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Abstract— The dominance–based rough set approach plays
an important role in the development of the rough set
theory. It can be used to express the inconsistencies coming
from consideration of the preference–ordered domains of
the attributes. The purpose of this paper is to further
generalize the dominance–based rough set model to fuzzy
environment. The constructive approach is used to define
the intuitionistic fuzzy dominance–based lower and upper
approximations respectively. Basic properties of the intu-
itionistic fuzzy dominance–based rough approximations are
then examined. By introducing the concept of approximate
distribution reducts into intuitionistic fuzzy dominance–
based rough approximations, four different forms of reducts
are defined. The judgment theorems and discernibility
matrixes associated with these reducts are also obtained.
Such results are all intuitionistic fuzzy generalizations of
the classical dominance–based rough set approach. Some
numerical examples are employed to substantiate the con-
ceptual arguments.

Index Terms— dominance–based rough set, dominance–
based fuzzy rough set, intuitionistic fuzzy dominance re-
lation, intuitionistic fuzzy dominance–based rough set, ap-
proximate distribution reducts

I. INTRODUCTION

Rough set theory [44]–[47], proposed by Pawlak, is a
new mathematical tool which can be used to deal with
vague and uncertain information. The lower and upper
approximate operators are key notions in rough set theory,
they were constructed on the basis of an indiscernibility
relation (equivalence relation, i.e. reflexive, symmetric
and transitive). By using such two approximations, knowl-
edge hidden in the information tables may be unravelled
and expressed in the form of decision rules.

It is well known that the indiscernibility relation is
too restrictive for classification analysis in practical ap-
plications. Therefore, many authors have generalized the
notions of rough approximations by using some more
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general binary relations, e.g., tolerance relation [35], [37],
similarity relation [52]–[54], characteristic relation [27],
[28], [39], etc. These extensions of the rough approxima-
tions may be used on reasoning and acquisition of knowl-
edge in incomplete systems [38], [48], [58], [61], [63],
[66]–[68], continues–valued systems [29], [56] and some
more complex forms of information systems. Moreover, it
should be noticed that the generalization of rough approx-
imations to fuzzy environments also plays an important
role in the development of rough set theory. For example,
in Ref. [17], the model of rough fuzzy set was proposed
by using the indiscernibility relation to approximate a
fuzzy concept. Alternatively, the fuzzy rough model is
the approximation of a crisp set or a fuzzy set in a fuzzy
approximation space. In Ref. [55], Sun et al. presented
the interval–valued fuzzy rough set by combining the
interval–valued fuzzy set and rough set. By employing
an approximation space constituted from an intuitionistic
fuzzy triangular norm, an intuitionistic fuzzy implicator,
and an intuitionistic fuzzy 𝑇–equivalence relation, Cor-
nelis et al. [12] defined the concept of intuitionistic fuzzy
rough sets in which the lower and upper approximations
are both intuitionistic fuzzy sets on the universe of dis-
course. Zhou et al. proposed the intuitionistic fuzzy rough
approximation from the viewpoint of constructive and
axiomatic approaches respectively in Ref. [75]. Bhatt [4]
presented the fuzzy–rough sets on compact computational
domain. Zhao et al. [74] investigated the fuzzy variable
precision rough sets by combining fuzzy rough set and
variable precision rough set with the goal of making
fuzzy rough set a special case. Hu et al. [31] proposed
the Gaussian Kernel based fuzzy rough set, it uses the
Gaussian Kernel to compute fuzzy 𝑇–equivalence relation
for objective approximation. The same authors also pro-
posed the fuzzy preference–based rough sets in Ref. [32].
Ouyang et al. [43] presented a fuzzy rough model, which
is based on the fuzzy tolerance relation. More details
about recent advancements of fuzzy rough set can be
found in the literatures [9], [10], [16], [40], [41], [57],
[62], [69], [70], [72].

On the other hand, though the rough set has been
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demonstrated to be useful in the fields of knowledge
discovery, decision analysis, pattern recognition and so
on, it is not able, however, to discover inconsistencies
coming from consideration of criteria, that is, attributes
with preference–ordered domains, such as product quality,
market share and debt ratio. To solve this problem, Greco
et al. have proposed an extension of Pawlak’s rough set
approach, which is called the Dominance–based Rough
Set Approach (DRSA) [5]–[8], [13]–[15], [18]–[26], [30],
[34], [71]. This innovation is mainly based on substitution
of the indiscernibility relation by a dominance relation.
Presently, work on dominance–based rough set model
also progressing rapidly. For example, by considering
two different types of semantic explanations of unknown
values, Shao et al. and Yang et al. generalized the DRSA
to incomplete environments in Ref. [50] and Ref. [65]
respectively. Wei et al. presented the concept of valued
dominance–based rough approximations in Ref. [60].
With introduction of the concept of variable precision
rough set [76] into DRSA, Błszczyńki et al. proposed
the variable consistency dominance–based rough set ap-
proach [6], [8], Inuiguchi et al. proposed the variable
precision dominance–based rough set [33]. Kotłowski et
al. [34] introduced a new approximation of DRSA which
is based on the probabilistic model for the ordinal clas-
sification problems. Greco et al. generalized the DRSA
to fuzzy environment and then presented the model of
dominance–based rough fuzzy set in Ref. [20]. By using a
fuzzy dominance relation, the same authors also presented
dominance–based fuzzy rough set [26] in their literatures.

As a generalization of the Zadeh fuzzy set, the notion
of intuitionistic fuzzy set was suggested for the first
time by Atanassov [1], [2]. An intuitionistic fuzzy set
allocates to each element both a degree of membership
and one of non–membership, and it was applied to the
fields of approximate inference, signal transmission and
controller, etc. In this paper, the intuitionistic fuzzy set
will be combined with the DRSA and then the model of
Intuitionistic Fuzzy Dominance–based Rough Set(IFDRS)
is presented. The IFDRS is a new generalization of the
classical DRSA because we use an intuitionistic fuzzy
dominance relation instead of the crisp or fuzzy domi-
nance relation to approximate the upward and downward
unions of the decision classes. It should be noticed here
that we use the constructive approach to define the IFDRS
in this paper.

In traditional DRSA, the dominance relation can only
be used to judge whether an object is dominating another
one. Furthermore, to express the credibility that an object
is dominating another one, the fuzzy dominance relation
is then presented (eg. Ref. [26] and Ref. [60]). In fuzzy
dominance relation, if an object 𝑥 dominates another
object 𝑦 with a credibility 𝛼, then it naturally follows
that 𝑥 does not dominate 𝑦 to the extent 1 − 𝛼. To
further generalize such idea, it is naturally to introduce
the intuitionistic fuzzy approach into DRSA, i.e. IFDRS.
In our IFDRS, the intuitionistic fuzzy dominance relation
can express not only the credibility that 𝑥 dominates 𝑦,

but also the non–credibility that 𝑥 dominates 𝑦.
Once a new rough set model is presented, the immedi-

ate problem is attribute reduction. It involves the search
for particular subsets of attributes, which provide the same
information for some purpose as the full set of available
attributes. Such subsets are called reducts. In traditional
rough set theory, Pawlak proposed the positive–region
based reduct, which can be used to preserve the union
of all lower approximations. Following Pawlak’s work,
Kryszkiewicz [36] investigated and compared five notions
of knowledge reductions in inconsistent systems, Zhang
et al. [73] proposed the concepts of distribution reduct and
maximal distribution reduct. Moreover, Wang et al. [59]
presented a systematic approach to knowledge reduction
which is based on the general binary relation and the
corresponding rough approximation, Chen et al. [11] in-
vestigated the problem of knowledge reduction in decision
system with covering based rough approximation, Yang et
al. [64] constructed a new reduction theory by redefining
the approximation space and the reducts of covering
generalized rough set. By using the variable precision
rough set model [76], Beynon [3] proposed the concept
of 𝛽–reduct, Mi et al. proposed the lower and upper
approximate distribution reducts in Ref. [42].

In this paper, we will further introduce Mi’s approx-
imate distribution reducts into our IFDRS. Four notions
of approximate distribution reducts are then presented be-
cause there are two pairs of approximations in DRSA. The
judgment theorems and discernibility matrices associated
with these reducts are also established, from which we
obtain the practical approaches to compute approximate
distribution reducts in IFDRS.

To facilitate our discussion, we first present basic
notions of classical DRSA and dominance–based fuzzy
rough set in Section 2. The constructive approach to
define IFDRS is presented in Section 3. We also employ
an illustrative example to show how the IFDRS can be
used in decision system with probabilistic interpretation.
In Section 4, the approximate distribution reducts in terms
of our IFDRS are investigated. Results are summarized in
Section 5.

II. DOMINANCE–BASED ROUGH SET APPROACH

A. Greco’s DRSA

A decision system is a pair I =< 𝑈,𝐴𝑇 ∪ {𝑑} >,
where

∙ 𝑈 is a non–empty finite set of objects, it is called
the universe;

∙ 𝐴𝑇 is a non–empty finite set of conditional at-
tributes;

∙ 𝑑 is the decision attribute where 𝐴𝑇 ∩ {𝑑} = ∅.
∀𝑎 ∈ 𝐴𝑇 , 𝑉𝑎 is used to represent the domain of

attribute 𝑎 and then 𝑉 = 𝑉𝐴𝑇 =
∪

𝑎∈𝐴𝑇 𝑉𝑎 is the domain
of all attributes. Moreover, for each 𝑥 ∈ 𝑈 , let us denote
by 𝑎(𝑥) the value that 𝑥 holds on 𝑎 (𝑎 ∈ 𝐴𝑇 ).

By considering the preference–ordered domains of at-
tributes (criteria), Greco et al. have proposed an extension
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of the classical rough set that is able to deal with incon-
sistencies typical to exemplary decisions in Multi–Criteria
Decision Making (MCDM) problems, which is called
the Dominance–based Rough Set Approach (DRSA). let
ર𝑎 be a weak preference relation on 𝑈 (often called
outranking) representing a preference on the set of objects
with respect to criterion 𝑎 (𝑎 ∈ 𝐴𝑇 ); 𝑥 ર𝑎 𝑦 means “𝑥 is
at least as good as 𝑦 with respect to criterion 𝑎”. We say
that 𝑥 dominates 𝑦 with respect to 𝐴 ⊆ 𝐴𝑇 , iff 𝑥 ર𝑎 𝑦
for each 𝑎 ∈ 𝐴.

By the above discussion, we can define the following
two sets for each object 𝑥 in I such that:

∙ the set of objects dominate 𝑥, i.e. [𝑥]≥𝐴 = {𝑦 ∈ 𝑈 :
∀𝑎 ∈ 𝐴, 𝑦 ર𝑎 𝑥};

∙ the set of objects dominated by 𝑥, i.e. [𝑥]≤𝐴 = {𝑦 ∈
𝑈 : ∀𝑎 ∈ 𝐴, 𝑥 ર𝑎 𝑦}.

