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Abstract�This paper introduces a model for modeling real-
time and mobile systems, which extends the DD-LOTOS
language by the mobility nature of processes. Our model al-
lows processes to move between distributed sites or localities,
i.e. mobility of processes. Two types of communication are
present in our model, local communication, i.e. the exchange
of information between two processes in the same location,
and remote communication, i.e. the exchange of information
between two different localities, the latter is ensured by
message exchange.
We propose a syntactic and structured operational semantics
based on true-concurrency semantics, expressing parallel
behaviors and supporting at the same time temporal con-
straints, explicit actions durations, structural and temporal
non-atomicity of actions and urgency. We also propose a
semantic model for automatic veri�cation tools, this model
expresses aspects of the language DD-LOTOS, and adds
mobility of process.

Index Terms�True concurrency semantics, Mobility, Real
time systems, Distributed systems, LOTOS.

I. INTRODUCTION

The design, speci�cation and analysis of real time
and mobile systems reveal a great challenge today. This
design and analysis requires methods and tools for formal
speci�cation. Process algebras are languages designed
with the aim to specify this type of system, and many
models have been proposed, particularly CCS[13][14],
� � calculus[16], despite all the properties that can be
studied in CCS, this calculus requires a �xed communica-
tion structure , on the other hand �-calculus resolves this
dif�culty by crossing a big step for creating new chan-
nels and to communicate channel names on a channel.
LOTOS[7], is a formal description technique promoted to
the rank of standard ISO, it relies on language CCS and
CSP[6].
Despite the formal framework of the theoretical model,

these languages suffers from some insuf�ciencies and

ignore one or several characteristics of distributed, mobile
and real-time systems. Several formalisms appeared to
argue about such systems, in particular the models which
take into account the time aspect in the model such as
TCCS(Timed CCS)[17], RT-LOTOS[4], ET-LOTOS[11]
and D-LOTOS[23], other models support the mobility and
distribution of computation as Mobile ambients[9] based
on the notion of locality, the Distributed �-calculus[5],
distributed Join-calculus[3] is an asynchronous calculus
with mobility and distribution. In [8], it was proposed
bigraphs allowing unifying the mobile ambients and the
�-calculus.
The main objective of these models is the modeling

of aspects: mobility, distribution and real time. In � �
calculus mobility is expressed by the links move, in
the virtual space of linked processes[15]. This mobility
allows the dynamic recon�guration of the topology of
the interconnections between processes. The notion of
locality is often associated that of migration allowing
the mobility of entities between the various domains of
a system. A distributed system can be described as a
collection of computational activities spread among dif-
ferent sites or localities, which can be physical or logical.
eg D�-calculus offers construct expressing migration and
communication purely local, DJoin-calculus also provides
primitives for explicit localities, migration, remote com-
munication, and join-patterns for local communication.
The other important aspect is the time, the models

CCS, LOTOS, � � calculus, and Join-calculus does
not allow to specify system whose behavior depends
strictly on time. Most of the protocols contain timing
mechanisms essential for the safety of functioning. Most
of the works concern the extension of existing models and
in particularly the process algebras: TCCS, RT-LOTOS,
ET-LOTOS, D-LOTOS, �RT � calculus[10].
In previous works, a language for modeling distributed

real-time systems named DD-LOTOS[12] was proposed,
extends the language D-LOTOS to support distribution,
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which incorporating both temporal constraints and dura-
tions of actions. DD-LOTOS has true concurrency se-
mantics, in which we escape the assumption of actions
structural and temporal atomicity, the idea is based on
maximality-based semantics[22].
In this paper, we present a model for modeling distrib-

uted, mobile and real time systems. The main advantage
of our approach is the explicit support of the following
characteristics:
� Concurrent and parallel behaviors : our
model is de�ned using a true concurrency
semantics(maximality-based semantics),

� Distribution of calculus : to take into account the
distributed aspect of distributed systems, localities
are de�ned explicitly in the model,

� Mobility : using a primitive explicit processes can
migrate from an locality to another,

� Real-time : the aim of introducing time in the model,
it is to allow the description of the quantitative aspect
of the moments which events are really occurs.

The paper is organized as follows : in section 2 we
present maximality semantics and the syntax and opera-
tional semantic of DD-LOTOS, in section 3 we present
the syntax and semantic of our language( Mobile DD-
LOTOS). In section 4 we present mobile semantic model
for mobile real time systems based on communicating
automata which provides a formal basis to reasoning
about the desired properties of such systems. Section 5
gives an example of generation of model Mobile C-DATA
from a Mobile DD-LOTOS speci�cation. Related work is
exposed in section 6, �nally in section 7 we conclude.

