (∨- ) can be replaced by symbol “
╞ ”. The following will study this problem. 

C.    Granular Patterns of Reasoning 
If symbol “├ ” in rules (∈), ( + ), (﹁- ), (→ +), (→ -

), (∧+), (∧- ), (∨+) and (∨-) is replaced by symbol “
╞ ”, some changes will take place in each rule, such as 
“∑, φ├ φ” will become “∑, φ╞ φ”, and “If ∑├ φ,  then 
∑, ∑’├ φ” will become “If ∑╞ φ,  then ∑, ∑’╞ φ”, etc.  

Since symbol “╞ ” represents granular reasoning, we 
call each of the changed rules a granular pattern of 
reasoning. For example, “If ∑╞ φ, then ∑, ∑’╞ φ” 
corresponding to ( + ) is a granular pattern of reasoning. 
Now, the question is, does each of the granular patterns 
of reasoning describe a correct conclusion? The following 
theorems will give the answers. 

Theorem 1. Let <U, Form(U)> be the granular space 
on U, ∑⊆Form(U), and φ, ψ∈Form(U). The following 
granular patterns of reasoning hold: 

1) ∑, φ╞ φ. 
2) If ∑╞ φ,  then ∑,∑’╞ φ. 
3) If ∑,﹁φ╞ ψ  and ∑,﹁φ╞﹁ψ,  then ∑╞ φ. 
Proof 1) Since φ∈∑∪{φ} and |φ|⊆|φ|, it follows 

from definition 6 that ∑, φ╞  φ.  
2) Suppose that ∑╞ φ. Then there are finite formulas 

ψ1,…, ψn∈∑, such that |ψ1∧…∧ψn|⊆|φ|. Obviously, 
ψ1,…, ψn∈∑∪∑’. Thus ∑, ∑’╞ φ. 

3) Suppose that ∑,﹁φ╞ ψ and ∑,﹁φ╞﹁ψ. 
By ∑,﹁φ╞ ψ, there are finite formulas β1,…, βn,﹁φ

∈∑∪{﹁φ}, such that |β1∧…∧βn∧﹁φ|⊆|ψ|. If there 
exist formulas β1,…, βn∈∑, such that |β1∧…∧β n|⊆|ψ|, 
then |β1∧…∧βn∧﹁φ|= |β1∧…∧β n|∩|﹁φ|⊆|β1∧…
∧β n|⊆|ψ|, we still have |β1∧…∧βn∧﹁φ|⊆|ψ|. 

By ∑,﹁φ╞﹁ψ, there exist finite formulas γ1,…, γm, 
﹁φ∈∑∪{﹁φ}, such that |γ1∧…∧γm∧﹁φ|⊆|﹁ψ|, 
where γ1,…, γm∈∑. 

From these results we have |β1∧…∧βn∧﹁φ|∩|γ1 ∧

…∧γm∧﹁φ|⊆|ψ|∩|﹁ψ|. By definition 4, we get |β1∧

…∧βn∧γ1∧…∧γm|∩～|φ|⊆∅. Hence |β1∧…∧βn∧

γ1∧…∧γm|⊆|φ|. Since β1,…, βn, γ1,…, γm are finite 
formulas in ∑, we have ∑╞ φ.     □ 

Theorem 2. Let <U, Form(U)> be the granular space 
on U, ∑⊆Form(U), and φ, ψ∈Form(U). The following 
granular patterns of reasoning hold: 

1) If ∑, ψ╞ φ, then ∑╞ ψ → φ. 
2) If ∑╞ ψ  and ∑╞ ψ → φ, then ∑╞ φ. 
Proof  1) By definition 4, we have: 

|ψ → φ| = |﹁ψ|∪|φ|= ～|ψ|∪|φ|.      (2) 
Suppose that ∑, ψ╞ φ. Then there must be finite 

formulas β1,…, βn , ψ∈∑∪{ψ}, such that 
| β1∧…∧βn∧ψ|⊆|φ|,                     (3) 

where β1,…, βn∈∑.  
Since |β1∧…∧βn∧ψ|= |β1∧…∧βn|∩|ψ|, by (3) we 
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have |β1∧…∧βn |⊆～|ψ|∪|φ|. It follows from (2) that 
|β1 ∧ … ∧ βn|⊆|ψ→φ|. Because β1,…, βn are finite 
formulas in ∑, we get ∑╞ ψ → φ. 

