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Abstract— In general purpose operating systems, such as
the mainline Linux, priority inversions occur frequently
and are not considered harmful. They are not avoided
or limited as in real-time systems. In the current version
of the kernel PREEMPT-RT Linux, the protocol used for
priority inversion control is the Priority Inheritance. The
objective of this paper is to propose the implementation
of an alternative protocol, the Immediate Priority Ceiling,
for use in drivers dedicated to real-time applications. This
paper explains how the protocol was implemented in the
real-time kernel and compare the protocol implemented with
the Priority Inheritance implementation, currently used in
the real-time kernel.

Index Terms— real-time systems; Linux; process synchro-
nization

I. INTRODUCTION

In real-time operating systems such as
Linux/PREEMPT-RT [1] [2], task synchronization
mechanisms must ensure both the maintenance of the
internal consistency of resources and data structures, and
the determinism of waiting times. They should avoid
unbounded priority inversions, where a high priority
task is blocked indefinitely waiting for a resource that is
possessed by a task with lower priority.

In general purpose systems, such as mainline Linux,
priority inversions occur frequently and are not considered
harmful, nor are avoided as in real-time systems. In the
current version of the kernel PREEMPT-RT Linux, the
protocol used for priority inversion control is the Priority
Inheritance (PI) [3].

The objective of this paper is to propose the implemen-
tation of an alternative protocol, the Immediate Priority
Ceiling (IPC) [4] [3], for use in drivers dedicated to real-
time applications. In this scenario, an embedded Linux
supports a specific known application that does not change
task priorities after its initialization. It is not the objective

of this paper to propose a complete replacement of the
existing protocol, as mentioned above, but an alternative
for use in some situations. The work in this paper only
considered uniprocessor systems. A preliminary version
of this paper was presented at [5].

A disadvantages of IPC for wider use is the need
for manual determination of the priority ceiling of IPC
mutexes. But this is usually not a problem for embedded
systems. Dedicated device-drivers are fully aware of the
priorities of the tasks that access them, justifying the
manual setting of the ceiling (either at compile time or
initialization) in this case.

The Linux kernel was chosen because it is an attractive
alternative for a large spectrum of applications, from
laptops and desktops to big servers. It is also used more
and more in embedded applications, in part because of
the growing popularization of 32 bits architectures.

The widespread use of Linux is consequence of all
the advantages offered by this modern general purpose
operating system, such as a multitask environment, com-
munication protocol stacks, graphical resources, wide
hardware support, code stability, continuous evolution and
constant modernization for elimination of bugs. Another
advantage of the use of Linux is the possibility of studying
it, to alter and to do any kind of adjustment it may
be necessary in order to adapt it to a certain embedded
application.

This paper is organized as follows: section II presents
the current synchronization scenario of the mainline ker-
nel and PREEMPT-RT, section III explains the Immediate
Priority Ceiling protocol, section IV explains how the
protocol was implemented in the Linux real-time kernel,
section V describes tests made upon the protocol imple-
mented and the original Priority Inheritance implemented
in the real-time kernel and section VI presents an over-
head analysis of IPC and PI.
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II. MUTUAL EXCLUSION IN THE LINUX KERNEL

There is no mechanism in the mainline kernel that
prevents the appearance of priority inversions in kernel
code (it is available for use in code that runs in userspace
through futexes). Situations like the one shown in Figure
1 can occur very easily, where task T2, activated at t = 1,
acquires the shared resource. Then, task T0 is activated
at t = 2 but blocks because the resource is held by T2.
T2 resumes execution, and is preempted by T1, which is
activated and begins to run from t = 5 to t = 11. But
task T0 misses the deadline at t = 9, since the resource
required for its completion was only available at t = 12
(after the deadline).

Figure 1. Unbounded priority inversion

The real-time kernel PREEMPT-RT includes the im-
plementation of PI (Priority Inheritance) for use within
the kernel code. As mentioned above, it is a mechanism
used to accelerate the release of resources in real-time
systems, and to avoid unbounded delay of high priority
tasks that can be blocked waiting for resources held by
tasks of lower priority (priority inversion).