II. DISTRIBUTED CALCULUS

A. Maximality semantics
In this section, we introduce maximality semantics of

BASIC LOTOS[7], as de�ned in [23].
1) Principle of semantics of maximality
Semantics of a concurrent system can be characterized

by all the states of the system and the transitions through
which the system passes from a state to another. In the
approach based on maximality, the transitions are events
which represent only the beginning of the execution of
the actions.
To illustrate the principle of maximality let us consider

the expressions of the behavior E and F as follow:
E = a; stopjjjb; stop and F = a; b; stop[]b; a; stop
In the initial state, no action was yet executed, thus

the set of the maximal events is empty, hence from the
following initial con�gurations associated with E and F :
�[E] and �[F ]. By applying semantics of maximality, the
following transitions are possible:

�[E]
�ax�!mfxg [stop] jjj �[b; stop]

�bx�!mfxg [stop] jjjfyg[stop]

x (resp y) being the name of the event identifying the
beginning of the action 'a' (respectively ' b '). Given that
nothing can be concluded about the ending of both actions

'a' and 'b ' in the con�guration fxg[stop]jjjfyg[stop], x
and y are there then maximal in this con�guration. It
should be noted x is also maximal in the intermediate state
represented by the con�guration fxg[stop]jjj�[b; stop]. For
the initial con�guration, associated with the expression of
behavior F , the following transition is possible :

�[F ]
�ax�!mfxg [b; stop]

As previously, x identi�es the beginning of the action
'a' and it is the name of the only maximal event in
the con�guration fxg[b; stop]. It is clear that, in view
of semantics of the operator of pre�xing, the beginning
of the execution of the action ' b ' is possible only if
the action 'a' ended its execution. Consequently, x is no
longer maximal when the action ' b ' begins its execution;
the unique maximal event in the resultant is thus the one
identi�ed by y which corresponds to the beginning of the
execution of the action ' b '. All the names of the maximal
events were thus modi�ed by the deletion of x and the
addition of y, which justify the following derivation:

fxg[b; stop]
fxgay�! mfyg [stop]

The con�guration fyg[stop] is different from the con-
�guration fxg[stop] jjj fyg[stop], because the �rst one
possesses only a single maximal event (identi�ed by y),
while the second possesses two (identi�ed by x and y).

B. Introduction of durations and of the temporal con-
straints
Let D be a countable set, the elements of D indicate

temporal values. Let = be the set of all duration functions
� : Act ! D such as �(i) = �(�) = 0. �0 is the
constant function de�ned by �0(a) = 0 for all a 2 Act.
The duration function � being �xed, let us consider the
behavior expression of G = a; b; stop. In the initial state,
no action is complying, thus the associated con�guration
is �[a; b; stop]; starting from this state, the transition

�[a; b; stop]
�ax�!fxg [b; stop] is possible. The resulting

state interprets the fact that the action a is potentially
in execution. According to the maximality semantics, we
cannot know if the action a has terminated its execution,
except if the action b starts its execution (the beginning of
b depends on the end of a); thus, if b starts its execution,
we can deduce that a has been terminated. We can thus
note that the durations of actions are present in an intrinsic
but implicit way in the maximality approach; their explicit
consideration will enable us to reason on the quantitative
properties of system behaviors.
By taking into account the duration of the action a,

we can accept the transition: �[a; b; stop]
�ax�!fx:a:�(a)g

[b; stop]. The obtained con�guration shows that the action
b can begin its execution only if a duration equal to �(a)
has passed, this value represents the necessary time for
the execution of action a. Of course, we can consider
the intermediate states representing the �owing of a lapse
of time t � �(a) by fx:a:�(a)g[b; stop]

t�!fx:a:�(a)�tg
[b; stop]; such con�gurations will be called there after

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 565

© 2012 ACADEMY PUBLISHER



temporal con�gurations, which leads us to note that
a con�guration generated by the maximality semantics
represents in fact a class of temporal con�gurations. The
explicit consideration of the durations of action in the
process algebras alone does not allow to specify real-time
systems. Compensate for this insuf�ciency, the classic
operators of delay similar those introduced into temporal
extensions of LOTOS are used, such as ET-LOTOS or
RT-LOTOS, semantics of these operators being naturally
expressed in the context of maximality.
Because the actions are not atomic, the temporal

constraints concern, in this context, the beginning of
execution of the actions and not the complete execution
of the actions.

C. Distributed D-LOTOS language
The DD-LOTOS[12] language represents an extension

of D-LOTOS language to support the distribution and
communication between the localities, it was enriched
with the following features:
� The explicit distribution and remote communication.
Distribution is ensured by introducing the notion of

locality. Localities exchange information by the principle
message exchange. The syntax of DD-LOTOS is de�ned
as follows:

E ::= Behaviors
stop j exitfdg j �dE j X[L] j
g@t[SP ];E j i@tfdg;E j hideL inE j
E[]E j Ej[L]jE j E � E j E [> E
j a!vfdg;E
j a?xE

S ::= Systems
� j S j S j l(E)

Fig. 1: Syntax of DD-LOTOS

Let PN , ranged over by X;Y ..., be an in�nite set
of process identi�ers, and let G, ranged over by g, the
set of gates (observable actions). i =2 G is the internal
action and � =2 G is the successful termination action.
Act = G [ fi; �g, ranged over by �; is the set of actions.
L denotes any �nite subset of G. The terms of DD-
LOTOS are named behavior expressions, B ranged over
by E;F; ::: denotes the set of behavior expressions.
Let D be a domain of time. � : Act! D is the duration

function which associates to each action its duration. We
assume �(i) = �(�) = 0. Let g be an action, E a behavior
expression and d 2 D a value in the temporal domain.
The main syntax concerns the syntax of systems S

and behavior expression E. The informal semantics of
syntactic items is the following:
� Informally afdg means that action a has to begin its
execution in a temporal interval [0; d]. �dE means
that no evolution of E is allowed before the end of
a delay equal to d. In g@t[SP ]; E (resp. i@tfdg;E
) t is a temporal variable recording the time taken
after the sensitization of the action g (resp. i) and

which will be substituted by zero when this action
ends its execution.