2) Suppose that ∑╞ ψ  and ∑╞ ψ → φ. Then there 
must be finite formulas β1,…, βn∈∑, as well as γ1,…, γm

∈∑, such that |β1 ∧ … ∧ βn|⊆|ψ|, and |γ1 ∧ … ∧

γm|⊆|ψ→φ| (= ～|ψ|∪|φ|). 
From these results, we can prove |β1∧…∧βn∧γ1∧…

∧γm|⊆|φ|. In fact, for any <t1,…, t r>∈|β1∧…∧βn∧γ1

∧…∧γm| (r≥1), since |β1∧…∧βn∧γ1∧…∧γm|= |β1

∧…∧βn|∩|γ1∧…∧γm|, we have <t1,…, tr>∈|β1∧…
∧βn| and <t1,…, t r>∈|γ1∧…∧γm|. So, <t1,…, t r>∈|ψ|, 
and <t1,…, t r>∈～|ψ|∪|φ|. These means <t1,…, t r>∈|φ|. 
Thus |β1∧…∧βn∧γ1∧…∧γm|⊆|φ|. Since β1,…, βn, 
γ1,…, γm are finite formulas in ∑, we have ∑╞ φ.   □ 

Theorem 3. Let <U, Form(U)> be the granular space 
on U, ∑⊆Form(U), and φ, ψ∈Form(U). The following 
granular patterns of reasoning hold: 

1) If ∑╞ ψ  and  ∑╞ φ, then ∑╞ ψ∧φ. 
2) If ∑╞ ψ∧φ, then ∑╞ ψ  and ∑╞ φ. 
Proof  1) Suppose that ∑╞ ψ  and  ∑╞ φ. Then there 

must be formulas β1,…, βn∈∑, and γ1,…, γm∈∑, such 
that |β1∧…∧βn|⊆|ψ|, and |γ1∧…∧γm|⊆|φ|. Since |β1

∧…∧βn∧γ1∧…∧γm|⊆|β1∧…∧βn|⊆|ψ|, and |β1 ∧

…∧βn∧γ1∧…∧γm|⊆|γ1∧…∧γm|⊆|φ|, we have |β1∧

…∧βn∧γ1∧…∧γm|⊆|ψ|∩|φ|= |ψ∧φ|. Because β1,…, 
βn, γ1,…, γm are finite formulas in ∑, this means ∑╞ ψ
∧φ. 

2) Suppose that ∑╞ ψ∧φ. Then there exist finite 
formulas β1,…, βn∈∑, such that |β1∧…∧βn|⊆|ψ∧φ|. 
Because |ψ∧φ|= |ψ|∩|φ|⊆|ψ|, and |ψ∧φ|= |ψ|∩|φ|⊆|φ|, 
we have |β1∧…∧βn|⊆|ψ|, and |β1∧…∧βn|⊆|φ|. Hence, 
∑╞ ψ  and ∑╞ φ.        □ 

From this theorem, we immediately get the following 
corollary: 

Corollary 1 Let <U, Form(U)> be the granular space 
on U, ∑⊆Form(U), and φ, ψ∈Form(U). Then: 

∑╞ ψ∧φ if and only if ∑╞ ψ  and ∑╞ φ.    □ 
Theorem 4. Let <U, Form(U)> be the granular space 

on U, ∑⊆Form(U), and φ, ψ, β∈ Form(U). The 
following granular patterns of reasoning hold: 

1) If ∑╞ ψ,  then ∑╞ ψ∨φ and ∑╞ φ∨ψ. 
2) If ∑, ψ╞ β  and ∑, φ╞ β, then ∑, ψ∨φ╞ β. 
Proof  1) Suppose that ∑╞ ψ. Then there must be 

finite formulas β1,…, βn∈∑, such that |β1∧…∧βn| 
⊆|ψ|. Because |ψ|⊆|ψ|∪|φ|= |ψ∨φ| and |ψ|⊆|φ|∪|ψ|= |φ
∨ψ|, we get |β1∧…∧βn|⊆|ψ∨φ| and |β1∧…∧βn|⊆|φ
∨ψ|. Thus, ∑╞ ψ∨φ  and ∑╞ φ∨ψ. 