In the traditional DRSA, we assume here that the
decision attribute 𝑑 determines a partition of 𝑈 into a
finite number of classes; let CL = {𝐶𝐿𝑛, 𝑛 ∈ 𝑁}, 𝑁 =
{1, 2, ⋅ ⋅ ⋅ ,𝑚}, be a set of these classes that are ordered.
Different from Pawlak’s rough approximation, in DRSA,
the sets to be approximated are an upward union and a
downward union of decision classes, which are defined
respectively as 𝐶𝐿≥

𝑛 =
∪

𝑛′≥𝑛

𝐶𝐿𝑛′ , 𝐶𝐿≤
𝑛 =

∪
𝑛′≤𝑛

𝐶𝐿𝑛′ ,

𝑛, 𝑛
′ ∈ 𝑁 .

In Greco’s DRSA, the A-lower approximation and A-
upper approximation of 𝐶𝐿≥

𝑛 are:

𝐴(𝐶𝐿≥
𝑛 ) = {𝑥 ∈ 𝑈 : [𝑥]≥𝐴 ⊆ 𝐶𝐿≥

𝑛 },
𝐴(𝐶𝐿≥

𝑛 ) = {𝑥 ∈ 𝑈 : [𝑥]≤𝐴 ∩ 𝐶𝐿≥
𝑛 ∕= ∅}.

the A-lower approximation and A-upper approximation
of 𝐶𝐿≤

𝑛 are:

𝐴(𝐶𝐿≤
𝑛 ) = {𝑥 ∈ 𝑈 : [𝑥]≤𝐴 ⊆ 𝐶𝐿≤

𝑛 },
𝐴(𝐶𝐿≤

𝑛 ) = {𝑥 ∈ 𝑈 : [𝑥]≥𝐴 ∩ 𝐶𝐿≤
𝑛 ∕= ∅};

the A-boundaries of 𝐶𝐿≥
𝑛 and 𝐶𝐿≤

𝑛 are:

𝐵𝑁𝐴(𝐶𝐿≥
𝑛 ) = 𝐴(𝐶𝐿≥

𝑛 )−𝐴(𝐶𝐿≥
𝑛 ),

𝐵𝑁𝐴(𝐶𝐿≤
𝑛 ) = 𝐴(𝐶𝐿≤

𝑛 )−𝐴(𝐶𝐿≤
𝑛 ).

B. Dominance–based fuzzy rough set

Dominance–based fuzzy rough set is a fuzzy general-
ization of DRSA. In dominance–based fuzzy rough set
model, the dominance relation is replaced by a fuzzy
dominance relation.

Definition 1: Let 𝑅𝑎 be a fuzzy dominance relation on
𝑈 with respect to attribute 𝑎, i.e. 𝑅𝑎 : 𝑈 × 𝑈 → [0, 1],
∀𝑥, 𝑦 ∈ 𝑈 , 𝑅𝑎(𝑥, 𝑦) represents the credibility of the
proposition “𝑥 is at least as good as 𝑦 with respect to
attribute 𝑎”. A fuzzy dominance relation on 𝑈 (denotation
𝑅𝐴(𝑥, 𝑦)) can be defined for each 𝐴 ⊆ 𝐴𝑇 as:

𝑅𝐴(𝑥, 𝑦) = ∧{𝑅𝑎(𝑥, 𝑦) : 𝑎 ∈ 𝐴}.
Definition 2: Let I be a decision system in which

𝐴 ⊆ 𝐴𝑇 , ∀𝑛 ∈ 𝑁 , the 𝐴–lower approximation
and 𝐴–upper approximation of 𝐶𝐿≥

𝑛 with respect to

fuzzy dominance relation are denoted by 𝐴𝑅(𝐶𝐿≥
𝑛 ) and

𝐴𝑅(𝐶𝐿≥
𝑛 )respectively, whose memberships for each 𝑥 ∈

𝑈 , are defined as:

𝜇
𝐴𝑅(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝜇
𝐶𝐿

≥
𝑛
(𝑦) ∨ (1−𝑅𝐴(𝑦, 𝑥))

)
𝜇
𝐴𝑅(𝐶𝐿

≥
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝜇
𝐶𝐿

≥
𝑛
(𝑦) ∧𝑅𝐴(𝑥, 𝑦)

)
∀𝑛 ∈ 𝑁 , the 𝐴–lower approximation and 𝐴–upper
approximation of 𝐶𝐿≤

𝑛 with respect to fuzzy dominance
relation are denoted by 𝐴𝑅(𝐶𝐿≤

𝑛 ) and 𝐴𝑅(𝐶𝐿≤
𝑛 ) respec-

tively, whose memberships for each 𝑥 ∈ 𝑈 , are defined
as:

𝜇
𝐴𝑅(𝐶𝐿

≤
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝜇
𝐶𝐿

≤
𝑛
(𝑦) ∨ (1−𝑅𝐴(𝑥, 𝑦))

)
𝜇
𝐴𝑅(𝐶𝐿

≤
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝜇
𝐶𝐿

≤
𝑛
(𝑦) ∧𝑅𝐴(𝑦, 𝑥)

)
More details about the dominance–based fuzzy rough

set can be found in Ref. [26].

III. INTUITIONISTIC FUZZY DOMINANCE–BASED
ROUGH SET

A. Construction of intuitionistic fuzzy dominance–based
rough sets

An intuitionistic fuzzy set F in 𝑈 is given by

F = {< 𝑥, 𝑢F (𝑥), 𝑣F (𝑥) >: 𝑥 ∈ 𝑈}

where 𝑢F : 𝑈 → [0, 1] and 𝑣F : 𝑈 → [0, 1] with
the condition such that 0 ≤ 𝑢F (𝑥) + 𝑣F (𝑥) ≤ 1. The
numbers 𝑢F (𝑥), 𝑣F (𝑥) ∈ [0, 1] denote the degree of
membership and non–membership of 𝑥 to F , respec-
tively. Obviously, when 𝑢F (𝑥) + 𝑣F (𝑥) = 1, for all
elements in the universe, the traditional fuzzy set concept
is recovered. The family of all intuitionistic fuzzy subsets
on 𝑈 is denoted by I F (𝑈). Let us review some basic
operations on I F (𝑈) as follows:
∀F1,F2 ∈ I F (𝑈)

1) 𝑈 − F1 = {< 𝑥, 𝑣F1(𝑥), 𝑢F1(𝑥) >: 𝑥 ∈ 𝑈};
2) F1 ∧ F2 = {< 𝑥, 𝑢F1(𝑥) ∧ 𝑢F2(𝑥), 𝑣F1(𝑥) ∨

𝑣F2(𝑥) >: 𝑥 ∈ 𝑈};
3) F1 ∨ F2 = {< 𝑥, 𝑢F1(𝑥) ∨ 𝑢F2(𝑥), 𝑣F1(𝑥) ∧

𝑣F2(𝑥) >: 𝑥 ∈ 𝑈};
4) F1 ⊆ F2 ⇔ 𝑢F1(𝑥) ≤ 𝑢F2(𝑥), 𝑣F1(𝑥) ≥

𝑣F2(𝑥),∀𝑥 ∈ 𝑈 ;
5) F1 ⊇ F2 ⇔ F2 ⊆ F1;
6) F1 = F2 ⇔ F1 ⊆ F2,F1 ⊇ F2.
By the definition of intuitionistic fuzzy set, we know

that an intuitionistic fuzzy relation R on 𝑈 is an intu-
itionistic fuzzy subset of 𝑈 × 𝑈 , namely, R is given by

R = {< (𝑥, 𝑦), 𝑢R(𝑥, 𝑦), 𝑣R(𝑥, 𝑦) >: (𝑥, 𝑦) ∈ 𝑈×𝑈 >},

where

𝑢R : 𝑈 × 𝑈 → [0, 1] and 𝑣R : 𝑈 × 𝑈 → [0, 1]

satisfy with the condition 0 ≤ 𝑢R(𝑥, 𝑦) + 𝑣R(𝑥, 𝑦) ≤ 1
for each (𝑥, 𝑦) ∈ 𝑈×𝑈 . The set of all intuitionistic fuzzy
relation on 𝑈 is denoted by I FR(𝑈 × 𝑈).

Definition 3: Let 𝑈 be the universe of discourse, ∀R ∈
I FR(𝑈 × 𝑈), if
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1) 𝑢R(𝑥, 𝑦) represents the credibility of the proposi-
tion “𝑥 is at least as good as 𝑦 in R”;

2) 𝑣R(𝑥, 𝑦) represents the non–credibility of the
proposition “𝑥 is at least as good as 𝑦 in R”;

then R is referred to as an intuitionistic fuzzy dominance
relation.

By the above definition, we can see that different from
the fuzzy dominance relation we used in Section 2.2,
intuitionistic fuzzy dominance relation can express not
only the credibility of dominance principle between dif-
ferent objects, but also the non–credibility of dominance
principle between these objects. In a decision system,
suppose that for each 𝑎 ∈ 𝐴𝑇 , we have an intuitionistic
fuzzy dominance relation R𝑎, then the intuitionistic fuzzy
dominance relation in terms of 𝐴𝑇 is denoted by R𝐴𝑇

where

R𝐴𝑇 (𝑥, 𝑦) = < 𝑢R𝐴
(𝑥, 𝑦), 𝑣R𝐴

(𝑥, 𝑦) >

=
〈
∧ {𝑢R𝑎(𝑥, 𝑦) : 𝑎 ∈ 𝐴𝑇},

∨{𝑣R𝑎(𝑥, 𝑦) : 𝑎 ∈ 𝐴𝑇}
〉

(1)

for each (𝑥, 𝑦) ∈ 𝑈 × 𝑈 . To simplify our discussion, the
intuitionistic fuzzy dominance relation we used in this
paper is always reflexive, i.e. R𝑎(𝑥, 𝑥) = 1 (𝑢R𝑎(𝑥, 𝑥) =
1, 𝑣R𝑎(𝑥, 𝑥) = 0) for each 𝑥 ∈ 𝑈 and each 𝑎 ∈ 𝐴𝑇 .

Definition 4: Let I be a decision system in which
𝐴 ⊆ 𝐴𝑇 , R𝐴 is an intuitionistic fuzzy dominance relation
with respect to 𝐴, ∀𝑛 ∈ 𝑁 , the 𝐴–lower approximation
and 𝐴–upper approximation of 𝐶𝐿≥

𝑛 with respect to
intuitionistic fuzzy dominance relation R𝐴 are denoted
by 𝐴R(𝐶𝐿≥

𝑛 ) and 𝐴R(𝐶𝐿≥
𝑛 ), respectively and

𝐴R(𝐶𝐿≥
𝑛 ) = {< 𝑥, 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥), 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) >: 𝑥 ∈ 𝑈},

𝐴R(𝐶𝐿≥
𝑛 ) = {< 𝑥, 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥), 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) >: 𝑥 ∈ 𝑈},

where

𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥)
)
;

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥)
)
;

𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑥, 𝑦)
)
;

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑥, 𝑦)
)
;

the 𝐴–lower approximation and 𝐴–upper approximation
of 𝐶𝐿≤

𝑛 with respect to intuitionistic fuzzy dominance
relation R𝐴 are denoted by 𝐴R(𝐶𝐿≤

𝑛 ) and 𝐴R(𝐶𝐿≤
𝑛 ),

respectively and

𝐴R(𝐶𝐿≤
𝑛 ) = {< 𝑥, 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥), 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) >: 𝑥 ∈ 𝑈},

𝐴R(𝐶𝐿≤
𝑛 ) = {< 𝑥, 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥), 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) >: 𝑥 ∈ 𝑈},

where

𝑢
𝐴R(𝐶𝐿

≤
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≤
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑥, 𝑦)
)
;

𝑣
𝐴R(𝐶𝐿

≤
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≤
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑥, 𝑦)
)
;

𝑢
𝐴R(𝐶𝐿

≤
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑢
𝐶𝐿

≤
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥)
)
;

𝑣
𝐴R(𝐶𝐿

≤
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑣
𝐶𝐿

≤
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥)
)
.