� The basic operators of process algebras as : nondeter-
ministic choice E[]E, parallel composition Ej[L]jE,
the interiorization hideL inE, sequential composi-
tion E � E; and preemption E [> E:

� The expression a!vfdg;E; speci�es the emission
message v via the communication channel a: This
emission operation must occur in the temporal inter-
val [0; d]:

� On the other side, the behavior expression a?xE
speci�es the message receiving on channel a. The
received message substitutes the variable value x:
This variable is used in the behavior expression E:

� A system may be either :
� Empty, expressed by �,
� The composition of sub systems S j S; or
� A behavior expression E in a locality l ex-
pressed by l(E):

De�nition 1: The set of event names is a denumerable
set noted M. This set is ranged over x; y; :::: M;N; :::
denotes a �nite subsets ofM. The set of atoms of support
Act is Atm = 2Mfn � Act � M, 2Mfn is the power set
of M. For M 2 2Mfn; x 2 M and a 2 Act, the atom
(M;a; x) be noted Max. The choice of an event name can
be deterministic by using any function get : 2M�f�g !
M satisfying get(M) 2 M for all M 2 2M � f�g:
De�nition 2: The set Ct of temporal con�gurations is

de�ned by :
� 8E 2 B; 8M 2 2M�Act�D

fn : M [E] 2 Ct
� 8P 2 PN; 8M 2 2M�Act�D

fn : M [P ] 2 Ct
� if E 2 Ct then hide L in E 2 Ct
� if E 2 Ct et F 2 B then E � F 2 Ct
� if E ;F 2 Ct then E op F 2 Ct op 2 f [] ; jjj ; jj
; j[L]j ; [> g

� if E 2 Ct et fa1; :::; ang; fb1; :::; bng 2 2Gfn then
E [b1=a1; :::; bn=an] 2 Ct

� 8E 2 Ct;8d 2 D : �dE 2 Ct
� fx:g:dg[E(t)] 2 Ct
De�nition 3: (actions) The actions in global system are

:
� The set of communication actions between localities
: are emission or receiving messages through a
communication channel Actcom ::= a!m j a?x j�
(output actions, input actions and the silent action).

� The set Act = G [ fi; �g previously de�ned.
De�nition 4: (Localities and channels) : The set L

ranged over by l, denotes the set of localities. # an
in�nite set of channels de�ned by users ranged over
by a,b,...channels are used for communication message
between localities.

D. Structured operational semantics :
The temporal maximality transition relation between

the temporal con�gurations is noted !� Ct � Atm [
D � Ct. This semantic is given as follows :
Process a!vfdg;E : Let us consider the con�guration

M [a!vfdg;E], the emission of the message v begins
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once the actions indexed by the set M; have �nished
their execution, conditioned by the condition Wait(M)
which must be equal to false in rule (1). The predicate
Wait : 2M�Act�D

fn �! ftrue; falseg de�ned on every
M 2 2M�Act�D

fn as follows: Wait(M) = 9x : a : d 2
M such that d > 0. Intuitively, Wait(M) = true if
there is at least an action referred in M which is yet in
execution. Rules (2) and (3) express the fact that the time
attached to the process of emission cannot begin to elapse
only if all the actions referenced by M are �nished. Rule
(4) imposes that the occurrence of the action of emission
takes place for the period d, otherwise the process is
transformed to Stop:

(1) :Wait(M)

M [a!vfdg;E]
Ma!vx�! fx:a!v:tg[E]

x = get(M)

(2) Wait(Md0 ) or (:Wait(Md0 ) and 8">0: Wait(Md0�")) d0>0

M [a!vfdg;E]
d0�!

Md0 [a!vfdg;E]

(3) :Wait(M)

M [a!vfd0+dg;E]
d�! M [a!vfd0g;E]

(4) :Wait(M) and d0>d

M [a!vfdg;E]
d0�! M [stop]

Process a?xE : Let us consider the con�guration
M [a?xE]; the following rule expresses that the receiving
starts once the action indexed by the set M have �nished
its execution.

:Wait(M)

M [a?xE]
Ma?xy�! fy:a?x:0g[E]

Remote communication
Distributed activities exchange messages between

them, the expression l(a!vfdg), expresses that the mes-
sage v is offered for a duration d: By an activity at the
locality l; the message v should be sent on channel a:
On the other side, k(a?xE) speci�es that activity E in
locality k is ready to receive a message on channel a. The
following rule de�nes the remote communication between
two distributed activities via the channel a: In this case
communication will be speci�ed by silent (� ) evolution
as follows :

�
M [l(a!vfdg;E1)] j M0 [k(a?xE2)]

�! M [l(E1)] j M0 [k(E2fv=xg)]

Time evolution on system
E

d�!E0

l(E)
d�! l(E0)