2) Suppose that ∑, ψ╞ β  and ∑, φ╞ β. Then there 
must be formulas γ1,…, γn, ψ∈∑∪{ψ}, and τ1,…, τm, φ
∈∑∪{φ}, such that |γ1∧…∧γn∧ψ|⊆|β|, and |τ1 ∧…
∧τm∧φ|⊆|β|, where γ1,…, γn∈∑ and τ1,…, τm∈∑. 
Thus, the following result is true: 

|γ1∧…∧γn∧ψ|∪|τ1∧…∧τm∧φ|⊆|β|. 

Because |γ1∧…∧γn∧τ1∧…∧τm∧(ψ∨φ)|= |(γ1∧…∧

γn∧τ1∧…∧τm∧ψ)∨(γ1∧…∧γn∧τ1∧…∧τm∧φ)|⊆ 

|γ1∧…∧γn∧ψ|∪|τ1∧…∧τm∧φ|, we get |γ1∧…∧γn∧

τ1∧…∧τm∧(ψ∨φ)|⊆|β|. Since γ1,…, γn, τ1,…, τm, ψ∨
φ are finite formulas in ∑∪{ψ∨φ}, this deduce the 
conclusion: ∑, ψ∨φ╞ β.           □ 

From theorems 1 to 4, we know that if symbol “├ ” in 
rules (∈), ( + ), (﹁- ), (→ +), (→ -), (∧+), (∧-), (∨+) 
and (∨- ) is replaced by symbol “╞ ”, the granular 
patterns of reasoning are correct conclusions. So, these 
patterns can be taken as rules for granular reasoning. 
Using these conclusions, we can discuss the connections 
between ∑╞ φ and ∑├ φ. 

IV.   SOUNDNESS AND COMPLETENESS 

It is well known that classical logic is the basis of other 
logics. As a major aspect of discussion, a systematic 
study of formal reasoning has been made in classical 
logic. Because formal reasoning is based on the rules of 
deduction in the natural deduction system, and the 
granular patterns of reasoning being correct conclusions 
correspond to these rules, it is ready for us to examine the 
relationship between ∑╞ φ and ∑├ φ. 

In classical logic, the natural deduction system, 
consisting of rules (∈), ( + ), (﹁- ), (→ +), (→-), (∧+), 
(∧- ), (∨+) and (∨- ), is equivalent to a related formal 
system of axioms. Because these rules are abstractions of 
deduction patterns occurring in some disciplines, they are 
easily accepted. When considering these rules on the 
granular space <U, Form(U)>, we obtain the natural 
deduction system of space <U, Form(U)>, which still 
consists of rules (∈), ( + ), (﹁- ), (→ +), (→-), (∧+), (
∧-), (∨+) and (∨-). Thus, we can conduct formal 
reasoning in the granular space. More specifically, for 
∑⊆Form(U) and φ∈Form(U), being similar to classical 
logic, the notation “∑├  φ” is still applied to denote 
formal reasoning in space <U, Form(U)>, which is 
described as follows: 

If there exist formula sets ∑1,…, ∑n⊆Form(U), and 
formulas φ1,…, φ n ∈ Form(U), such that there is a 
sequence ∑1├φ1,…, ∑n├φn, where each ∑i├φi 
(i=1,…, n) is obtained by using one of the rules in the 
natural deduction system, and ∑n=∑, as well as φn=φ, 
then the process of getting sequence ∑1├φ1,…, ∑n├φn 
is referred to as formal reasoning, denoted by ∑├φ.  

Thus, formal reasoning, i.e. sequence ∑1├φ1,…, 
∑n├φn, is generated by the rules of deduction, and the 
first expression ∑1├φ1 must be obtained by rule (∈). 
Also, formal reasoning depends on formula’s form. 