By the above definition, we know that

1) 𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥)(𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥)) is the

membership(non–membership) of 𝑥 belongs
to the lower approximation 𝐴R(𝐶𝐿≥

𝑛 );
2) 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥)(𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥)) is the

membership(non–membership) of 𝑥 belongs
to the upper approximation 𝐴R(𝐶𝐿≥

𝑛 );
3) 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥)(𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥)) is the

membership(non–membership) of 𝑥 belongs
to the lower approximation 𝐴R(𝐶𝐿≤

𝑛 );
4) 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥)(𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥)) is the

membership(non–membership) of 𝑥 belongs
to the upper approximation 𝐴R(𝐶𝐿≤

𝑛 ).
Since mathematically, an intuitionistic fuzzy set may be

equivalently characterized by an interval–valued fuzzy set,
then our intuitionistic fuzzy dominance–based rough set
models can also be considered as a type of interval–valued
fuzzy rough set model. However, it should be noticed that
our IFDRS is different from the common interval–valued
fuzzy rough set because the intuitionistic fuzzy dominance
relation we used here has its own semantic explanation,
i.e. it represents both the credibility and non–credibility
of the dominance principle.

Theorem 1: Let I be a decision system in which 𝐴 ⊆
𝐴𝑇 , R𝐴 is the intuitionistic fuzzy dominance relation
related to 𝐴, if 𝑢R𝐴

(𝑥, 𝑦) + 𝑣R𝐴
(𝑥, 𝑦) = 1 for each

(𝑥, 𝑦) ∈ 𝑈 × 𝑈 , then for each 𝑥 ∈ 𝑈 , we have
1) 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) + 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) = 1;

2) 𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) + 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) = 1;

3) 𝑢
𝐴R(𝐶𝐿

≤
𝑛 )
(𝑥) + 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) = 1;

4) 𝑢
𝐴R(𝐶𝐿

≤
𝑛 )
(𝑥) + 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) = 1.

Proof: We only prove (1), the proofs of (2), (3) and
(4) are similar to the proof of (1).
∀𝑥 ∈ 𝑈 , by Definition 4, we have 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) +

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴(𝑦, 𝑥)

)
+

∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥)
)
.

∀𝑦 ∈ 𝑈 ,
∙ If 𝑦 ∈ 𝐶𝐿≥

𝑛 , i.e. 𝑢
𝐶𝐿

≥
𝑛
(𝑦) = 1 and 𝑣

𝐶𝐿
≥
𝑛
(𝑦) = 0,

then
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴(𝑦, 𝑥) = 1,

𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥) = 0.
∙ If 𝑦 /∈ 𝐶𝐿≥

𝑛 , i.e. 𝑢
𝐶𝐿

≥
𝑛
(𝑦) = 0 and 𝑣

𝐶𝐿
≥
𝑛
(𝑦) = 1,

then
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥) = 𝑣R𝐴
(𝑦, 𝑥),

𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴(𝑦, 𝑥) = 𝑢R𝐴(𝑦, 𝑥).

From discussion above, if 𝑛 = 1, then
∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴(𝑦, 𝑥)

)
+ ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧

𝑢R𝐴(𝑦, 𝑥)
)

= 1 holds obviously. On the other
hand, if 𝑛 ∕= 1, then there must be 𝑦 /∈ 𝐶𝐿≥

𝑛 such
that ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥)
)

= 𝑣R𝐴
(𝑦, 𝑥) and

∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥)
)
= 𝑢R𝐴

(𝑦, 𝑥).
Since 𝑢R𝐴

(𝑥, 𝑦) + 𝑣R𝐴
(𝑥, 𝑦) = 1 for each (𝑥, 𝑦) ∈

𝑈×𝑈 , then 𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥)+𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) = 𝑣R𝐴(𝑦, 𝑥)+

𝑢R𝐴
(𝑦, 𝑥)

= 1.
By the above theorem, we can see that if the intu-

itionistic fuzzy dominance relation degenerated to be the
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fuzzy dominance relation, then the intuitionistic fuzzy
dominance–based rough set we showed in Definition 4
will degenerate to be the fuzzy dominance–based rough
set. From this point of view, the intuitionistic fuzzy
dominance–based rough set is a generalization of the
traditional fuzzy dominance–based rough set.

Theorem 2: Let I be a decision system in which 𝐴 ⊆
𝐴𝑇 , we have

1) 𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧{𝑣R𝐴

(𝑦, 𝑥) : 𝑦 /∈ 𝐶𝐿≥
𝑛 } (𝑛 =

2, ⋅ ⋅ ⋅ ,𝑚);
2) 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) = ∨{𝑢R𝐴(𝑦, 𝑥) : 𝑦 /∈ 𝐶𝐿≥

𝑛 } (𝑛 =

2, ⋅ ⋅ ⋅ ,𝑚);
3) 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) = ∨{𝑢R𝐴

(𝑥, 𝑦) : 𝑦 ∈ 𝐶𝐿≥
𝑛 } (𝑛 =

1, ⋅ ⋅ ⋅ ,𝑚);
4) 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) = ∧{𝑣R𝐴

(𝑥, 𝑦) : 𝑦 ∈ 𝐶𝐿≥
𝑛 } (𝑛 =

1, ⋅ ⋅ ⋅ ,𝑚);
5) 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) = ∧{𝑣R𝐴

(𝑥, 𝑦) : 𝑦 /∈ 𝐶𝐿≤
𝑛 } (𝑛 =

1, ⋅ ⋅ ⋅ ,𝑚− 1);
6) 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) = ∨{𝑢R𝐴

(𝑥, 𝑦) : 𝑦 /∈ 𝐶𝐿≤
𝑛 } (𝑛 =

1, ⋅ ⋅ ⋅ ,𝑚− 1);
7) 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) = ∨{𝑢R𝐴

(𝑦, 𝑥) : 𝑦 ∈ 𝐶𝐿≤
𝑛 } (𝑛 =

1, ⋅ ⋅ ⋅ ,𝑚);
8) 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) = ∧{𝑣R𝐴

(𝑦, 𝑥) : 𝑦 ∈ 𝐶𝐿≤
𝑛 } (𝑛 =

1, ⋅ ⋅ ⋅ ,𝑚).
Proof: We only prove 1), others can be proved

analogously.
∀𝑛 = 2, ⋅ ⋅ ⋅ ,𝑚, by Definition 4, we have

𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥)
)
.

∙ If 𝑦 ∈ 𝐶𝐿≥
𝑛 , then 𝑢

𝐶𝐿
≥
𝑛
(𝑦) = 1, it follows that

𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥) = 1;
∙ If 𝑦 /∈ 𝐶𝐿≥

𝑛 , then 𝑢
𝐶𝐿

≥
𝑛
(𝑦) = 0, it follows that

𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥) = 𝑣R𝐴
(𝑦, 𝑥).

Since 𝑛 = 2, ⋅ ⋅ ⋅ ,𝑚, then there must be 𝑦 /∈ 𝐶𝐿≥
𝑛 such

that 𝑢
𝐶𝐿

≥
𝑛
(𝑦)∨ 𝑣R𝐴

(𝑦, 𝑥) = 𝑣R𝐴
(𝑦, 𝑥). From discussion

above, it is not difficult to conclude that 𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) =

∧{𝑣R𝐴(𝑦, 𝑥) : 𝑦 /∈ 𝐶𝐿≥
𝑛 }.

Theorem 3: Let I be a decision system in which
𝐴 ⊆ 𝐴𝑇 , the intuitionistic fuzzy dominance–based rough
approximations have the following properties:

1) Contraction and extension:

𝐴R(𝐶𝐿≥
𝑛 ) ⊆ 𝐶𝐿≥

𝑛 ⊆ 𝐴R(𝐶𝐿≥
𝑛 );

𝐴R(𝐶𝐿≤
𝑛 ) ⊆ 𝐶𝐿≤

𝑛 ⊆ 𝐴R(𝐶𝐿≤
𝑛 );

2) Complements:

𝐴R(𝐶𝐿≥
𝑛 ) = 𝑈 −𝐴R(𝐶𝐿≤

𝑛−1), 𝑛 = 2 ⋅ ⋅ ⋅𝑚
𝐴R(𝐶𝐿≤

𝑛 ) = 𝑈 −𝐴R(𝐶𝐿≥
𝑛+1), 𝑛 = 1 ⋅ ⋅ ⋅𝑚− 1

𝐴R(𝐶𝐿≥
𝑛 ) = 𝑈 −𝐴R(𝐶𝐿≤

𝑛−1), 𝑛 = 2 ⋅ ⋅ ⋅𝑚
𝐴R(𝐶𝐿≤

𝑛 ) = 𝑈 −𝐴R(𝐶𝐿≤
𝑛+1), 𝑛 = 1 ⋅ ⋅ ⋅𝑚− 1

3) Monotones with attributes:

𝐴R(𝐶𝐿≥
𝑛 ) ⊆ 𝐴𝑇R(𝐶𝐿≥

𝑛 );𝐴R(𝐶𝐿≥
𝑛 ) ⊇ 𝐴𝑇R(𝐶𝐿≥

𝑛 );

𝐴R(𝐶𝐿≤
𝑛 ) ⊆ 𝐴𝑇R(𝐶𝐿≤

𝑛 );𝐴R(𝐶𝐿≤
𝑛 ) ⊇ 𝐴𝑇R(𝐶𝐿≤

𝑛 );

4) Monotones with decision classes:

𝑛1, 𝑛2 ∈ 𝑁 such that 𝑛1 ≤ 𝑛2

𝐴R(𝐶𝐿≥
𝑛1
) ⊇ 𝐴R(𝐶𝐿≥

𝑛2
);𝐴R(𝐶𝐿≥

𝑛1
) ⊇ 𝐴R(𝐶𝐿≥

𝑛2
);

𝐴R(𝐶𝐿≤
𝑛1
) ⊆ 𝐴R(𝐶𝐿≤

𝑛2
);𝐴R(𝐶𝐿≤

𝑛1
) ⊆ 𝐴R(𝐶𝐿≤

𝑛2
).