In the PI protocol, a task of high priority that is
blocked on some resource gives its priority to the task of
lower priority (holding that resource), so this will release
the resource without suffering preemptions of tasks with
intermediate priority. This protocol can generate chaining
of priority adjustments (a sequence of cascading adjust-
ments) depending on the nesting of critical sections.

Figure 2 presents an example of how the PI protocol
can help in the problem of priority inversion. In this
example, task T2 is activated at t = 1 and acquires a
shared resource, at t = 1. Task T0 is activated and blocks
on the resource held by T2 at t = 4. T2 inherits the
priority from T0 and prevents T1 from running, when
activated at t = 5. At t = 6, task T2 releases the resource,
its priority changes back to its normal priority, and task
T0 can conclude without missing its deadline.

Some of the problems [6] of this protocol are the
number of context switches and blocking times larger than
the largest of the critical sections [3] (for the task of high
priority), depending on the arrival pattern of the tasks that
share certain resources.

Figure 2. Priority inversion avoided by PI

Figure 3 is an example where protocol PI does not
prevent the missing of the deadline of the highest priority
task. In this example, there is the nesting of critical
sections. T1 (the intermediate priority) has the critical
sections defined by resources 1 and 2 nested. In this
example, task T0, when blocked on resource 1 at t =
3, gives its priority to task T1, which also blocks on
resource 2 at t = 3. T1 in turn gives its priority to task
T2, which resumes its execution and releases the resource
2, allowing T1 to use that resource and to release the
resource 1 to T0 at t = 7. T0 resumes its execution
but it misses its deadline, which occurs at t = 11. In
this example, the worst case blocking time of task T0 is
the time of the external critical section of T1 plus the
time of the critical section of T2. In a larger system the
blocking time of T0 in the worst case would be the sum of
many critical sections, mostly associated with resources
not used by T0.

Figure 3. Priority inversion not avoided by PI

III. THE IMMEDIATE PRIORITY CEILING PROTOCOL

The Immediate Priority Ceiling (IPC) [7] synchroniza-
tion protocol for fixed priority tasks is a variation of
the Priority Ceiling Protocol [3] and the Stack Resource
Protocol [8]. It is sometimes referenced as the Highest
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Locker Priority. This protocol is an alternative mechanism
for unbounded priority inversion control, and prevention
of deadlocks in uniprocessor systems.

In the PI protocol, priority is associated only to the
tasks. In IPC, priority is associated with both tasks and
resources. A resource protected by IPC has a priority
ceiling, and this priority is the highest priority of all task
priorities that access this resource.

According to [9], the maximum blocking time of a task
under fixed priority using a shared resource protected by
IPC protocol is the larger critical section of the system
among those which priority ceiling is higher than the
priority of the task in question and is used by a lower
priority task.

What happens in IPC can be considered preventive
inheritance, where the priority is adjusted immediately
when occurs a resource acquisition, and not when the
resource becomes necessary to a high priority task, as in
PI. One can think of PI as the IPC, but with dynamic
adjustment of the ceiling. This preventive priority setting
prevents low-priority tasks from being preempted by
tasks with intermediate priorities, which have priorities
higher than low-priority tasks and lower than the resource
priority ceiling.

Figure 4 shows an example similar to that shown in
Figure 3, but this time using IPC. In this example, the
high priority task does not misses its deadline, because
when task T2 acquires the resource 2 at t = 1, its priority
is raised to the ceiling of the resource (priority of T1),
preventing task T1, activated at t = 2, from starting its
execution. At t = 3, task T0 is activated and begins its
execution. The task is no longer blocked because the
resource 2 is available. Task T0 does not miss its deadline.

Figure 4. Priority inversion avoided by IPC

IV. DESCRIPTION OF THE IMPLEMENTATION

The Immediate Priority Ceiling Protocol was imple-
mented based on the code of rt mutexes existing in the
PREEMPT-RT. The rt mutexes are mutexes that imple-
ment the Priority Inheritance protocol [10]. Our imple-
mentation is currently based on the tip tree and rt/head
branch [11]. Although rt mutexes are implemented in
PREEMPT-RT for both uniprocessor and multiprocesors,

our implementation of IPC considers only the uniproces-
sor case.