A.   Soundness on Granular Space 
Let <U, Form(U)> be the granular space on U, 

∑⊆Form(U), and φ∈Form(U). If ∑├φ implies ∑╞ φ, 
then the natural deduction system is said to have the 
property of soundness. Notice that the soundness is 
connected with the granular space <U, Form(U)>, we 
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also call it the soundness on granular space. 
Since the granular patterns of reasoning are correct 

conclusions, and each ∑i├φi (i=1,…, n) in sequence 
∑1├ φ1,…, ∑n├φn is obtained by using one of the rules 
in the natural deduction system, this means that sequence 
∑1├ φ1,…, ∑n├φn can be changed into ∑1╞ φ1,…, ∑n

╞ φn. Because ∑n=∑ and φn= φ, we immediately get the 
following theorem. 

Theorem 5. Let <U, Form(U)> be the granular space 
on U, ∑⊆Form(U) and φ∈Form(U). The soundness on 
granular space holds, i.e. if ∑├ φ, then ∑╞ φ.     □ 

We know that rules (∈), ( + ), (﹁- ), (→ +), (→ -), (
∧ +), (∧- ), ( ∨ +) and ( ∨-) represent deduction 
patterns in some disciplines. So, formal reasoning 
describes the deduction processes occurring in the areas, 
such as mathematics, physics, computer science, etc. The 
soundness on granular space indicates that granular 
reasoning keeps the deduction processes. Now, we ask 
this question: does granular reasoning extend the 
deduction processes of formal reasoning? The following 
will give the answer to it. 

B.  Completeness on Granular Space 
Let <U, Form(U)> be the granular space on U, 

∑⊆Form(U) and φ∈Form(U). If ∑╞ φ implies ∑├ φ, 
then the natural deduction system is said to have the 
property of completeness. Since the completeness is 
linked with the granular space <U, Form(U)>, we also 
call it the completeness on granular space. 

However, the completeness on granular space does not 
hold. It can be explained by an example: 

Example. Consider a universal set U={1, 2, 3}. Let 
P= {<1, 2>, <1, 3>} and Q={<1, 2>, <1, 3>, <2, 3>}. P 
and Q are binary-relations on U. Let φ=P(x1, x2) and 
ψ=Q(x1, x2). Then φ, ψ∈Form(U). By definition 4, we 
have |φ|=P and |ψ|=Q. Since P⊆Q, we get |φ|⊆|ψ|, so φ
╞ ψ. But φ├ ψ is not true, because we cannot use the 
rules in the natural deduction system to prove φ├ ψ. The 
form of formula φ is different from the form of formula ψ, 
and formal reasoning completely depends on formula’s 
form. 

As we have seen above, the soundness holds, but the 
completeness does not hold on granular space. This 
shows that formal reasoning can be copied by granular 
reasoning, but granular reasoning cannot be fully imitated 
by formal reasoning. Thus granular reasoning has 
extended the deduction patterns represented by the rules 
in the natural deduction system. From logical viewpoint, 
researchers always hope that a formal system not only has 
the property of soundness, but also has the property of 
completeness. However, the conclusions about the 
soundness and completeness on granular space show that 
granular reasoning is an extension of the deduction 
processes produced by the natural deduction system. This 
is just the result we are expecting, because we always try 
to set up reasoning approaches which develop classical 
reasoning.  

The truth of the soundness on granular space is 
significant. This means that classical reasoning can be 

taken as a foundation to support granular reasoning, as 
well as to support decision reasoning. For any deduction 
process produced by the rules in the natural deduction 
system, granular reasoning or decision reasoning will 
preserve the deduction process. 

V.   DECISION SYSTEM’S DECOMPOSITION 

Granular reasoning can be used to study properties 
about a decision system. Based on granular reasoning, a 
decision system can be separated into sub-decision 
systems. We now discuss the decomposition approach 
which is closely connected with granular reasoning. 