S1
d�!S01 S2

d�!S02

S1 j S2
d�! S01 j S02

III. THE MOBILE DD-LOTOS LANGUAGE

In this section we propose a calculus for distributed,
real time computing with mobility. In DD-LOTOS, dis-
tribution is ensured by the presence of localities in the
calculus.
The mobile and distributed applications are naturally

dynamic, which means that the number of processes
involved in the system is not �xed. All any time there can
be a new creation of processes, or a deletion of another

process. To be able to study this type of applications, it is
necessary to use dynamic models, among other models,
which formally supply tools for this characteristic.
Our calculus introduces the dynamics by allowing the

processes to migrate from a locality to an other one.
Although we require a new primitive to enable migration
between localities. Thus we augment DD-LOTOS with
the construct : go(l; E)fdg, intuitively this means : mi-
grate the behavior E to location l, this migration is offered
to the environment for a period d. Another dynamic
aspect of our calculus is the possibility of creating of
new locality, or deletion of localities.
Let us illustrate our approach with an example repre-

sented by the following system:

l(F jjj (creat(k;E) >> go(k;E0)fdg))
It is constituted of a single locality l. This locality

contains two parallel processes, the �rst one F , and
the second is composed by the sequential composition
operator (>>), which is composed of the process of
creating the locality k (creat(k;E)) and followed by the
migration process (go(k;E0)fdg):
After one calculus step, we obtain the system :

l(F jjj go(k;E0)fdg) j k(E)
This step consists of creating the locality k, so the

system decomposes now of two localities l and k. We
assume that the migration will be activated in the time
interval [0; d], we obtain the following system :

l(F ) j k(E0jjjE)
If the process F completes its behavior, so it becomes

the process stop, then we obtain :

l(stop) j k(E0jjjE)
In our calculus a locatity which contains that the

process stop will be deleted, we obtain the following
system :

k(E0jjjE)
A. Syntax
In this section we introduce our calculus of mobile

processes. We extend the DD-LOTOS to model mobile
systems, processes can be distributed into several local-
ities. The proposed model represents both local compu-
tation on different localities and remote communication
between localities. We introduce structures to account for
creation of localities and migration of behaviors.
De�nition 5: (actions) The actions in global system are

of the following :
- The set Act = G [fi; �; go; createg: speci�c processes
within a locality
- And the set of communication actions between localities
: are emission or receiving messages through a communi-
cation channel Actcom ::= a!m j a?x j� (output actions,
input actions and the silent action).
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The syntax of our model is an extension of that of
DD-LOTOS, by introducing aspects of mobility.
The syntax of calculus is given in �gure 2. The main

syntactic category is that of a system S and behaviors
E. Intuitively, a system consists of a set of localities
running independently in parallel, which localities can
communicate via channels. The system can be empty or
contains behaviors for execution .
If the expression go(k;E) is currently residing at

locality l it can migrate to the locality k and then continue
the execution of E. The set B ranged over by E;F; :::
denotes all the expressions of behaviors.

E ::= Behaviors
...
j go(l; E)fdg Migration
j create(l; E) Creation of locality

S ::= Systems
� j S j S j l(E)

Fig. 2: Syntax of Mobile DD-LOTOS

The informal meaning of the various builders so de-
�ned is the following :
- A process go(l; E)fdg provokes the migration of

the behavior E to location l, this migration is offered
to the environment for a period d. The migration must
be realized in the space of the time 0 to d, if the time
taken exceeds d, the action is no available to the envi-
ronment. In a system without temporal constraints, this
process behaves as follows: The locality which contains
the migration, migrates to the locality described in the
primitive.
- A process create(l; E) provokes the creation of the

locality l and start the execution of the behavior E in this
locality.
Example
Let be the following system:

l(go(k;E)fdg jjj F ) j k(E0)

The system is composed of two localities. The locality
l contains two parallel processes : the action of migration
and the process F . The locality k that contains the process
E'.
In this system we have several cases:
Case 1 :
The migration can take place before the time taken does

not exceed d units, which gives :

l(F ) j k(E0 jjj E)

Case 2 :
There is a duration d0, such as d = d0 + d00, and the

time taken after the action of migration is made sensitive
is d", which gives :

l(go(k;E)fd0g jjj F ) j k(E0)

Case 3 :
The time taken exceeds the duration d, thus the migra-

tion will never occur, which gives :

l(F ) j k(E0)

In that case we have to make the action of migration
take place within the period d, otherwise the migration
will never occur.

B. Structured operational semantics of calculus :
In[12] we studied two aspects of distributed systems:

distribution and communication. In distribution we in-
troduced the notion of locality, for communication we
have adopted two types: local communication in the
same locality on the gates of synchronization and remote
communication by sending / receiving messages commu-
nication channels. The semantics of basic operators (stop,
exit, preemption, delay operator, action with predicate,
Interiorization, nondeterministic choice, parallel compo-
sition, sequential composition) remains the same as in
D-LOTOS.
De�nition 6: The relation of transition of maximality

!� C�Atm[D � C is de�ned as the smallest relation
satisfying the following rules:
� Process of creation of localities : l(create(k;E))
Let us consider the con�guration M [l(F j

create(k;E))], this con�guration represents potential
evolutions according to the actions indexed by the set M .
The creation of localities can not occur until the actions
indexed by the set M have completed their execution,
that is wait(M) = false in rule (1). If the action of
creation is not sensitized and we have d units of time
passed, then it is expressed by rule (2).
(1) :wait(M)

M [l(F j create(k;E))] M
createx! �[l(F )] jfx:create:0g[k(E)]

(2) wait(Md) d>0

M [l(F j create(k;E))] d!
Md [l(F j create(k;E))]

� Process of deletion of localities :
If the set of processes in current execution in a locality

is stop, we delete this locality.
(1) :wait(M) and [l(stop)]

M [l(stop)]
�! �[�]

(2) :wait(M) and M [l(stop)] jjj N [k(E)]

M [l(stop)] jjj N [k(E)]
�! N [k(E)]

� Process of migration : M [k(go(l; E)fdg)]
We consider the con�guration k(F j go(l; E)fdg),

the process of migration can not occur until the actions
indexed by the set M have completed their execution,
which is expressed by rule (1). Rule (2) requires that the
occurrence of the action go has for the period d, in the
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contrary case the migration will never. Rule (3), expresses
the passage of time.