The implementation was made primarily for use in
device-drivers (kernel space). Figure 5 shows an example
of tasks sharing a critical section protected by IPC and
accessed through an ioctl system call in a driver. This
is a very common scenario when Linux is used in an
embedded system.

Figure 5. Diagram of interaction between the IPC protocol and tasks

The type that represents the IPC protocol was defined
as struct immpc mutex, and is presented in code 1. In
this structure, wait lock (line 2) is the spinlock that
protects the access to the structure, on task entry (line 3)
serves to insert the immpc mutex structure in a list (and,
consequently, control of priorities), owner (line 4) stores
a pointer to the task owner of the mutex (or null pointer
if the mutex is available) and finally the ceiling (line 5),
which stores the priority ceiling of the mutex.

Code 1 Data structure that represents a IPC mutex

1 s t r u c t immpc mutex {
2 r a w s p i n l o c k t w a i t l o c k ;
3 s t r u c t l i s t h e a d o n t a s k e n t r y ;
4 s t r u c t t a s k s t r u c t ∗owner ;
5 i n t c e i l i n g ;
6 /∗ o t h e r f i e l d s ∗ /
7 } ;

Another auxiliary structure was defined, the struct
immpc synchronization ctx, showed in code listing 2. This
structure was included in the task struct for the control
of the IPC mutexes, where each mutex acquired by a task
is added to the mutex list (line 5) (by the on task entry
field on immpc mutex struct).

Code 2 Data structure that represents a IPC mutex
synchronization context

1 s t r u c t i m m p c s y n c h r o n i z a t i o n c t x{
2 # i f d e f i n e d ( CONFIG IMMPC DELAYED PRIO ADJ )
3 i n t n e e d p r i o c h a n g e ;
4 # e n d i f
5 s t r u c t l i s t h e a d m u t e x l i s t ;
6 } ;

The proposed implementation presents the following
API of functions and macros:
• DEFINE IMMPC MUTEX(mutexname,

priority): This macro is provided for definition of a
statically allocated IPC mutex, where mutexname is
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the identifier of the mutex and priority is the ceiling
of the mutex, or a value in the range of 0 to 99
(according to the specification of static priorities for
real-time tasks on Linux).

• void immpc mutex init(struct immpc mutex
*lock, int prio): This function initializes a
dynamically allocated (or embedded in a struct)
mutex. The result is a unlocked mutex.

• void immpc mutex lock(struct immpc mutex *
lock): Mutex acquisition function. In uniprocessor
systems this is a nonblocking function because,
according to the IPC protocol, if a task requests a
resource, it is because this resource is available (the
owner is always null).

• void immpc mutex unlock(struct immpc mutex *
lock): Effects the release of the resource and the
readjustment of the priority of the calling task.

• void immpc mutex set ceiling(struct
immpc mutex *lock, int newceiling): This
function changes the ceiling of the specified mutex.
The adjustment policy (via procfs, on module
loading, or ioctl, for example) must be defined by
the driver developer.

A. Optimization by Priority Change Postponement

The execution of the lock/unlock operations may be-
come very expensive, especially when these operations
occur very frequently within some kernel segment (in a
short loop for example). Ideally, there should be some
form of optimization in order to accelerate this process,
which is done by what is called a fastpath.

Fastpath is the strategy of acquiring or releasing a
mutex without blocking the spinlock which protects the
mutex structure. It is used primarily for performance
reasons, and is implemented with the use of atomic
instructions (instructions known as compare and exchange
- cmpxchg). For architectures that do not include this
instruction, the fastpath can not be used.

The fastpaths that we implemented for the Immediate
Priority Ceiling are very similar to those existing in origi-
nal implementation of rt-mutexes (a small amount of code
was changed). In PI protocol (rt-mutexes), which is imple-
mented to work on multiprocessors on Linux/PREEMPT-
RT, when the mutex can not be acquired/released by
fastpath because some required condition was not met it
is executed the slowpath (the mutex is not available, ie, it
was held by a thread which is not running or is running on
another CPU). Slowpath is the traditional mechanism of
mutex acquisition/release, which blocks the data structure.