Consider a decision system S=(D, A1∪A2, V, f ), which 
is represented by Table I. where D={z1, z2, z3, z4}; A1={c1, 
c2} and A2={d1, d2}, c1 and c2 are condition attributes, d1 
and d2 are decision attributes; V={1, 2, 3}; f : D×(A1∪

A2)→V is the information function, its correspondences 
are explicit, such as f(z1, c1)=1, f(z1, c2)=2, f(z2, d1)=1, 
f(z3, d1)=2, f(z3, d2)=3, etc. Sometimes, S=(D, A1∪A2, V, 
f ) is abbreviated to S=(D, A1∪A2). As the discussion in 
section 1, we are able to get a decision rule: 

(c1, v1)∧(c2, v2) → (d1, u1)∧(d 2, u2), 
where v1, v2, u1, u2∈V. This rule can be taken as a 
formula on U=D ∪ V (see the discussion between 
definition 4 and definition 5). 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, consider the granules |(c1, v1)∧(c2, v2)| and |(d1, 
u1)∧(d 2, u2)|. If |(c1, v1)∧(c2, v2)|⊆|(d1, u1)∧(d 2, u2)|, 
by definition 6 we have (c1, v1)∧(c2, v2)╞ (d1, u1)∧(d 2, 
u2), or by definition 0 we say that the decision rule (c1, v1)
∧(c2, v2) → (d1, u1)∧(d 2, u2) is true. 

TABLE I. 
DECISION SYSTEM S 

D c1 c2 d1 d2 

z1 1 2 1 2 
z2 1 2 1 2 
z3 2 3 2 3 
z4 2 3 3 3 

TABLE II. 
SUB-DECISION SYSTEM S1 

D c1 c2 d1 

z1 1 2 1 
z2 1 2 1 
z3 2 3 2 
z4 2 3 3 

TABLE III. 
SUB-DECISION SYSTEM S2 

D c1 c2 d2 

z1 1 2 2 
z2 1 2 2 
z3 2 3 3 
z4 2 3 3 
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For the decision system S=(D, A1∪A2), where A1= {c1, 
c2} and A2={d1, d2}, consider its two sub-decision 
systems S1=(D, A1 ∪ {d1}) and S2=(D, A1 ∪ {d2}), 
represented by Table II and Table III respectively, where 
{d1}∪{d2}= A2. Corresponding to S1 and S2, we have the 
decision rules (c1, v1)∧(c2, v2) → (d1, u1) and (c1, v1)∧(c2, 
v2) → (d 2, u2). These decision rules have close links with 
the decision rule (c1, v1)∧(c2, v2) → (d1, u1)∧(d 2, u2) 
corresponding to S. In fact, from corollary 1, we get the 
following conclusion. 

Corollary 2  (c1, v1)∧(c2, v2)╞ (d1, u1)∧(d 2, u2) if and 
only if (c1, v1)∧(c2, v2)╞ (d1, u1) and (c1, v1)∧(c2, v2)╞
(d 2, u2).              □ 

Therefore, decision rule (c1, v1)∧(c2, v2) → (d1, u1)∧
(d 2, u2) is true if and only if decision rules (c1, v1)∧(c2, 
v2) → (d1, u1) and (c1, v1)∧(c2, v2) → (d 2, u2) are true, 
simultaneously.  

Hence, the decision reasoning based on decision 
systems S1 and S2 can determine the decision reasoning 
based on decision system S; and vice versa. Using 
decision reasoning, we can separate decision system 
S=(D, A1∪{d1, d2}) into sub-decision systems S1=(D, A1

∪{d1}) and S2=(D, A1∪{d2}); also, we can combine S1= 

(D, A1∪{d1}) and S2=(D, A1∪{d2}) together to form 
S=(D, A1∪A2). Granular reasoning sets up a bridge 
between a decision system and its sub-decision systems. 
This means that Table I can be divided into Table II and 
Table III; also, Table II and Table III can come together 
to form Table I, which are supported by granular 
reasoning. 

More specifically, consider a decision rule of Table I: 
(c1, 1)∧(c2, 2) → (d1, 1)∧(d 2, 2), 

which is connected with decision rules (c1, 1)∧(c2, 2) 

→(d1, 1) and (c1, 1)∧(c2, 2)→ (d 2, 2) corresponding to 
Table II and Table III, respectively. It is not difficult to 
know that (c1, 1)∧(c2, 2)╞ (d1, 1)∧(d 2, 2) if and only if 
(c1, 1)∧(c2, 2)╞ (d1, 1) and (c1, 1)∧(c2, 2)╞ (d 2, 2). 