Proof:
1) ∀𝑥 /∈ 𝐶𝐿≥

𝑛 , i.e. 𝑢
𝐶𝐿

≥
𝑛
(𝑥) = 0 and 𝑣

𝐶𝐿
≥
𝑛
(𝑥) = 1,

we have

𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥)
)

≤ 𝑢
𝐶𝐿

≥
𝑛
(𝑥) ∨ 𝑣R𝐴

(𝑥, 𝑥)

= 0 = 𝑢
𝐶𝐿

≥
𝑛
(𝑥)

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥)
)

≥ 𝑣
𝐶𝐿

≥
𝑛
(𝑥) ∧ 𝑢R𝐴

(𝑥, 𝑥)

= 1 = 𝑣
𝐶𝐿

≥
𝑛
(𝑥)

From discussion above, we can conclude that
𝐴R(𝐶𝐿≥

𝑛 ) ⊆ 𝐶𝐿≥
𝑛 .

On the other hand, ∀𝑥 ∈ 𝑈 , if 𝑥 ∈ 𝐶𝐿≥
𝑛 , i.e.

𝑢
𝐶𝐿

≥
𝑛
(𝑥) = 1 and 𝑣

𝐶𝐿
≥
𝑛
(𝑥) = 0, we have

𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑥, 𝑦)
)

≥ 𝑢
𝐶𝐿

≥
𝑛
(𝑥) ∧ 𝑢R𝐴

(𝑥, 𝑥)

= 𝑢
𝐶𝐿

≥
𝑛
(𝑥)

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑥, 𝑦)
)

≤ 𝑣
𝐶𝐿

≥
𝑛
(𝑥) ∨ 𝑣R𝐴

(𝑥, 𝑥)

= 𝑣
𝐶𝐿

≥
𝑛
(𝑥)

From discussion above, we can conclude that
𝐶𝐿≥

𝑛 ⊆ 𝐴R(𝐶𝐿≥
𝑛 ).

Similarity, it is not difficult to prove 𝐴R(𝐶𝐿≤
𝑛 ) ⊆

𝐶𝐿≤
𝑛 ⊆ 𝐴R(𝐶𝐿≤

𝑛 ).
2) ∀𝑥 ∈ 𝑈 , since 𝑢

𝐶𝐿
≥
𝑛
(𝑥) = 𝑣

𝐶𝐿
≤
𝑛−1

(𝑥) and
𝑣
𝐶𝐿

≥
𝑛
(𝑥) = 𝑢

𝐶𝐿
≤
𝑛−1

(𝑥) where 𝑛 = 2, ⋅ ⋅ ⋅ ,𝑚, we
have

𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥)
)

= ∧𝑦∈𝑈

(
𝑣
𝐶𝐿

≤
𝑛−1

(𝑦) ∨ 𝑣R𝐴
(𝑦, 𝑥)

)
= 𝑣

𝐴R(𝐶𝐿
≤
𝑛−1)

(𝑥)

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥)
)

= ∨𝑦∈𝑈

(
𝑢
𝐶𝐿

≤
𝑛−1

(𝑦) ∧ 𝑢R𝐴
(𝑦, 𝑥)

)
= 𝑢

𝐴R(𝐶𝐿
≤
𝑛−1)

(𝑥)

From discussion above, we can conclude that
𝐴R(𝐶𝐿≥

𝑛 ) = 𝑈 − 𝐴R(𝐶𝐿≤
𝑛−1), 𝑛 = 2 ⋅ ⋅ ⋅𝑚.

Others can be proved analogously.
3) By Eq. 1), ∀(𝑥, 𝑦) ∈ 𝑈 ×𝑈 , we have 𝑢R𝐴(𝑥, 𝑦) ≥

𝑢R𝐴𝑇
(𝑥, 𝑦) and 𝑣R𝐴

(𝑥, 𝑦) ≤ 𝑣R𝐴𝑇
(𝑥, 𝑦) because

𝐴 ⊆ 𝐴𝑇 , thus

𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴

(𝑦, 𝑥)
)

≤ ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛
(𝑦) ∨ 𝑣R𝐴𝑇 (𝑦, 𝑥)

)
= 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥)

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴

(𝑦, 𝑥)
)

≥ ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛
(𝑦) ∧ 𝑢R𝐴𝑇

(𝑦, 𝑥)
)
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= 𝑣
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥)

From discussion above, we can conclude that
𝐴R(𝐶𝐿≥

𝑛 ) ⊆ 𝐴𝑇R(𝐶𝐿≥
𝑛 ). Others can be proved

analogously.
4) Since 𝑛1 ≤ 𝑛2, we obtain that 𝐶𝐿≥

𝑛1
⊇ 𝐶𝐿≥

𝑛2
, i.e.

𝑢
𝐶𝐿

≥
𝑛1

(𝑥) ≥ 𝑢
𝐶𝐿

≥
𝑛2

(𝑥) and 𝑣
𝐶𝐿

≥
𝑛1

(𝑥) ≤ 𝑣
𝐶𝐿

≥
𝑛2

(𝑥)

for each 𝑥 ∈ 𝑈 , thus

𝑢
𝐴R(𝐶𝐿

≥
𝑛1

)
(𝑥) = ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛1

(𝑦) ∨ 𝑣R𝐴
(𝑦, 𝑥)

)
;

≥ ∧𝑦∈𝑈

(
𝑢
𝐶𝐿

≥
𝑛2

(𝑦) ∨ 𝑣R𝐴
(𝑦, 𝑥)

)
;

= 𝑢
𝐴R(𝐶𝐿

≥
𝑛2

)
(𝑥)

𝑣
𝐴R(𝐶𝐿

≥
𝑛1

)
(𝑥) = ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛1

(𝑦) ∧ 𝑢R𝐴
(𝑦, 𝑥)

)
≤ ∨𝑦∈𝑈

(
𝑣
𝐶𝐿

≥
𝑛2

(𝑦) ∧ 𝑢R𝐴
(𝑦, 𝑥)

)
= 𝑣

𝐴R(𝐶𝐿
≥
𝑛2

)
(𝑥)

From discussion above, we can conclude that
𝐴R(𝐶𝐿≥

𝑛1
) ⊇ 𝐴R(𝐶𝐿≥

𝑛2
). Others can be proved

analogously.

Results 1), 2), 3) and 4) of Theorem 3 can be regarded
as intuitionistic fuzzy counterparts of results well known
within the classical DRSA. More precisely, 1) says that
the upward (downward) union of decision classes include
its intuitionistic fuzzy rough lower approximation and is
included in its intuitionistic fuzzy rough upper approxi-
mation; 2) represents complementarity properties of the
proposed intuitionistic fuzzy dominance–based rough ap-
proximations; 3) expresses monotonicity of the proposed
intuitionistic fuzzy dominance–based rough set in terms
of the monotonous varieties of condition attributes; 4) ex-
presses monotonicity of the proposed intuitionistic fuzzy
dominance–based rough set in terms of the monotonous
varieties of unions of decision classes.

B. Intuitionistic fuzzy dominance–based rough set in de-
cision system with probabilistic interpretation

It is well known that Greco’s traditional DRSA was
firstly proposed for dealing with complete system with
preference–ordered domains of the attributes. In this sec-
tion, we will illustrate how the proposed intuitionistic
fuzzy dominance–based rough set can be used in the
decision system with probabilistic interpretation.

For a decision system I , if ∀𝑥 ∈ 𝑈 and ∀𝑎 ∈ 𝐴𝑇 ,
𝑎(𝑥) ⊆ 𝑉𝑎 instead of 𝑎(𝑥) ∈ 𝑉𝑎, i.e.

𝑎 : 𝑈 → 𝑃 (𝑉𝑎)

where 𝑃 (𝑉𝑎) is the collection of all nonempty subsets
of 𝑉𝑎, then such system is referred to as a set–valued
decision system. Obviously, in a set–valued decision
system I , 𝑥 holds a set of values instead of a single
value on each attribute.

Furthermore, in a set–valued decision system with
probabilistic interpretation, ∀𝑣 ∈ 𝑉𝑎, 𝑎(𝑥)(𝑣) ∈ [0, 1]

represents the possibility of state 𝑣. ∀𝑥 ∈ 𝑈 , ∀𝑎 ∈ 𝐴𝑇 ,
we assume here that∑

𝑣∈𝑉𝑎

𝑎(𝑥)(𝑣) = 1

It is clear that every set value is expressed in a
probability distribution over the elements contained in
such set. This leads to that the set value can be expressed
in terms of a probability distribution such that

𝑎(𝑥) = {𝑣1/𝑎(𝑥)(𝑣1), 𝑣2/𝑎(𝑥)(𝑣2), ⋅ ⋅ ⋅ , 𝑣𝑘/𝑎(𝑥)(𝑣𝑘)}

where 𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑘 ∈ 𝑉𝑎.
Actually, the set–valued decision system with prob-

abilistic interpretation has been analyzed by rough set
technique. For example, in valued tolerance relation [53],
[54] and the valued dominance relation [60] based rough
sets for dealing with incomplete information systems,
each unknown value is expressed in a uniform prob-
ability distribution over the elements contained in the
domain of the corresponding attribute. Suppose that 𝑉𝑎 =
{𝑎1, 𝑎2, 𝑎3, 𝑎4}, if 𝑎(𝑥) = ∗ where ∗ denotes the “do not
care” unknown value, then the probability distribution can
be written such that

𝑎(𝑥) = {𝑎1/0.25, 𝑎2/0.25, 𝑎3/0.25, 𝑎4/0.25}.

This tells us that if the value that 𝑥 holds on 𝑎 is unknown,
then 𝑥 may hold any one of the values in 𝑉𝑎. Moreover,
the probabilistic degrees that 𝑥 holds each value are equal.
However, valued tolerance and dominance relations only
consider the memberships of tolerance degree and domi-
nance degree, they do not take the non–memberships into
account. To overcome this limitation, the intuitionistic
fuzzy rough technique has become a necessity.

Let us consider Table 1, it is a set–valued decision
system with probabilistic interpretation. In Table 1,

∙ 𝑈 = {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10} is the universe of discourse;
∙ 𝐴𝑇 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} denotes the set of condition

attributes;
∙ 𝑉𝑎 = {𝑎0, 𝑎1, 𝑎2}, 𝑉𝑏 = {𝑏0, 𝑏1, 𝑏2}, 𝑉𝑐 =

{𝑐0, 𝑐1, 𝑐2}, 𝑉𝑑 = {𝑑0, 𝑑1, 𝑑2}, 𝑉𝑒 = {𝑒0, 𝑒1, 𝑒2},
𝑎0 < 𝑎1 < 𝑎2, 𝑏0 < 𝑏1 < 𝑏2, 𝑐0 < 𝑐1 < 𝑐2,
𝑑0 < 𝑑1 < 𝑑2, 𝑒0 < 𝑒1 < 𝑒2;

∙ 𝑓 is the decision attribute where 𝑉𝑓 = {1, 2}
∀(𝑥, 𝑦) ∈ 𝑈 × 𝑈 , let us denote the intuitionistic fuzzy

dominance relation as following:

R𝐴𝑇 (𝑥, 𝑦) =

{
[1, 0]:𝑥 = 𝑦

< 𝑢R𝐴𝑇
(𝑥, 𝑦), 𝑣R𝐴𝑇

(𝑥, 𝑦) >:otherwise

where ∀𝑎 ∈ 𝐴𝑇 ,

𝑢R𝑎(𝑥, 𝑦) =
∑

𝑣1>𝑣2,𝑣1,𝑣2∈𝑉𝑎

𝑎(𝑥)(𝑣1) ⋅ 𝑎(𝑥)(𝑣2)