In the IPC protocol (immpc mutex) implementation
(for monoprocessors on Linux/PREEMPT-RT), the fast-
path will never fail (the mutex is always available when
requested by IPC). In this case, the slowpath only will be
used if the architecture does not support cmpxchg or the

Actually, one of the protocol problems is the fact that
the IPC priority adjustment of tasks that acquire a mutex
can not be performed atomically. What we did to enable
the fastpath under this restriction was to implement a

mechanism to postpone priority adjustments. A task that
acquires a mutex has a flag (defined on code listing 2,
line 3) turned on and passes to a state defined as “Task
with priority adjustment pending.” This postponement
means that the adjustment should be done at a more
favorable time. The most appropriate time to do this is
the imminence of a preemption or a CPU rescheduling.

One of the advantages of priority change postponement
is the creation of a fastpath. Another advantage is due to
the fact that the adjustment does not need to be done in the
case of small critical sections, since the smaller the critical
section, the lower the probability of a rescheduling while
it executes (motivated by a timer interrupt for example).

Even the acquisition of the mutex being atomic in the
fastpath, it is still required two non atomic operations:
enable the flag ”Task with priority adjustment pending”
and add/remove the mutex in the task mutex list. These
operations are lockfree because they are made only by the
task which just acquired the mutex.

Code listing 3 shows a simplified algorithm for the fast-
path acquisition/release. The non-atomic part is performed
by calls to track ipc mutex and untrack ipc mutex. Func-
tions track ipc mutex and untrack ipc mutex add and
remove, respectively, the mutex to the task mutexes list,
in addition to activating the flag of delayed priority
adjustment. When the architecture does not support cmpx-
chg instructions, the macro immpc mutex cmpxchg (line
2) simply returns 0, forcing the acquisition/release by
slowpath.

Code 3 Simplified algorithm of acquisition/release fast-
path

1 # i f d e f i n e d ( HAVE ARCH CMPXCHG)
2 # d e f i n e immpc mutex cmpxchg ( l , c , n )\
3 ( cmpxchg(& l−>owner , c , n ) == c )
4 # e l s e
5 # d e f i n e immpc mutex cmpxchg ( l , c , n ) ( 0 )
6
7 void i m m p c m u t e x f a s t l o c k ( s t r u c t immpc mutex∗
8 l o c k ){
9

10 /∗ w i l l f a i l i f t h e s y s t e m does n o t s u p p o r t s
11 cmpxchg or i s n o t c o m p i l e d f o r p a s t p a t h
12 u t i l i z a t i o n . ∗ /
13 i f ( immpc mutex cmpxchg ( lock−>owner , NULL,
14 c u r r e n t ) ){
15 t r ack immpc mutex ( lock , c u r r e n t ) ;
16 } e l s e {
17
18 /∗ t r a d i t i o n a l p r o c e s s ∗ /
19 immpc mutex s lowlock ( l o c k ) ;
20 }
21 }
22
23 void i m m p c m u t e x f a s t u n l o c k ( s t r u c t immpc mutex∗
24 l o c k ){
25
26 /∗ w i l l f a i l i f t h e s y s t e m does n o t s u p p o r t s
27 cmpxchg or i s n o t c o m p i l e d f o r p a s t p a t h
28 u t i l i z a t i o n . ∗ /
29 i f ( immpc mutex cmpxchg ( lock−>owner ,
30 c u r r e n t , NULL) ){
31 un t r ack immpc mutex ( lock , c u r r e n t ) ;
32 } e l s e {
33
34 /∗ t r a d i t i o n a l p r o c e s s ∗ /
35 immpc mutex s lowlock ( l o c k ) ;
36 }
37 }
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B. Maintainability

The IPC patch was implemented and maintained with
the support of the Git (distributed version control tool
[12]). The current version presents the following statistics
of changes (in relation to branch rt/head of the kernel-tip
kernel development tree):
include/linux/immpc_mutex.h | 162 +++++++
include/linux/sched.h | 11 +-
kernel/Makefile | 2 +
kernel/fork.c | 5 +
kernel/immpc_mutex.c | 1020 +++++++++++++++
kernel/sched.c | 5 +
6 files changed, 1202 insertions(+), 3 deletions(-)
create mode 100644 include/linux/immpc_mutex.h
create mode 100644 kernel/immpc_mutex.c

This indicates that two files were created (include/lin-
ux/immpc mutex.h and kernel/immpc mutex.c) and four
others were altered (include/linux/sched.h, kernel/Make-
file, kernel/fork.c kernel/sched.c), and the most changed
file was include/linux/sched.h, and even then, minimally.
This way, the IPC implementation is contained in the
created files, and not in the previously existing files in
the core kernel, changing only the strictly necessary for
the operation of the mechanism.