Moreover, consider another decision rule of Table I: 
(c1, 2)∧(c2, 3) → (d1, 3)∧(d 2, 3). 

Corresponding to it, we get decision rule (c1, 2)∧(c2, 3) 

→ (d1, 3) of Table II, and decision rule (c1, 2)∧(c2, 3) → 

(d 2, 3) of Table III. From Table II, we know |(c1, 2)∧(c2, 
3)|={z3, z4} and |(d1, 3)|={z4}. Obviously, granule |(c1, 2)
∧(c2, 3)| is not contained in granule |(d1, 3)|. This means 
that (c1, 2)∧(c2, 3)╞ (d1, 3) fails to hold. It follows from 
corollary 2 that (c1, 2)∧(c2, 3)╞ (d1, 3)∧(d 2, 3) does not 
hold. In fact, Table I shows |(c1, 2)∧(c2, 3)|={z3, z4} and 
|(d1, 3)∧(d 2, 3)|={z4}. Since granule |(c1, 2)∧(c2, 3)| is 
not contained in granule |(d1, 3)∧(d 2, 3)|, (c1, 2)∧(c2, 3)
╞ (d1, 3)∧(d 2, 3) is not true. 

Furthermore, let S=(D, A1 ∪ {d1, d2,…, dm}) be a 
decision system, here A1 is the condition attribute set, and 
d1, d2,…, dm are decision attributes. Based on granular 
reasoning, S=(D, A1∪{d1, d2,…, dm}) can be divided 
into m sub-decision systems S1=(D, A1∪{d1}), S2=(D, 

A1∪{d2}),…, and Sm=(D, A1∪{dm}). At the same time, 
S1, S2 ,…, and Sm can come together to form S as well. 

Thus, when making decision reasoning, it is sufficient 
to consider such decision systems which have only one 
decision attribute. 

Granular reasoning provides theoretical support for the 
decomposition and combination of decision systems. This 
is an application of granular reasoning. 

VI.    CONCLUSION 

Granular reasoning introduced in this paper is a 
generalized form of decision reasoning. The researches 
on it focus on two aspects. First, we investigate the 
connections between granular reasoning and classical 
reasoning. The related theorems show that granular 
reasoning satisfies the granular patterns of reasoning 
which correspond to the rules in the natural deduction 
system. This is significant because we conclude from 
these theorems that granular reasoning can imitate the 
deduction processes occurring in classical logic, at the 
same time, granular reasoning has extended the deduction 
processes. Second, we use granular reasoning to divide a 
decision system into sub-decision systems. Therefore, 
decision reasoning which is based on a decision system 
becomes to rely on sub-decision systems. This makes 
decision reasoning easier. All of these constitute the main 
part of our researches in this paper. 

The idea of introducing and studying granular 
reasoning stems from decision logic[1]. We are aimed at 
laying a foundation for decision reasoning. The analysis 
shows that decision reasoning is a special form of 
granular reasoning, and granular reasoning covers a wider 
range than decision reasoning. This indicates that the 
granular patterns of reasoning are also satisfied by 
decision reasoning. Hence, there are close connections 
between classical reasoning and decision reasoning. 
Classical logic provides support for decision logic. 

One of the purposes of making researches on granular 
reasoning is to study granular computing[7-12] that is a 
current research topic. Informally, granular computing 
can be regarded as various operations, combinations or 
relations which correlate with granules[2]. From 
definition 6 we know that granular reasoning is defined 
by the inclusion relation over granules, and operations or 
combinations of granules are used to decide whether a 
granule is contained in another. Thus, granular reasoning 
can be thought of as one kind of granular computing. This 
can be clearly seen from the proofs of the theorems in 
section 3.3, in which intersections or unions of granules 
are frequently used to get some consequents. So, granular 
reasoning provides an approach for the study of granular 
computing.  

Also, the applications of granular reasoning is an 
important aspect of our study. As an example of applied 
researches, an application is discussed in section 5, which 
shows that granular reasoning can be used to separate or 
combine decision systems. However, whether granular 
reasoning can be applied in a wide range deserves further 
consideration in the future. 
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