(1) :wait(M)

M [k(F j go(l;E)fdg)] M
gox! �[k(F )] jfx:go:0g[l(E)]

x =

get(M)

(2) :wait(M) and d0>d

M [k(go(l;E)fdg)]
d0! M [k(Stop)]

(3) :wait(M) and d0>0

M [k(go(l;E)fd+d0g)]
d!

Md [k(go(l;E)fd0g)]

IV. BEHAVIORAL MODEL FOR MOBILE, REAL TIME
SYSTEMS

In[12] we discuss a further extension of DATA[1],
who take in account the remote communication with
the intuition that a distribution of calculus is explicit
(each automaton represents a locality), so this model is
still static and he does not allow dynamic evolution of
calculus, to represent the notions recently de�ned for our
calculus, we have to extend our model C-DATA[12], to
allow the constructs de�ned for the purposes: Migration,
Creation of localities and also Deletion theme.
Our model distinguishes between two types of calcu-

lus, local and global, for the local calculation we can
synchronize the communications between the processes,
description can be done with the C-DATA.
We propose an extension of C-DATA for the support

and to express the mobility of processes, creation and
destruction of localities expresses the dynamic aspect of
the calculus.

A. Formalization
De�nition 7: A Mobile Communicating DATA (Mo-

bile C-DATA) A(S;LS ; s0; #;H;�; TD) represents a sub-
system with :
� S is a �nite set of states,
� LS : S ! 2

�t(H)
fn is a function which corresponds to

each state s the set F of ending conditions(duration
conditions) of actions possibly in execution in s,

� s0 2 S is the initial state,
� # is the alphabet of the channels on which messages
�ow between the subsystems.

� H is a �nite set of clocks,
� � = Actcom [Act, is the set of actions of A; and
� TD � S � 2�t(H)fn � 2�t(H)fn ���H � S is the set
of transitions.
A transition (s;G;D; �=(a(!=?)v)=� ; z; s0)
represents switch from state s to state s0, by
starting execution of action � 2 Act (creating,
deletion or migration of a locality); actions
of communication(emission or Receiving) or

synchronization for the accomplishment of
communication (silent action) and updating
clock z.
G is the corresponding guard which must be
satis�ed to �re this transition.
D is the corresponding deadline which requires, at
the moment of its satisfaction, that action � must
occur.
(s;G;D; �=(a(!=?)v)=� ; z; s0) can be written
s
G;D;�=(a(!=?)v)=�);z��������������! s0:

De�nition 8: (System) A system of n Mobile C-
DATA is a tuple S = (A1; : : : ; An), with Ai =
(Si; LSi ; s0i ; #;Hi;�i; TiD) a Mobile C �DATA:
De�nition 9: 1) States : GS(S) = (s1; v1)� : : :�
(sn; vn)� (#�)p ; is the set of states.

2) Initial state The initial state of S is :q0 =
((s01; 0); : : : ; (s0n; 0) : �1; : : : ; �p) such as � is the
empty word on the alphabet #

3) System states Let S = (A1; : : : ; An) a
system of n Mobile C-DATA; Ai =
(Si; LSi ; s0i ; #;Hi;�i; TiD) :
A global state of S is de�ned by the state of each
subsystem and the states of each channel, a state
of S is an element of
(s1; v1) � : : : � (sn; vn) � (#�)p such that vi(h)
are valuations on H .

De�nition 10: Let S = (A1; : : : An) be a system of n
Mobile C-DATA; Ai = (Si; LSi ; s0i ; #;Hi;�i; TiD).
The semantics of a system S is given by the fol-
lowing rules. A transition T between the state s =
((q1; v1); : : : ; (qn; vn) : x1; : : : ; xp) and the state s0 =
((q01; v01); : : : ; (q0n; v0n) : x01; : : : ; x0p) is a rule of
emission (RE) or reception (RR) or executing a silent
action (RA) or passage of time (RP ) or creation rule
(RC) or migration rule (RM ) or deletion rule (RD) or
synchronization rule (RS):

(1) (RE rule of emission)
((qi;vi);a!v; (q0i;v

0
i))2TD

(:::;(qi;vi);:::::::;xg;:::)
a!v!(:::;(q0i;v0i);:::::::;xg:a;:::;)

(2) (RR rule of reception)
((qi;vi); a?x; (q0i;v

0
i)) 2 TD

(:::;(qi;vi);:::::::;xg:a;:::)
a?x! (:::;(q0i;v0i);:::::::;xg;:::)

(3) (RA rule of executing an internal action)
((qi;vi); a; G; D; z; (q0i;v

0
i)) 2 TD vj=G

(:::;(qi;vi);:::::::;xi;:::)
�!(:::;(q0i;v0i);:::::::;xi;:::)

(4) (RP passage of time)
d2R+ 8d0�d (vi+d) 2D

(:::;(qi;vi);::::x1;:::;xp)
d!(:::;(qi;vi+d);::::x1;:::;xp)