V. IMPLEMENTATION EVALUATION

We developed a device-driver that has the function of
providing the critical sections necessary to perform the
tests. This device-driver exports a single service as a
service call ioctl. It multiplexes the calls of three tasks
in their correspondent critical sections. This device-driver
provides both critical sections to run with IPC and with PI.
This device-driver also reports the blocking times (time
between request and access to a particular critical section)
and the time spent on critical sections by the high-priority
task.

In order to carry out tests for the analysis of the imple-
mentation it was used a set of sporadic tasks executed in
user space. The interval between activations, the resources
used and the size of the critical section within the device-
driver used by each task are presented in Table I. All
critical sections are executed within the function ioctl,
within Linux kernel. A high-level summary of actions
performed by each task (in relation to resources used)
is presented in Table II.

Table I shows the intervals between activations ex-
pressed with a pseudorandomness, ie, with values uni-
formly distributed between minimum and maximum val-
ues. This randomness was included in tests to improve the
distribution of results, because with fixed periods, patterns
of arrivals were limited to a much more restricted set.
Table I also presents the sizes of the critical sections
of each task. Another information shown in Table I
is the number of activations performed for each task.
The duration of the test was defined by 1000 monitored
activations (latency, response time, critical section time,
lock time, etc) of the high-priority task.

The high-priority task has one of the highest priorities
of the system. The other tasks were regarded as medium
and low priorities although they also have absolute high

priorities compared with normal tasks. All tasks have been
configured with the scheduling policy SCHED FIFO,
which is one of the policies for real-time [13] available
in Linux.

Mutex R1 has been configured with priority ceiling
70 (which is the priority of task T0) and R2 has been
configured with the priority ceiling 65 (which is the
priority of task T1).

Even with the use of a SMP machine for testing, all
tasks were set at only one CPU (CPU 0). The machine
used has a Turion X2 TL-50 1.6 GHz dual-core processor,
2 GB of RAM and runs only the Linux kernel and basic
daemons. Tests were conducted using both IPC and PI.

The time measurements were obtained using the TSC
(time-stamp counter), which is a high resolution counter
with low overhead access that is present on current x86
architecture implementations.

Task T0/High T1/Med. T2/Low
Priority 70 65 60
Activation
interval

rand in
[400,800]
ms

rand in
[95,190] ms

rand in
[85,170] ms

Resource R1 R1,R2 R2
Critical sec-
tion size

aprox. 17 ms aprox. 2x17
ms

aprox. 17 ms

TABLE I.
CONFIGURATION OF THE SET OF TASKS

Task T0/High T1/Med. T2/Low
Action 1 Lock(R1) Lock(R1) Lock(R2)
Action 2 Critical Sec. Critical Sec. Critical Sec.
Action 3 Unlock(R1) Lock(R2) Unlock(R2)
Action 4 Critical Sec.
Action 5 Unlock(R2)
Action 6 Unlock(R1)

TABLE II.
ACTIONS REALIZED BY TASKS

We measured three values regarding the high-priority
task: the activation latency (the time between inserting a
task on the ready queue and its effective execution), the
blocking time (the time between requesting a resource
and effectively gaining access to it) and response time
(which is the time between inserting a task into the ready
queue and the finish of its computation in a particular
activation).

A. Results Using the PI mutex

With priority inheritance, the high-priority task had
most of its activation latencies in the interval [2x106,
3x106] nanoseconds as can be seen in the histogram of
Figure 6. The portion of the activation latencies that are
not in the interval (measured values out of the inter-
val [2x106, 3x106]), presents values linearly distributed
around the vertical bar and with frequencies very close
to zero, which makes them difficult to be seen in the
histogram. The task finds the resource busy with a certain
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frequency (as illustrated in Figure 7, waiting time for
the resource), and it must perform context switch for
propagation of its priority along the chain of locks.