𝑣R𝑎(𝑥, 𝑦) =
∑

𝑣1<𝑣2,𝑣1,𝑣2∈𝑉𝑎

𝑎(𝑥)(𝑣1) ⋅ 𝑎(𝑥)(𝑣2)

In the above definition, 𝑢R𝐴𝑇 (𝑥, 𝑦) denotes the degree
of dominance principle in terms of the set of attributes 𝐴𝑇
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TABLE I.
A DECISION SYSTEM WITH PROBABILISTIC INTERPRETATION

𝑈 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓
𝑥1 {𝑎1/1} {𝑏0/0.7, 𝑏1/0.3} {𝑐0/1} {𝑑1/0/4, 𝑑2/0.6} {𝑒2/1} 2
𝑥2 {𝑎0/0.3, 𝑎1/0.7} {𝑏2/1} {𝑐1/0.5, 𝑐2/0.5} {𝑑0/1} {𝑒0/1} 1
𝑥3 {𝑎0/1} {𝑏1/0.4, 𝑏2/0.6} {𝑐1/1} {𝑑0/0.3, 𝑑1/0.7} {𝑒0/1} 1
𝑥4 {𝑎0/0.9, 𝑎1/0.1} {𝑏1/1} {𝑐1/1} {𝑑1/1} {𝑒0/0.2, 𝑒2/0.8} 1
𝑥5 {𝑎1/0.8, 𝑎2/0.2} {𝑏1/1} {𝑐0/0.6, 𝑐1/0.4} {𝑑0/1} {𝑒1/1} 2
𝑥6 {𝑎0/0.5, 𝑎2/0.5} {𝑏1/1} {𝑐0/0.3, 𝑐1/0.7} {𝑑0/1} {𝑒1/1} 1
𝑥7 {𝑎1/1} {𝑏0/0.2, 𝑏2/0.8} {𝑐0/0.1, 𝑐1/0.9} {𝑑1/1} {𝑒2/1} 2
𝑥8 {𝑎0/1} {𝑏2/1} {𝑐1/1} {𝑑0/1} {𝑒0/0.9, 𝑒1/0.1} 1
𝑥9 {𝑎1/1} {𝑏0/0.8, 𝑏1/0.2} {𝑐0/0.5, 𝑐2/0.5} {𝑑1/1} {𝑒2/1} 2
𝑥10 {𝑎1/1} {𝑏1/1} {𝑐2/1} {𝑑0/0.8, 𝑑1/0.2} {𝑒2/1} 2

TABLE II.
INTUITIONISTIC FUZZY DOMINANCE RELATION IN TABLE 1

𝑥∖𝑦 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑥1 [1.0,0.0] [0.0,1.0] [0.0,1.0] [0.0,1.0] [0.0,0.7] [0.0,0.7] [0.0,0.9] [0.0,1.0] [0.0,0.5] [0.0,1.0]
𝑥2 [0.0,1.0] [1.0,0.0] [0.0,0.7] [0.0,1.0] [0.0,1.0] [0.0,1.0] [0.0,1.0] [0.0,0.1] [0.0,1.0] [0.0,1.0]
𝑥3 [0.0,1.0] [0.0,0.7] [1.0,0.0] [0.0,0.8] [0.0,1.0] [0.0,1.0] [0.0,1.0] [0.0,0.4] [0.0,1.0] [0.0,1.0]
𝑥4 [0.0,0.9] [0.0,1.0] [0.0,0.6] [1.0,0.0] [0.0,0.92] [0.0,0.5] [0.0,0.9] [0.0,1.0] [0.0,0.9] [0.0,1.0]
𝑥5 [0.0,1.0] [0.0,1.0] [0.0,0.7] [0.0,1.0] [1.0,0.0] [0.0,0.42] [0.0,1.0] [0.0,1.0] [0.0,1.0] [0.0,1.0]
𝑥6 [0.0,1.0] [0.0,1.0] [0.0,0.7] [0.0,1.0] [0.0,0.5] [1.0,0.0] [0.0,1.0] [0.0,1.0] [0.0,1.0] [0.0,1.0]
𝑥7 [0.0,0.6] [0.0,0.55] [0.0,0.2] [0.0,0.2] [0.0,0.2] [0.27,0.5] [1.0,0.0] [0.0,0.2] [0.0,0.5] [0.0,1.0]
𝑥8 [0.0,1.0] [0.0,0.7] [0.0,0.7] [0.0,1.0] [0.0,1.0] [0.0,0.9] [0.0,1.0] [1.0,0.0] [0.0,1.0] [0.0,1.0]
𝑥9 [0.0,0.6] [0.0,1.0] [0.0,0.92] [0.0,0.8] [0.0,0.8] [0.0,0.8] [0.0,0.8] [0.0,1.0] [1.0,0.0] [0.0,0.8]
𝑥10 [0.0,0.92] [0.0,1.0] [0.0,0.6] [0.0,0.8] [0.0,0.2] [0.0,0.5] [0.0,0.8] [0.0,1.0] [0.0,0.8] [1.0,0.0]

while 𝑣R𝐴𝑇
(𝑥, 𝑦) denotes the degree of non-dominance

principle in terms of the set of attributes 𝐴𝑇 . For instance,

𝑢R𝑏
(𝑥2, 𝑥1) =

∑
𝑣1≥𝑣2,𝑣1,𝑣2∈𝑉𝑏

𝑏(𝑥2)(𝑣1) ⋅ 𝑏(𝑥1)(𝑣2)

= 𝑏(𝑥2)(𝑏2) ⋅ 𝑏(𝑥1)(𝑏0)

+ 𝑏(𝑥2)(𝑏2) ⋅ 𝑏(𝑥1)(𝑏1)

= 1

𝑣R𝑏
(𝑥2, 𝑥1) =

∑
𝑣1<𝑣2,𝑣1,𝑣2∈𝑉𝑏

𝑏(𝑥2)(𝑣1) ⋅ 𝑏(𝑥1)(𝑣2)

= 0

Similarity, the result of intuitionistic fuzzy dominance
relation in Table 1 is showed in Table 2.

By the above intuitionistic fuzzy dominance relation,
we can obtain the corresponding rough approximate
memberships and non–memberships by Definition 4. By
the decision attribute 𝑓 , the universe can be partitioned
into decision classes such that CL = {𝐶𝐿1, 𝐶𝐿2} =
{{𝑥2, 𝑥3, 𝑥4, 𝑥6, 𝑥8}, {𝑥1, 𝑥5, 𝑥7, 𝑥9, 𝑥10}}. The results
of intuitionistic fuzzy dominance–based rough approxi-
mations in Table 1 are showed in Table 3.

IV. APPROXIMATE DISTRIBUTION REDUCTS OF
INTUITIONISTIC FUZZY DOMINANCE–BASED ROUGH

SET

The concept of approximate distribution reduct was
firstly proposed by Mi in Ref. [42]. Following Mi’s
work, we have introduced such reduct into DRSA for
dealing with the incomplete system with lost unknown
values [65]. Moreover, Qian et al. [49] also introduced
such reduct into maximal consistent block based rough
set approach for dealing with the incomplete system with

TABLE III.
INTUITIONISTIC FUZZY DOMINANCE–BASED ROUGH

APPROXIMATIONS IN TABLE 1

𝑥∖𝑦 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑢
𝐴𝑇R(𝐶𝐿

≥
1 )

(𝑥) 1 1 1 1 1 1 1 1 1 1

𝑢
𝐴𝑇R(𝐶𝐿

≥
2 )

(𝑥) 0.9 0 0 0 0.5 0 0.9 0 0.9 1

𝑣
𝐴𝑇R(𝐶𝐿

≥
1 )

(𝑥) 0 0 0 0 0 0 0 0 0 0

𝑣
𝐴𝑇R(𝐶𝐿

≥
2 )

(𝑥) 0 1 1 1 0 1 0 1 0 0

𝑢
𝐴𝑇R(𝐶𝐿

≥
1 )

(𝑥) 1 1 1 1 1 1 1 1 1 1

𝑢
𝐴𝑇R(𝐶𝐿

≥
2 )

(𝑥) 1 0 0 0 1 0 1 0 1 1

𝑣
𝐴𝑇R(𝐶𝐿

≥
1 )

(𝑥) 0 0 0 0 0 0 0 0 0 0

𝑣
𝐴𝑇R(𝐶𝐿

≥
2 )

(𝑥) 0 1 1 0.9 0 0.5 0 1 0 0

𝑢
𝐴𝑇R(𝐶𝐿

≤
1 )

(𝑥) 0 1 1 0.9 0 0.5 0 1 0 0

𝑢
𝐴𝑇R(𝐶𝐿

≤
2 )

(𝑥) 1 1 1 1 1 1 1 1 1 1

𝑣
𝐴𝑇R(𝐶𝐿

≤
1 )

(𝑥) 1 0 0 0 1 0 1 0 1 1

𝑣
𝐴𝑇R(𝐶𝐿

≤
2 )

(𝑥) 0 0 0 0 0 0 0 0 0 0

𝑢
𝐴𝑇R(𝐶𝐿

≤
1 )

(𝑥) 0 1 1 1 0 1 0 1 0 0

𝑢
𝐴𝑇R(𝐶𝐿

≤
2 )

(𝑥) 1 1 1 1 1 1 1 1 1 1

𝑣
𝐴𝑇R(𝐶𝐿

≤
1 )

(𝑥) 0.9 0 0 0 0.5 0 0.9 0 0.9 1

𝑣
𝐴𝑇R(𝐶𝐿

≤
2 )

(𝑥) 0 0 0 0 0 0 0 0 0 0

“do not care” unknown values. In the following, we will
further generalize the concept of approximate distribu-
tion reduct into our intuitionistic fuzzy dominance–based
rough set model.
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A. Concept and approach to approximate distribution
reducts

Definition 5: Let I be a decision system, 𝐴 ⊆ 𝐴𝑇 ,
let us denote by

𝐿≥
𝐴𝑇 = {𝐴𝑇R(𝐶𝐿≥

1 ), 𝐴𝑇R(𝐶𝐿≥
2 ), ⋅ ⋅ ⋅ , 𝐴𝑇R(𝐶𝐿≥

𝑛 )};
𝐿≤
𝐴𝑇 = {𝐴𝑇R(𝐶𝐿≤

1 ), 𝐴𝑇R(𝐶𝐿≤
2 ), ⋅ ⋅ ⋅ , 𝐴𝑇R(𝐶𝐿≤

𝑛 )};
𝐻≥

𝐴𝑇 = {𝐴𝑇R(𝐶𝐿≥
1 ), 𝐴𝑇R(𝐶𝐿≥

2 ), ⋅ ⋅ ⋅ , 𝐴𝑇R(𝐶𝐿≥
𝑛 )};

𝐻≤
𝐴𝑇 = {𝐴𝑇R(𝐶𝐿≤

1 ), 𝐴𝑇R(𝐶𝐿≤
2 ), ⋅ ⋅ ⋅ , 𝐴𝑇R(𝐶𝐿≤

𝑛 )};