(5) (RC creation rule)
(Q(:::;(qn;vn)); create(l;E); Q0(:::;(qn+1;vn+1)))2TD
(:::;(qn;vn):x1;:::;xp)

create! (:::;(qn+1;vn+1):x1;:::;xp+1)

(6) (RM migration rule)
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((qi;vi); go(l;E); (q0i;v
0
i))2TD vij=G

(:::;(qi;vi);::::x1;:::;xp)
go!(:::;(q0i;v0i);:::x1;:::;xp)

(7) (RD deletion rule)
(Q(:::;(qn;vn)); �; Q0(:::;(qn�1;vn�1)))2TD

(:::;(qn;vn):x1;:::;xp)
�!(:::;(qn�1;vn�1):x1;:::;xp�1)

(8) (RS for this rule the channels xi and xj do not
contain any messages, because if we synchronize
the emission with the reception, we must consume
the message from channel)
((qi;vi); a?x; (q0i;v

0
i)) 2 TD ((qj ;vj); a!v; (q0j ;v

0
j)) 2 TD i 6=j

(:::;(qi;vi);:::;(qj ;vj);::::x1;:::;xp)
�!(:::;(q0i;v0i);:::;(q0j ;v0j);::::x1;:::;xp)

where G is a temporal constraint or guard , D is the
corresponding deadline which requires, at the moment of
its satisfaction, that action a must occur, z the clock is to
be reset.

V. EXAMPLES

A. Exemple 1
Let be the process E that receives

information(Rq_Data) on the channel a, then it
waits for a period of t units of time. The process offers
the message m on channel b for a period d units of time,
and �nishes its execution with the process exit:
The behavior expression could be speci�ed as

E ::= a?Rq_Data
(�t(b!mfdg; exit))

In the initial state no action is complying, which
explains why the duration conditions set is empty. We cor-
respond in this state the expression E to form the initial
mobile C-DATA con�guration �[E] where no action was
drawn. From this con�guration, the �rst action to be taken
by the behavior E is the receipt of information Rq_Data
on channel a. A clock x, chosen by the function get form
the setM and having the initial value 0, is associated to
this action. We apply the reception rule(RR) of model
mobile C-DATA :

�[E]|{z}
config0

�; a?Rq_Data; x�����������! fx��1g[�
t((b!mfdg ; exit))]| {z }
config1

�1 : represents the time of reception the message
Rq_Data on channel a:When the reception is completed,
from the con�guration config1 the behavior expression
�t((b!mfdg ; exit)) cannot start its execution only if t
units of time elapsed.
config1 t�! �[(b!mfdg ; exit)]| {z }

config2

From this con�guration, the emission of the message
m on channel b; is possible
config2 �; b!m;x�����! fx��2g[ exit]| {z }

config3

�2 : represents the time of emission the message m
on channel b: From the semantics of the operator ";",

the process exit cannot begin its execution only if the
message m was sent.
We can have a different situation from the config2, if

the time elapsed since the sensitization of the action of
emission exceeds the deadline of offer d units of time,
thus the process is transformed into the process stop.

t>d

config2
t�!�[ stop]| {z }
config4

From the con�guration config3, we obtain :

config3 �; �; x���! fx�0g[stop]| {z }
config5

B. Exemple 2
In this section, we give how to generate mobile C-

DATA from a mobile DD-LOTOS speci�cation. Let us
take the example given in [12] of the behavior of simpli-
�ed communications protocol. In this protocol we have
assumed that the system is composed of one sender and
two receivers, this system may be de�ned by :

l (E)jk (P ) j n(Q)

where :
� l is the locality of the sender, and E its behavior,
� k is the locality of the receiver R1, and P its
behavior,

� n is the locality of the receiver R2, and Q its
behavior.

We suppose that the source communicates with the
receiver R1 via the channel a, and with the receiver R2
via the channel b:
The behavior of the sender is as follows:
1) Messages are sent each t units of time. Each mes-
sage is sent to the receivers via the channels a and
b.

2) When the sender receives a negative acknowledge-
ment from a receiver, then resend the lost message
to it.

3) Creation of new localities (new receivers)
The behavior of a receiver is as follows:
1) When receiving a message v, concatenate it with
received messages,

2) When detecting a lost of a message, then send a
negative acknowledgement to the sender.

3) Process migration
In locality l, the activity E is composed of three sub

activities, which are speci�ed respectively by the behavior
expressions (a!vfdg j b!vfdg); c?xE0 and create(m;F ):
The expression (a!vfdg j b!vfdg) describes the fact that
the sender may send the message v on channels a and b,
with the constraint that this message offering is during d
units of time.
In the expression c?xE0 (c may be a or b), identi�es

the loste message. c is the channel on which negative
acknowledgement is received. E0 speci�es the resending
operation.
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And the expression create(m;F ); describes the cre-
ation of localities.
Thus the behavior expression E may be de�ned by:

E ::= E1 jjj E2 jjj E3

E1 ::= (a!vfdgjb!vfdg) >> �tE1

E2 ::= (c?xE0) >> E2

E3 ::= create(m;F )

P and Q are respectively the behaviors associated to
localities k and n i.e. the receiver R1 and the receiver R2.