Figure 6. Histogram of activation latencies (high priority task using PI)

Figure 7. Graph of blocking time (high priority task using PI)

Figure 8. Histogram of response time (high priority task using PI)

The response time (Figure 8) was consistent with the
blocking time sustained, with a maximum of nearly 3
times the size of the critical section, in accordance with
what was expected. It can be seen in Table III the
worst-case response time observed is 64,157,591 ns. The
theoretical worst-case response time for this test would
be, with a properly synchronized activation, 68 ms, being
17 ms from the critical section of task T0 plus 34 ms of
task T1 and 17 ms of task T2. In this test, there is a good
approximation of the theoretical limit.

Protocol: PI IPC
Average response
time:

22,798,549 ns 21,014,311 ns

Std dev: 11,319,355 ns 8,723,159 ns
Max: 64,157,591 ns 50,811,328 ns

TABLE III.
AVERAGE RESPONSE TIMES AND STANDARD DEVIATION

B. Results Using the IPC mutex

It can be noted in the histogram of Figure 9 that the
high-priority task presented, with low frequency, varying
values of latency of activation (seen in the tail of the
histogram). Waiting times set by the resource appear in
Figure 10, which is expected according to the definition of
the protocol implemented (values are too small compared
to the scale, so they appear close to zero.) In the response
time histogram (Figure 11) it appears a tail (higher values,
but with only a few occurrences) due to the activation
latency.

Figure 9. Histogram of activation latencies (high priority task using
IPC)

Figure 10. Graph of blocking time (high priority task using IPC)

In this test, it can be seen in Table III the worst-
case response time observed is (maximum) 50,811,328
ns. Theoretic limit is 51 ms, ie, 17 ms from the critical
section of task T0 plus 34 ms of task T1. Also in this test
there is a good approximation of the theoretical limit.
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Figure 11. Histogram of response time (high priority task using IPC)

C. Comparison between PI and IPC

One can observe that, in general, protocol IPC has
behavior similar to PI. The differences appear in the
lock time where, by definition, in uniprocessor systems,
the resource is always available when using IPC. For
the protocol PI, the blocking time will appear with the
primitive lock, and this time may be longer than with IPC.
In IPC the blocking time appears before the activation
time, and have a maximum length of a critical section (in
the conditions of the test). The fact that the blocking time
appears in the form of activation latency can be seen by
comparing the graphs of Figure 6 and Figure 9, where the
activation latency of IPC is noticeably greater than PI.

According to Table III, protocol IPC presented a stan-
dard deviation and average response time smaller than PI.
Another important point in Table III is that the worst-case
response time observed with IPC was almost a critical
section smaller than with PI (the size of a critical section
is 17 ms, and the difference between the worst case of
IPC and PI is around 14 ms).

Figure 12 shows the histogram of the tail of the
activations. In this figure, the response times of the IPC
protocol concentrates on lower values. For the PI, these
are distributed more uniformly to higher values, indicating
the average response time is smaller for the protocol IPC.
This histogram also indicates in its final portion that the
worst case, as it was also observed in Table III, has
a difference of one critical section in favor of the IPC
protocol. This difference in the worst case is high lighted
in the figure by two vertical lines, where the distance
between them is about the duration of a critical section.
Table IV summarizes qualitatively the results.

Protocol PI IPC
Activation Latency Not varied Varied
Blocking time Varied Not varied
Response time Blocking time

dependent
Latency dependent

TABLE IV.
SUMMARY OF RESULTS

Figure 12. Histogram of the response time of high priority task

VI. IMPLEMENTATION OVERHEAD

We define overhead as any decrease in the system’s
ability to produce useful work. Thus, for this study, the
overhead will be considered as the reducing of the CPU
time available to the rest of the system, given the presence
of a set of higher priority tasks sharing resources protected
by PI (always with fasthpath) or IPC (both versions, with
and without fastpath).