1) If 𝐿≥
𝐴 = 𝐿≥

𝐴𝑇 , then 𝐴 is referred to as the ≥-lower
approximate distribution consistent set; if 𝐿≥

𝐴 =
𝐿≥
𝐴𝑇 and 𝐿≥

𝐵 ∕= 𝐿≥
𝐴 for ∀𝐵 ⊂ 𝐴, then 𝐴 is referred

to as a ≥-lower approximate distribution reduct of
I ;

2) If 𝐿≤
𝐴 = 𝐿≤

𝐴𝑇 , then 𝐴 is referred to as the ≤-lower
approximate distribution consistent set; if 𝐿≤

𝐴 =
𝐿≤
𝐴𝑇 and 𝐿≤

𝐵 ∕= 𝐿≤
𝐴 for ∀𝐵 ⊂ 𝐴, then 𝐴 is referred

to as a ≤-lower approximate distribution reduct of
I ;

3) If 𝐻≥
𝐴 = 𝐻≥

𝐴𝑇 , then 𝐴 is referred to as the ≥-
upper approximate distribution consistent set; if
𝐻≥

𝐴 = 𝐻≥
𝐴𝑇 and 𝐻≥

𝐵 ∕= 𝐻≥
𝐴 for ∀𝐵 ⊂ 𝐴, then 𝐴

is referred to as a ≥-upper approximate distribution
reduct of I ;

4) If 𝐻≤
𝐴 = 𝐻≤

𝐴𝑇 , then 𝐴 is referred to as the ≤-
upper approximate distribution consistent set; if
𝐻≤

𝐴 = 𝐻≤
𝐴𝑇 and 𝐻≤

𝐵 ∕= 𝐻≤
𝐴 for ∀𝐵 ⊂ 𝐴, then 𝐴

is referred to as a ≤-upper approximate distribution
reduct of I .

A ≥–lower(upper) approximate distribution consistent
set is a subset of attributes that preserves the intuitionistic
fuzzy dominance–based lower(upper) approximations of
all the upward unions of the decision classes; a ≤–
lower(upper) approximate distribution consistent set is
a subset of attributes that preserves the intuitionistic
fuzzy dominance–based lower(upper) approximations of
all the downward unions of the decision classes; a ≥–
lower(upper) approximate distribution reduct is a minimal
subset of attributes that preserves the intuitionistic fuzzy
dominance–based lower(upper) approximations of all the
upward unions of the decision classes; a ≤–lower(upper)
approximate distribution reduct is a minimal subset of at-
tributes that preserves the intuitionistic fuzzy dominance–
based lower(upper) approximations of all the downward
unions of the decision classes.

Theorem 4: Let I be a decision system in which 𝐴 ⊆
𝐴𝑇 , we have

1) 𝐴 is ≥-lower approximate distribution consistent set
⇔ 𝐴 is ≤-upper approximate distribution consistent
set;

2) 𝐴 is ≤-lower approximate distribution consistent set
⇔ 𝐴 is ≥-upper approximate distribution consistent
set.

Proof: It can be derived directly from (2) of Theo-
rem 3 and Definition 5.

Theorem 5: Let I be a decision system in which 𝐴 ⊆
𝐴𝑇 , we have

1) 𝐴 is ≥-lower approximate distribution reduct ⇔ 𝐴
is ≤-upper approximate distribution reduct;

2) 𝐴 is ≤-lower approximate distribution reduct ⇔ 𝐴
is ≥-upper approximate distribution reduct.

Proof: It can be derived directly from Theorem 4
and Definition 5.

Theorem 6: Let I be a decision system in which 𝐴 ⊆
𝐴𝑇 , for ∀𝑥 ∈ 𝑈 , we denote

𝑃≥
𝐴𝑇 (𝑥) = {< 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥), 𝑣

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) >: 𝑛 ∈ 𝑁},

𝑃≤
𝐴𝑇 (𝑥) = {< 𝑢

𝐴𝑇R(𝐶𝐿
≤
𝑛 )
(𝑥), 𝑣

𝐴𝑇R(𝐶𝐿
≤
𝑛 )
(𝑥) >: 𝑛 ∈ 𝑁},

𝑄≥
𝐴𝑇 (𝑥) = {< 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥), 𝑣

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) >: 𝑛 ∈ 𝑁},

𝑄≤
𝐴𝑇 (𝑥) = {< 𝑢

𝐴𝑇R(𝐶𝐿
≤
𝑛 )
(𝑥), 𝑣

𝐴𝑇R(𝐶𝐿
≤
𝑛 )
(𝑥) >: 𝑛 ∈ 𝑁},

then we have the following:
1) 𝐴 is ≥-lower approximate distribution consistent set

⇔ for ∀𝑥 ∈ 𝑈 , 𝑃≥
𝐴 (𝑥) = 𝑃≥

𝐴𝑇 (𝑥);
2) 𝐴 is ≤-lower approximate distribution consistent set

⇔ for ∀𝑥 ∈ 𝑈 , 𝑃≤
𝐴 (𝑥) = 𝑃≤

𝐴𝑇 (𝑥);
3) 𝐴 is ≥-upper approximate distribution consistent set

⇔ for ∀𝑥 ∈ 𝑈 , 𝑄≥
𝐴(𝑥) = 𝑄≥

𝐴𝑇 (𝑥);
4) 𝐴 is ≤-upper approximate distribution consistent set

⇔ for ∀𝑥 ∈ 𝑈 , 𝑄≤
𝐴(𝑥) = 𝑄≤

𝐴𝑇 (𝑥).
Proof: We only prove (1), others can be proved

analogously.
𝐿≥
𝐴 = 𝐿≥

𝐴𝑇 ⇔ 𝐴R(𝐶𝐿≥
𝑛 ) = 𝐴𝑇R(𝐶𝐿≥

𝑛 )(𝑛 ∈
𝑁) ⇔ 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) = 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥), 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) =

𝑣
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥)(∀𝑥 ∈ 𝑈) ⇔ 𝑃≥

𝐴 (𝑥) = 𝑃≥
𝐴𝑇 (𝑥).

Definition 6: Let I be a decision system in which
𝐴 ⊆ 𝐴𝑇 , define

𝐷≥
𝐿 = {(𝑥, 𝑦) ∈ 𝑈2 : 𝑥 ∈ 𝑈, 𝑦 /∈ 𝐶𝐿≥

𝑛 , 𝑛 = 2, ⋅ ⋅ ⋅ ,𝑚}
𝐷≤

𝐿 = {(𝑥, 𝑦) ∈ 𝑈2 : 𝑥 ∈ 𝑈, 𝑦 /∈ 𝐶𝐿≤
𝑛 , 𝑛 = 1, ⋅ ⋅ ⋅ ,𝑚− 1}

𝐷≥
𝐻 = {(𝑥, 𝑦) ∈ 𝑈2 : 𝑥 ∈ 𝑈, 𝑦 ∈ 𝐶𝐿≥

𝑛 , 𝑛 = 2, ⋅ ⋅ ⋅ ,𝑚}
𝐷≤

𝐻 = {(𝑥, 𝑦) ∈ 𝑈2 : 𝑥 ∈ 𝑈, 𝑦 ∈ 𝐶𝐿≤
𝑛 , 𝑛 = 1, ⋅ ⋅ ⋅ ,𝑚− 1}

where
1) if (𝑥, 𝑦) ∈ 𝐷≥

𝐿 , then 𝐷≥𝑢
𝐿 (𝑥, 𝑦) = {𝑎 ∈

𝐴𝑇 : 𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) ≤ 𝑣R𝑎(𝑦, 𝑥)}, otherwise,

𝐷≥𝑢
𝐿 (𝑥, 𝑦) = ∅;

2) if (𝑥, 𝑦) ∈ 𝐷≥
𝐿 , then 𝐷≥𝑣

𝐿 (𝑥, 𝑦) = {𝑎 ∈
𝐴𝑇 : 𝑣

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) ≥ 𝑢R𝑎(𝑦, 𝑥)}, otherwise,

𝐷≥𝑣
𝐿 (𝑥, 𝑦) = ∅;

3) if (𝑥, 𝑦) ∈ 𝐷≤
𝐿 , then 𝐷≤𝑢

𝐿 (𝑥, 𝑦) = {𝑎 ∈
𝐴𝑇 : 𝑢

𝐴𝑇R(𝐶𝐿
≤
𝑛 )
(𝑥) ≤ 𝑣R𝑎(𝑥, 𝑦)}, otherwise,

𝐷≤𝑢
𝐿 (𝑥, 𝑦) = ∅;

4) if (𝑥, 𝑦) ∈ 𝐷≤
𝐿 , then 𝐷≤𝑣

𝐿 (𝑥, 𝑦) = {𝑎 ∈
𝐴𝑇 : 𝑣

𝐴𝑇R(𝐶𝐿
≤
𝑛 )
(𝑥) ≥ 𝑢R𝑎(𝑥, 𝑦)}, otherwise,

𝐷≤𝑣
𝐿 (𝑥, 𝑦) = ∅;

5) if (𝑥, 𝑦) ∈ 𝐷≥
𝐻 , then 𝐷≥𝑢

𝐻 (𝑥, 𝑦) = {𝑎 ∈
𝐴𝑇 : 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) ≥ 𝑢R𝑎(𝑥, 𝑦)}, otherwise,

𝐷≥𝑢
𝐻 (𝑥, 𝑦) = ∅;

6) if (𝑥, 𝑦) ∈ 𝐷≥
𝐻 , then 𝐷≥𝑣

𝐻 (𝑥, 𝑦) = {𝑎 ∈
𝐴𝑇 : 𝑣

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) ≤ 𝑣R𝑎(𝑥, 𝑦)}, otherwise,

𝐷≥𝑣
𝐻 (𝑥, 𝑦) = ∅;
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7) if (𝑥, 𝑦) ∈ 𝐷≥
𝐻 , then 𝐷≤𝑢

𝐻 (𝑥, 𝑦) = {𝑎 ∈
𝐴𝑇 : 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) ≥ 𝑢R𝑎(𝑦, 𝑥)}, otherwise,

𝐷≤𝑢
𝐻 (𝑥, 𝑦) = ∅;

8) if (𝑥, 𝑦) ∈ 𝐷≥
𝐻 , then 𝐷≤𝑣

𝐻 (𝑥, 𝑦) = {𝑎 ∈
𝐴𝑇 : 𝑣

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) ≤ 𝑣R𝑎(𝑥, 𝑦)}, otherwise,

𝐷≤𝑣
𝐻 (𝑥, 𝑦) = ∅;

𝐷≥𝑢
𝐿 (𝑥, 𝑦), 𝐷≥𝑣

𝐿 (𝑥, 𝑦), 𝐷≤𝑢
𝐿 (𝑥, 𝑦), 𝐷≤𝑣

𝐿 (𝑥, 𝑦),
𝐷≥𝑢

𝐻 (𝑥, 𝑦), 𝐷≥𝑣
𝐻 (𝑥, 𝑦), 𝐷≤𝑢

𝐻 (𝑥, 𝑦), 𝐷≤𝑣
𝐻 (𝑥, 𝑦) are

referred to as the ≥𝑢–lower, ≥𝑣–lower, ≤𝑢–lower, ≤𝑣–
lower, ≥𝑢–upper, ≥𝑣–upper, ≤𝑢–upper and ≤𝑣–upper
approximate discernibility sets for pair of the objects
(𝑥, 𝑦) respectively, the matrixes

M≥𝑢
𝐿 = {𝐷≥𝑢

𝐿 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≥
𝐿 },

M≥𝑣
𝐿 = {𝐷≥𝑣

𝐿 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≥
𝐿 },

M≤𝑢
𝐿 = {𝐷≤𝑢

𝐿 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≤
𝐿 },

M≤𝑣
𝐿 = {𝐷≤𝑣

𝐿 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≤
𝐿 },

M≥𝑢
𝐻 = {𝐷≥𝑢

𝐻 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≥
𝐻},

M≥𝑣
𝐻 = {𝐷≥𝑣

𝐻 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≥
𝐻},

M≤𝑢
𝐻 = {𝐷≤𝑢

𝐻 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≤
𝐻},

M≤𝑣
𝐻 = {𝐷≤𝑣

𝐻 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝐷≤
𝐻},

are referred to as ≥𝑢–lower, ≥𝑣–lower, ≤𝑢–lower, ≤𝑣–
lower, ≥𝑢–upper, ≥𝑣–upper, ≤𝑢–upper and ≤𝑣–upper ap-
proximate distribution discernibility matrixes respectively.