P ::= ((a?xB [] �ti; c!Nackfdg) >> go(l; G)fd0g) >> P

Q ::= ((b?xB [] �ti; c!Nackfdg) >> go(l; G)fd0g) >> Q

The expression go(l; G)fd0g describes the migration
of the behavior G towards the sender. B speci�es the
concatenation operation of the received messages.
The complete speci�cation in mobile DD-LOTOS lan-

guage is given by �gure 3:

Speci�cation Sender �Receivers[a; b; c]
behavior

l (E) j k (P ) j n(Q):

Where

process E[a; b; c;m] ::= E1 jjj E2 jjj E3
Where
E1 ::= (a!vfdgjb!vfdg) >> �tE1
E2 ::= (c?xE0) >> E2
E3 ::= create(m;F ) >> E3
Endproc

process P [a; c] ::=
((a?xB [] �ti; c!Nackfdg) >> go(l; G)fd0g) >> P
Endproc

process Q[b; c] ::=
((b?xB [] �ti; c!Nackfdg) >> go(l; G)fd0g) >> Q
Endproc

Endspec.

Fig. 3: Speci�cation of Sender and receivers

The system consists of three subsystems, ie three
different localities. The communication between the ac-
tivities of different localities is ensured by the model C-
DATA.

In locality l, the behavior expression of the source is a
parallel composition of three expression, and is translated
by:

�[E]!� [E1] jjj �[E2] jjj �[E3]
In the initial state no action is complying, which

explains why the duration conditions set is empty. We
correspond in this state the expression E to form the
initial mobile C-DATA con�guration �[E] where no ac-
tion was drawn. From this con�guration, the emission of
the message v on channels a and b is possible, also the
creation of locality m chosen by the function get form
the set L. A clock x, chosen by the function get form the
setM and having the initial value 0, is associated to this
emission. We apply the emission rule of model mobile
C-DATA :

�[E1] jjj �[E2] jjj �[E3]| {z }
config0

�; a!v; x�����!

fx��1g[b!vfdg) >> �tE1] jjj �[E2] jjj �[E3]| {z }
config1

fx � �1g; b!v; y����������!
fx��1;y��2g[ �

tE1] jjj �[E2] jjj �[E3]| {z }
config2

With �1(resp �2) represents the time of emission the
message v on channel a (resp b). We apply the creation
rule of model mobile C-DATA :

config2
fx � �1; y � �2g; create; z�������������������!

fx��1;y��2g[ �
tE1] jjj �[E2] jjj fz��3g[E3]| {z }

config3

With �3 represents the time of creation of locality m.
The same reasoning is applied in the following way to

the other branch where the emission on channel b begins
before the emission on channel a :

�[E1] jjj �[E2] jjj �[E3]| {z }�; b!v; y�����!

fy��2g[a!vfdg >> �tE1] jjj �[E2] jjj �[E3]| {z }
config1

fy � �2g; a!v; x�����������!
fx��1;y��2g[ �

tE1] jjj �[E2] jjj �[E3]| {z }
config2

fx � �1; y � �2g; create; z�������������������!
fx��1;y��2g[ �

tE1] jjj �[E2] jjj fz��3g[E3]| {z }
config3

We obtain the same con�guration(config3) if the ex-
pression of creation that begins the �rst.
From the con�guration config2 the behavior expres-

sion [ �tE1] can not start its execution only if both
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send on channels a and b �nished, in other words, that
if the conditions on the durations are quite satis�ed,
corresponding to the condition fx � �1 ^ y � �2g: The
following trasition becomes possible :

fx��1;y��2g[ �
tE1] jjj �[E2] jjj �[E3]| {z }
config2

d�!�[ �
t�dE1] jjj �[E2] jjj �[E3]| {z }

config3

In the locality k(n), behavior expression of the receiver
R1(R2); is a choice between either receiving a message
on channel a(b); or if the reception is not performed after
t units of time, a negative acknowledgement message sent
to the source and this is translated in mobile C-DATA :

�[P ]| {z }
config0

�; a?v; x�����!

(fx��4g[B[e=v] >> �[ go(l; G)fd0g])>> �[P ]| {z }
config1

With �4 represents the time of reception the message
on channel a.
In the other hand, when the time of receiving( t units

of time) is exceeded, the number of lost message(Nack)
is transmitted

d>t

�[P ] d�!(�[i; c!Nackfdg] >> �[ go(l; G)fd0g])>> �[P ]| {z }
config2

Internal action i is urgent and �(i) = 0:

config2
�; i; x���!

(fx=0g[c!Nackfdg] >> �[ go(l; G)fd0g])>> �[P ]| {z }
config3

�; c!Nack; x��������!fx��5g[ go(l; G)fd0g] >> �[P ]| {z }
config4

With �5 represents the time of reception of the message
on channel c.
The information Nack is offered to the environment

for a duration of d units of time, if the time (t) elapsed
since the sensitization of the action of emissions exceed
d units then the action is not offered.

t>d

config3
t�!�[ go(l; G)fd0g]>> �[P ]| {z }

config5

From the con�guration config4 the behavior expres-
sion [ go(l; G)fd0g] can not start its execution only if
emission on channel c �nished. In other words, that if the
condition on the duration is quite satis�ed, corresponding
to the condition fx � �5g: So the con�guration config4
becomes the con�guration config5:The following tra-
sition becomes possible :

config5
�; go; x����!fx��6g[ go(l; G)fd0g] >> �[P ]| {z }

config6

With �6 represents the time of migration.
The migration go is offered to the environment for a

duration of d units of time, if the time (t) elapsed since
the sensitization of the action go exceed d units then the
action is not any more offered.

t>d

config5
t�! �[P ]|{z}
config7

The same reasoning is applied in the locality n.