To evaluate the protocol implemented in terms of
overhead imposed on the system, we used a set of test
tasks as specified in Table V. The same table presents the
tasks configurations.

In order to obtain an overhead estimative, it was
created a measuring task with priority 51 (with policy
SCHED FIFO). This priority is above the default priority
of threaded irq handlers [2] and softirqs [14] . This was
done to keep the measuring task above the interference
of the mechanisms of interrupt handling and work post-
ponement of Linux. Every CPU time that remains (not
used by the test tasks synchronized by IPC or PI) is then
assigned to the measurement task. Both the measurement
task and the task set synchronized by IPC or PI were fixed
to a single CPU (CPU 0 in a system with 2 cores). As
described in the previous section, the machine used has a
Turion X2 TL-50 1.6 GHz dual-core processor, 2 GB of
RAM and runs only the Linux kernel and basic daemons.

The measurement task is activated at the same time of
the real-time tasks and ends before they terminate. In each
test iteration, the measurement task runs for 17 seconds.
As shown in Table V, task T0’ executes 40 activations,
the others will run until the end of this task.

To obtain the overhead estimative, the measurement
task executes a loop for 17 seconds. The overhead will
be noticed by how much the measurement task actually
uses the CPU, taking into account the execution of the set
of tasks synchronized by IPC or PI (always pairing one
execution of the IPC case with one of the PI case in order
to minimize environment effects). The tests for IPC were
repeated for both cases (with (FP) and without (NOFP)
fasthpath). In the tests, PI always has its fastpath enabled.
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Task T0’ T1’ T2’ T3’ T4’ T5’ T6’
Priority 70 65 64 63 62 61 60
Activation
interval
(ms)

rand in
[500,1000]

rand in
[100,200]

rand in
[100,200]

rand in
[100,200]

rand in
[90,180]

rand in
[90,180]

rand in
[90,180]

Resource R1 R1, R2 R1, R2 R1, R2 R2 R2 R2
Critical
section size

aprox. 17
ms

aprox.
2x17 ms

aprox.
2x17 ms

aprox.
2x17 ms

aprox. 17
ms

aprox. 17
ms

aprox. 17
ms

Number of
activ.

40 T0’ dep T0’ dep T0’ dep T0’ dep T0’ dep T0’ dep

TABLE V.
ACTIONS REALIZED BY TASKS

The values of the CPU time (in nanoseconds) utilized by
the measurement task are presented in Table VI, which
was sorted to facilitate visual comparison. Table VI also
presents the basic statistical data related to the samples.

In order to evaluate the results we used the statisti-
cal hypothesis test for averages with unknown variance
(Student t-test). By hypothesis, the overhead of PI and
IPC are equal, ie the average CPU time available to the
measurement task under the workload synchronized by
IPC and by PI are equal (for both cases of IPC, with
and without fastpath), then we have two independent
hypothesis:

1) H0 : µPI = µIPCNOF P

2) H0′ : µPI = µIPCF P

The parameters presented in Table VII, which provides
the data necessary for the hypothesis test, were obtained
from the data showed in Table VI plus the information of
the number of samples (n = 40).

Without fastpath
(IPCNOFP )

With fastpath
(IPCFP )

Sa2
IPC,PI 1,621,289,369,039 7,137,183,653,740

n 40 40
α 0.1% 0.1%
d.f. 80 80
t -12.51 1.64

TABLE VII.
STUDENT’S T-TEST DATA

A. Analysis of the Overhead

The test rejects H0 with a significance level of 0.1
%, because the data produced the value of t = -12.51,
which does not belong to the region of acceptance (t-
Student distribution). At significance level (α) of 0.1%,
the collected data indicate a difference between PI and
IPCNOFP . There is a probability smaller than 0.1% that
the differences observed in the presented data are from
casual factors of the system only.

However, for the case of IPCFP (with fastpath), the
value of t = 1.64 indicates an equivalence between the
overhead caused by IPCFP and PI. That is, it is noted that
for architectures that support atomic instructions cmpxchg
the fastpath can really make a difference in terms of
overhead.