Theorem 7: Let I be a decision system in which 𝐴 ⊆
𝐴𝑇 , we have

1) 𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈

and 𝑛 ∈ 𝑁 if and only if 𝐴 ∩ 𝐷≥𝑢
𝐿 (𝑥, 𝑦) ∕= ∅ for

each (𝑥, 𝑦) ∈ 𝐷≥
𝐿 ;

2) 𝑣
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) = 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈 and

𝑛 ∈ 𝑁 if and only if 𝐴 ∩𝐷≥𝑣
𝐿 (𝑥, 𝑦) ∕= ∅ for each

(𝑥, 𝑦) ∈ 𝐷≥
𝐿 ;

3) 𝑢
𝐴𝑇R(𝐶𝐿

≤
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈

and 𝑛 ∈ 𝑁 if and only if 𝐴 ∩ 𝐷≤𝑢
𝐿 (𝑥, 𝑦) ∕= ∅ for

each (𝑥, 𝑦) ∈ 𝐷≤
𝐿 ;

4) 𝑣
𝐴𝑇R(𝐶𝐿

≤
𝑛 )
(𝑥) = 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈 and

𝑛 ∈ 𝑁 if and only if 𝐴 ∩𝐷≤𝑣
𝐿 (𝑥, 𝑦) ∕= ∅ for each

(𝑥, 𝑦) ∈ 𝐷≤
𝐿 ;

5) 𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈

and 𝑛 ∈ 𝑁 if and only if 𝐴 ∩ 𝐷≥𝑢
𝐻 (𝑥, 𝑦) ∕= ∅ for

each (𝑥, 𝑦) ∈ 𝐷≥
𝐻 ;

6) 𝑣
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) = 𝑣

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈 and

𝑛 ∈ 𝑁 if and only if 𝐴 ∩𝐷≥𝑣
𝐻 (𝑥, 𝑦) ∕= ∅ for each

(𝑥, 𝑦) ∈ 𝐷≥
𝐻 ;

7) 𝑢
𝐴𝑇R(𝐶𝐿

≤
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈

and 𝑛 ∈ 𝑁 if and only if 𝐴 ∩ 𝐷≤𝑢
𝐻 (𝑥, 𝑦) ∕= ∅ for

each (𝑥, 𝑦) ∈ 𝐷≤
𝐻 ;

8) 𝑣
𝐴𝑇R(𝐶𝐿

≤
𝑛 )
(𝑥) = 𝑣

𝐴R(𝐶𝐿
≤
𝑛 )
(𝑥) for each 𝑥 ∈ 𝑈 and

𝑛 ∈ 𝑁 if and only if 𝐴 ∩𝐷≤𝑣
𝐻 (𝑥, 𝑦) ∕= ∅ for each

(𝑥, 𝑦) ∈ 𝐷≤
𝐻 .

Proof: We only prove (1), others can be proved
analogously.

If 𝑛 = 1, then 𝑢
𝐴𝑇R(𝐶𝐿

≥
1 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≥
1 )
(𝑥) = 1

because 𝐶𝐿≥
1 = 𝑈 . What should be considered in the

following are 𝑛 > 1.
⇒: Suppose ∃(𝑥, 𝑦) ∈ 𝐷≥

𝐿 such that 𝐴∩𝐷≥𝑢
𝐿 (𝑥, 𝑦) =

∅, then for each 𝑎 ∈ 𝐴, we have 𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) >

𝑣R𝑎(𝑦, 𝑥) by Definition 6. By formula (1) we have
𝑣R𝐴(𝑦, 𝑥) = ∨{𝑣R𝑎(𝑦, 𝑥) : 𝑎 ∈ 𝐴}, from which we
can conclude that 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) > 𝑣R𝐴

(𝑦, 𝑥). Since
by assumption we have 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥),

thus 𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) > 𝑣R𝐴

(𝑦, 𝑥) holds, which contradic-
tive to the condition 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) ≤ 𝑣R𝐴

(𝑦, 𝑥) because
𝑢
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) = ∧{𝑣R𝐴

(𝑦, 𝑥) : 𝑦 /∈ 𝐶𝐿≥
𝑛 } (𝑛 =

2, ⋅ ⋅ ⋅ ,𝑚).
⇐: Suppose that ∃𝑥 ∈ 𝑈 and 𝑛 ∈ 𝑁 where

𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) ∕= 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥), then 𝑛 = 2, ⋅ ⋅ ⋅ ,𝑚

and 𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) > 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) (by Theorem 3).

Therefore, there must be 𝑦 /∈ 𝐶𝐿≥
𝑛 such that 𝑣R𝐴

(𝑦, 𝑥) <
𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥), it follows that for each 𝑎 ∈ 𝐴,

𝑣R𝑎(𝑦, 𝑥) < 𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) holds, i.e. 𝐴 ∩𝐷≥𝑢

𝐿 (𝑥, 𝑦) =

∅, here (𝑥, 𝑦) ∈ 𝐷≥
𝐿 . From discussion above, we can draw

the following conclusion: if for each (𝑥, 𝑦) ∈ 𝐷≥
𝐿 where

𝐴∩𝐷≥𝑢
𝐿 (𝑥, 𝑦) ∕= ∅, then 𝑢

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥)

for each 𝑥 ∈ 𝑈 and 𝑛 = 2, ⋅ ⋅ ⋅ ,𝑚.
Theorem 8: Let I be a decision system in which 𝐴 ⊆

𝐴𝑇 , we have

1) 𝐿≥
𝐴 = 𝐿≥

𝐴𝑇 ⇔ ∀(𝑥, 𝑦) ∈ 𝐷≥
𝐿 such that 𝐴 ∩

(𝐷≥𝑢
𝐿 (𝑥, 𝑦) ∩𝐷≥𝑣

𝐿 (𝑥, 𝑦)) ∕= ∅;
2) 𝐿≤

𝐴 = 𝐿≤
𝐴𝑇 ⇔ ∀(𝑥, 𝑦) ∈ 𝐷≤

𝐿 such that 𝐴 ∩
(𝐷≤𝑢

𝐿 (𝑥, 𝑦) ∩𝐷≤𝑣
𝐿 (𝑥, 𝑦)) ∕= ∅;

3) 𝐻≥
𝐴 = 𝐻≥

𝐴𝑇 ⇔ ∀(𝑥, 𝑦) ∈ 𝐷≥
𝐻 such that 𝐴 ∩

(𝐷≥𝑢
𝐻 (𝑥, 𝑦) ∩𝐷≥𝑣

𝐻 (𝑥, 𝑦)) ∕= ∅;
4) 𝐻≤

𝐴 = 𝐻≤
𝐴𝑇 ⇔ ∀(𝑥, 𝑦) ∈ 𝐷≤

𝐻 such that 𝐴 ∩
(𝐷≤𝑢

𝐻 (𝑥, 𝑦) ∩𝐷≤𝑣
𝐻 (𝑥, 𝑦)) ∕= ∅.

Proof: We only prove (1), others can be proved
analogously.
⇒: If 𝐿≥

𝐴 = 𝐿≥
𝐴𝑇 , then ∀𝑛 ∈ 𝑁 and ∀𝑥 ∈ 𝑈 , we have

𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) and 𝑣

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) =

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥). By Theorem 7, we have 𝐴∩𝐷≥𝑢

𝐿 (𝑥, 𝑦) ∕= ∅
and 𝐴 ∩𝐷≥𝑣

𝐿 (𝑥, 𝑦) ∕= ∅ for each (𝑥, 𝑦) ∈ 𝐷≥
𝐿 , it follows

that 𝐴 ∩ (𝐷≥𝑢
𝐿 (𝑥, 𝑦) ∩𝐷≥𝑣

𝐿 (𝑥, 𝑦)) ∕= ∅.
⇐: If 𝐴 ∩ (𝐷≥𝑢

𝐿 (𝑥, 𝑦) ∩ 𝐷≥𝑣
𝐿 (𝑥, 𝑦)) ∕= ∅ for each

(𝑥, 𝑦) ∈ 𝐷≥
𝐿 , then we have 𝐴 ∩ 𝐷≥𝑢

𝐿 (𝑥, 𝑦) ∕= ∅
and 𝐴 ∩ 𝐷≥𝑣

𝐿 (𝑥, 𝑦) ∕= ∅. By Theorem 7, we have
𝑢
𝐴𝑇R(𝐶𝐿

≥
𝑛 )
(𝑥) = 𝑢

𝐴R(𝐶𝐿
≥
𝑛 )
(𝑥) and 𝑣

𝐴𝑇R(𝐶𝐿
≥
𝑛 )
(𝑥) =

𝑣
𝐴R(𝐶𝐿

≥
𝑛 )
(𝑥) for each 𝑛 ∈ 𝑁 and 𝑥 ∈ 𝑈 , it follows

that 𝐿≥
𝐴 = 𝐿≥

𝐴𝑇 .
Definition 7: Let I be a decision system, define

Δ≥
𝐿 =

⋀
(𝑥,𝑦)∈𝐷

≥
𝐿

((
⋁

𝐷≥𝑢
𝐿 (𝑥, 𝑦))

⋀
(
⋁

𝐷≥𝑣
𝐿 (𝑥, 𝑦))); (2)

Δ≤
𝐿 =

⋀
(𝑥,𝑦)∈𝐷

≤
𝐿

((
⋁

𝐷≤𝑢
𝐿 (𝑥, 𝑦))

⋀
(
⋁

𝐷≤𝑣
𝐿 (𝑥, 𝑦))); (3)
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Δ≥
𝐻 =

⋀
(𝑥,𝑦)∈𝐷

≥
𝐻

((
⋁

𝐷≥𝑢
𝐻 (𝑥, 𝑦))

⋀
(
⋁

𝐷≥𝑣
𝐻 (𝑥, 𝑦))); (4)

Δ≤
𝐻 =

⋀
(𝑥,𝑦)∈𝐷

≤
𝐻

((
⋁

𝐷≤𝑢
𝐻 (𝑥, 𝑦))

⋀
(
⋁

𝐷≤𝑣
𝐻 (𝑥, 𝑦))); (5)

Δ≥
𝐿 , Δ≤

𝐿 , Δ≥
𝐻 and Δ≤

𝐻 are referred to as the ≥–lower, ≤–
lower, ≥–upper and ≤–upper approximate discernibility
functions respectively.