VI. RELATED WORKS

For modeling concurrent processes, the �-caluclus[16]
was introduced by R. Milner. However, it considers a no-
tion of mobility different from our calculus, is translated
by the existence of names, which is inseparable from the
process of communication, fundamentally in any concur-
rent system. The existence of names suggests also a space
abstracted from connected processes, in which names
represent the connections, only the processes which share
names are then capable of interacting. The structure of
system thus changes in a dynamic way, because the links
between processes are ceaselessly created and destroyed.
�1l � calculus[19][20], is an asynchronous � �

calculus; extended with a notion of locality and related
model of failures. Domains in the �1l�calculus manifest
themselves in two ways, �rst the model features an
explicit notion of site, written fPga; representing the
process P running at the locality named a. Second, for
each locality name a, there is an associated process
Loc(a). The topology of sites in �1l � calculus the
is �at. In the mobility aspect, the migrant entities are
the processes, expressed by the instruction spawan(a; P )
send the process P to the locality a to run there, it is an
instruction asynchronous objective.
D� � calculus[5]; was designed to be a minor exten-

sion of the � � calculus by which elementary semantic
notion of distribution could be studied. A syntactic cate-
gory of locations or sites is introduced and all processes
now exist, and execute at a speci�c named location. There
is a new mechanism for processes to move from one site
to another. The basic entities in D� are processes and
systems. A system is a set of processes located in parallel.
The topology of domains is �at. There is no remote
communication: a message for which the corresponding
receiver is in a distant domain must migrate towards its
destination. In D� � calculus migration is expressed
by the instruction goto l:P; like in �1l � calculus,
processes are migrant entities, and it's an asynchronous
and objective instruction.
Djoin � calculus[3][2], is a model for mobile

programming that includes explicit features for co-
localization of receivers and partial failure. The basic
entities of Djoin � calculus are messages, de�nitions,
def-processes, pattern of joint message and solutions.
Domains are given by localities in the DJoin. Localities
constitute a tree structure, and are units of migration and
failure. The distant communication is done in two steps :
�rst output current domain and input in the target domain,
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then consummation of message. InDjoin�calculus only
localities can migrate, the instruction of migration has the
form go(a; k) where a is the locality of destination and
k is a continuation. It is an asynchronous and subjective
migration.
Inspired by the �-caluclus, the Ambients Calculus[9]

considers processes that are executed in hierarchically
nested environment called ambients and that may trans-
ferred from an ambient to another. An ambient is a
place that is delimited by boundary and where multiple
processes execute. Each ambient has a name, a collection
of local processes, and a collection of sub-ambients. Am-
bients can move in and out of other ambients, subject to
capabilities that are associated with ambient names. Com-
munication and interaction between different domains can
only be obtained through ambient migration and opening.
The model describes the migration of process in domains
( ambients ). An ambient can migrate in any location in
the tree. The calculus offers three form of mobility (in
n:P , out n:P and open n:P ), the migration is subjective.
M-calculus[24], higher-order extension of the distrib-

uted Join-calculus with programmable localities. From the
Join-calculus, the M-calculus retains the idea of asyn-
chronous communication, de�nitions with join patterns
of messages for synchronization and of hierarchically
organized localities. Basic entities for distribution are
localities. The topology of localities are hierarchically.
The migration is realized by means of higher-order com-
munication.
KLAIM[21], Extension of the language LINDA. The

communication mechanism is asynchronous and is based
on the concept of tuple space. KLAIM extends language
LINDA with notions of sites (physical locations), local-
ities (logical location) and migration agents. The remote
communication is a two time: the tuple to be transmitted
is locally assessed and placed in the tuple space target,
then it is consumed. Mobile entities are processes, they are
static. There are two types of migration (two instructions),
both being objective. The �rst out(P )@l:Q migrates
a process P to the locality with the context (mobile
context), on the contrary, eval(P )@l:Q, migrates P to
l, where it is evaluated in the context of l.
PICT[18], is a language based on an asynchronous

� � calculus: NomadicPICT[25], an extension of PICT
with notions of locality, agent and migration. Basic en-
tities are the processes and agents. These processes are
located and named. The domain space is hierarchical,
NomadicPICT offers two types of mobile entities: the
migration of processes and the migration of messages.
The instruction of migration is expressed by (migrate to
s! P ), this migration is subjective.

VII. CONCLUSION

In this paper, we proposed a calculus modeling mobility
in distributed systems, our model also allows to modeling
the real-time systems.
In a previous work[12], we introduced the notion of

locality required for modeling the distributed aspect of

distributed systems. In the distributed model the com-
munication is assured by exchange of messages. Then, a
behavioral model was de�ned in terms of temporal labeled
system of transitions. In this work we expanded the model
for two new constructions: the construction of migration
processes between distributed localities, and construction
of creation of new localities.
The main interest of our approach is the proposal of a

language de�ned on true concurrency semantics: seman-
tics of maximality which allows the explicit expression of
durations, and it supports temporal constraints including
urgency of actions.
Concerning communication, we have de�ned local and

remote communication, when two processes want to com-
municate, so are on the same locality, then the commu-
nication is ensured through the gates which are de�ned
locally. If both processes are on two different localities
then the message exchange is the way of communication.
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