By using Boolean reasoning techniques, we can obtain
the following Theorem 9 from Theorem 8.

Theorem 9: Let I be a decision system in which 𝐴 ⊆
𝐴𝑇 , then we have

1) 𝐴 is ≥–lower approximate distribution reduct ⇔⋀
𝐴 is a prime implicant of Δ≥

𝐿 ;
2) 𝐴 is ≤–lower approximate distribution reduct ⇔⋀

𝐴 is a prime implicant of Δ≤
𝐿 ;

3) 𝐴 is ≥–upper approximate distribution reduct ⇔⋀
𝐴 is a prime implicant of Δ≥

𝐻 ;
4) 𝐴 is ≤–upper approximate distribution reduct ⇔⋀

𝐴 is a prime implicant of Δ≤
𝐻 .

Proof: We only prove (1), others can be proved
analogously.

“⇒”: Since 𝐴 is ≥–lower approximate distribution
reduct, then 𝐴 is also a ≥–lower approximate distribution
consistent set. By Theorem 8, we have 𝐴∩ (𝐷≥𝑢

𝐿 (𝑥, 𝑦)∩
𝐷≥𝑣

𝐿 (𝑥, 𝑦)) ∕= ∅,∀(𝑥, 𝑦) ∈ 𝐷≥
𝐿 . We claim that for

each 𝑎 ∈ 𝐴, there must be (𝑥, 𝑦) ∈ 𝐷≥
𝐿 such that

𝐴 ∩ (𝐷≥𝑢
𝐿 (𝑥, 𝑦) ∩ 𝐷≥𝑣

𝐿 (𝑥, 𝑦)) = {𝑎}. In fact, if for
each pair (𝑥, 𝑦) ∈ 𝐷≥

𝐿 , there exists 𝑎 ∈ 𝐷≥
𝐿 (𝑥, 𝑦) such

that 𝐶𝑎𝑟𝑑(𝐴 ∩ (𝐷≥𝑢
𝐿 (𝑥, 𝑦) ∩ 𝐷≥𝑣

𝐿 (𝑥, 𝑦))) > 2 where
𝑎 ∈ 𝐴 ∩ (𝐷≥𝑢

𝐿 (𝑥, 𝑦) ∩ 𝐷≥𝑣
𝐿 (𝑥, 𝑦)), let 𝐴′ = 𝐴 − {𝑎},

then by Theorem 8 we can see that 𝐴′ is a ≥–lower
approximate distribution consistent set, which contradicts
that 𝐴 is a ≥–lower approximate distribution reduct . It
follows that

⋀
𝐴 is a prime implicant of Δ≥

𝐿 .
“⇐”: If

⋀
𝐴 is a prime implicant of Δ≥

𝐿 , then by
Theorem 8 there must be 𝐴∩(𝐷≥𝑢

𝐿 (𝑥, 𝑦)∩𝐷≥𝑣
𝐿 (𝑥, 𝑦)) ∕=

∅, (∀(𝑥, 𝑦) ∈ 𝐷≥
𝐿 ). Moreover, for each 𝑎 ∈ 𝐴, there exists

(𝑥, 𝑦) ∈ 𝐷≥
𝐿 such that 𝐴 ∩ (𝐷≥𝑢

𝐿 (𝑥, 𝑦) ∩ 𝐷≥𝑣
𝐿 (𝑥, 𝑦)) =

{𝑎}. Consequently, ∀𝐴′ where 𝐴′ ⊆ 𝐴 and 𝐴′ = 𝐴−{𝑎},
𝐴′ is not the ≥–lower approximate distribution consistent
set. We conclude that 𝐴 is a ≥–lower approximate distri-
bution reduct.

B. Illustrative example

Following Section 3.2, compute the ≥–lower approx-
imate distribution reduct, ≤–lower approximate distribu-
tion reduct, ≥–upper approximate distribution reduct and
≤–upper approximate distribution reduct of Table 1.

By Definition 6, we can obtain eight different types of
distribution discernibility matrixes. Here, we only present
≥𝑢–lower, ≥𝑣–lower, ≥𝑢–upper, ≥𝑣–upper approximate
distribution discernibility matrixes matrixes as Table 4,
Table 5, Table 6 and Table 7 show respectively.

Therefore, by Definition 7, we obtain the following ≥–

TABLE IV.
≥𝑢–LOWER APPROXIMATE DISTRIBUTION DISCERNIBILITY MATRIX

𝐷≥
𝐿 (𝑥, 𝑦)𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9𝑥10

𝑥1 {𝑑, 𝑒} {𝑎, 𝑒} {𝑎} {𝑑, 𝑒} {𝑎, 𝑑, 𝑒}
𝑥2 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥3 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥4 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥5 {𝑒} {𝑎, 𝑒} {𝑎} {𝑎} {𝑎, 𝑒}
𝑥6 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥7 {𝑑, 𝑒} {𝑎, 𝑒} {𝑎} {𝑑, 𝑒} {𝑎, 𝑑, 𝑒}
𝑥8 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥9 {𝑑, 𝑒} {𝑎, 𝑒} {𝑎} {𝑑, 𝑒} {𝑎, 𝑑, 𝑒}
𝑥10 {𝑒} {𝑎, 𝑐, 𝑒}{𝑐} {𝑐, 𝑒} {𝑎, 𝑐, 𝑒}

TABLE V.
≥𝑣–LOWER APPROXIMATE DISTRIBUTION DISCERNIBILITY MATRIX

𝐷≥
𝐿 (𝑥, 𝑦)𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9𝑥10

𝑥1 {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑑, 𝑒} {𝑎, 𝑑, 𝑒}
𝑥2 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥3 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥4 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥5 {𝑎, 𝑑, 𝑒} {𝑎, 𝑒} {𝑎, 𝑏} {𝑏, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒}
𝑥6 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥7 {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑑, 𝑒} {𝑎, 𝑑, 𝑒}
𝑥8 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥9 {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑑, 𝑒} {𝑎, 𝑑, 𝑒}
𝑥10 {𝑎, 𝑐, 𝑑, 𝑒}{𝑎, 𝑐, 𝑒}{𝑎, 𝑏, 𝑐, 𝑒} {𝑏, 𝑐, 𝑑, 𝑒} {𝑎, 𝑐, 𝑑, 𝑒}

TABLE VI.
≥𝑢–UPPER APPROXIMATE DISTRIBUTION DISCERNIBILITY MATRIX

𝐷≥
𝐻(𝑥, 𝑦) 𝑥1 𝑥2𝑥3𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑥1 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥2 {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒}{𝑎, 𝑐, 𝑑, 𝑒}
𝑥3 {𝑎, 𝑑, 𝑒} {𝑎, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑐, 𝑒}
𝑥4 {𝑎, 𝑑, 𝑒} {𝑎, 𝑏} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒}{𝑎, 𝑏, 𝑐, 𝑒}
𝑥5 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥6 {𝑑, 𝑒} {𝑏, 𝑑, 𝑒} {𝑑, 𝑒} {𝑑, 𝑒} {𝑏, 𝑐, 𝑑, 𝑒}
𝑥7 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥8 {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒}{𝑎, 𝑐, 𝑑, 𝑒}
𝑥9 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥10 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇

TABLE VII.
≥𝑣–UPPER APPROXIMATE DISTRIBUTION DISCERNIBILITY MATRIX

𝐷≥
𝐻(𝑥, 𝑦) 𝑥1 𝑥2𝑥3𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑥1 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥2 {𝑑, 𝑒} {𝑒} {𝑑, 𝑒} {𝑑, 𝑒} {𝑒}
𝑥3 {𝑎, 𝑒} {𝑎, 𝑒} {𝑎, 𝑒} {𝑎, 𝑒} {𝑎, 𝑐, 𝑒}
𝑥4 {𝑎} {𝑎} {𝑎} {𝑎} {𝑎, 𝑐}
𝑥5 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥6 {𝑎, 𝑑, 𝑒} {𝑎} {𝑎, 𝑏, 𝑑, 𝑒} {𝑎, 𝑐, 𝑑, 𝑒}{𝑎, 𝑐, 𝑒}
𝑥7 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥8 {𝑎, 𝑑, 𝑒} {𝑎} {𝑎, 𝑑, 𝑒} {𝑎, 𝑑, 𝑒} {𝑎, 𝑐, 𝑒}
𝑥9 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
𝑥10 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇 𝐴𝑇
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lower, ≥–upper approximate discernibility functions:

Δ≥
𝐿 =

⋀
(𝑥,𝑦)∈𝐷

≥
𝐿

((
⋁

𝐷≥𝑢
𝐿 (𝑥, 𝑦))

⋀
(
⋁

𝐷≥𝑣
𝐿 (𝑥, 𝑦)));

= 𝑎
⋀

𝑐
⋀

𝑒

Δ≥
𝐻 =

⋀
(𝑥,𝑦)∈𝐷

≥
𝐻

((
⋁

𝐷≥𝑢
𝐻 (𝑥, 𝑦))

⋀
(
⋁

𝐷≥𝑣
𝐻 (𝑥, 𝑦)))

= 𝑎
⋀

𝑒

By the above results and Theorem 9, we know that
{𝑎, 𝑐, 𝑒} is the ≥–lower approximate distribution reduct
of Table 1, {𝑎, 𝑒} is the ≥–upper approximate distribution
reduct of Table 1. In other words, to preserve the intu-
itionistic fuzzy dominance–based lower approximations
of all the upward unions of the decision classes, attributes
𝑏 and 𝑑 can be deleted; to preserve the intuitionistic
fuzzy dominance–based upper approximations of all the
upward unions of the decision classes, attributes 𝑏, 𝑐, 𝑑
are redundant.

Similar to the above progress, it is not difficult to
obtain that {𝑎, 𝑒} is the ≤–lower approximate distribution
reduct of Table 1, {𝑎, 𝑐, 𝑒} is the ≤–upper approximate
distribution reduct of Table 1. Such results demonstrate
the correctness of Theorem 5.

V. CONCLUSIONS

In this paper, we have developed a general framework
for the generalization of dominance–based rough set. In
our approach, the concept of intuitionistic fuzzy set is
combined with the DRSA and then the intuitionistic fuzzy
dominance–based rough set is defined. We also introduced
the concept of approximate distribution reducts into intu-
itionistic fuzzy dominance–based rough set model, four
types of approximate distribution reducts are presented,
the practical approaches to compute these reducts are also
discussed. Different from the previous DRSA, we use an
intuitionistic fuzzy dominance relation instead of the crisp
or fuzzy dominance relation to defined dominance–based
rough set model.

Furthermore, a lot of experiment analysis are also
needed to conduct in the future for practical applications
of our intuitionistic fuzzy dominance–based rough set
approach.
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