In IPCNOFP (without fastpath), there is always a need
of priority verification and adjustment. Another point is
that if a task with priority lower than the priority ceiling
of a given resource acquires that resource, its priority
has to be changed, and this may influence the overhead.
As those tests show, there is a reasonable probability of
tasks finding resources available, not always the priority
propagation algorithm (PI) will run, but there will almost
always priority adjustments (IPCNOFP ), except for the
task that defines the priority ceiling of the resource.

In the case of IPCFP (with fastpath), a priority ad-
justment will happen only if there is imminence of
preemption by another task. Thus, there is a chance of
not occurring the priority adjustment. Another important
point that helps to explain the results is that the IPC with
fasthpath executes a few instructions more than the PI
fastpath. However, the PI protocol leads to more context
switches, resulting in an equivalent overhead.

VII. CONCLUSIONS

Task synchronization is fundamental in multitasking
and/or multithread systems, specially in real-time systems.
These mechanisms must protect against race conditions
and prevent the appearance of uncontrolled priority in-
versions, which could cause the missing of deadlines,
leading real-time applications to present incorrect and
possibly harmful behavior. In this context, it was proposed
the Immediate Priority Ceiling as an alternative to the
protocol implemented in the real-time Linux branch. The
proposed implementation was shown with two variations,
the first non-optimized (using priority adjustments every
lock/unlock operation) and the second with fastpath (using
the concept of Priority Change Postponement and atomic
instructions).

The non-optimized version of the IPC protocol is
suitable for dedicated applications that use architectures
without instruction compare and exchange because, in this
case, the implementation can not use the fastpath (via
atomic instructions). Another advantage of IPC is that it
generates less context switches than PI, inducing faster
response times due to switching overhead as well as lower
failure rates in the TLB.

In terms of average response time, the two solutions
were similar, but IPC still showed lower average response
time probably due to the latency of activation being less
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Statistics IPCFP PI IPCNOFP PI
407,035,114 406,435,450 401,424,676 405,553,163
407,285,636 407,765,565 401,820,286 406,458,117
407,373,521 407,835,019 401,948,422 406,658,942
407,819,905 407,876,696 402,597,568 406,856,751
408,377,891 408,048,768 403,542,887 407,004,448
408,381,506 408,101,843 403,547,748 407,238,676
408,406,446 408,219,724 403,874,521 407,350,956
408,417,061 408,220,571 404,566,739 407,427,672
408,711,409 408,433,649 404,686,516 407,513,400
408,763,366 408,446,200 404,707,405 407,577,573
408,801,061 408,549,755 404,757,367 407,596,261
408,883,156 408,575,046 404,808,759 407,706,637
408,949,145 408,575,106 404,826,216 407,785,273
409,148,907 408,606,476 404,827,682 408,013,960
409,202,266 408,783,361 404,970,791 408,315,982
409,443,672 408,785,943 404,978,816 408,495,828
409,518,531 408,790,334 405,086,464 408,602,577
409,658,142 408,862,429 405,122,964 408,604,205
409,662,722 408,987,951 405,165,352 408,702,488
409,679,490 409,156,013 405,169,874 408,789,189
409,721,677 409,171,710 405,245,988 408,846,701
409,761,649 409,212,383 405,409,364 408,945,776
409,772,169 409,230,027 405,441,947 408,956,142
409,837,278 409,381,642 405,505,815 408,961,259
409,899,266 409,399,327 405,560,936 408,984,062
410,158,821 409,409,126 405,626,303 409,024,543
410,207,755 409,424,264 405,750,834 409,159,619
410,419,774 409,502,679 405,770,308 409,395,789
410,477,452 409,626,412 405,784,920 409,459,483
410,492,265 409,710,682 405,917,678 409,465,209
410,496,194 409,833,770 405,974,737 409,513,038
410,546,730 409,866,286 405,994,401 409,593,505
410,661,307 409,872,273 406,031,717 409,602,110
410,679,530 409,873,581 406,043,948 409,977,571
410,715,126 410,066,899 406,253,972 410,018,274
410,853,474 410,129,241 406,322,758 410,079,834
410,857,619 410,179,304 406,406,613 410,284,319
411,127,684 410,226,307 406,618,569 410,312,717
411,289,886 410,617,801 406,661,586 410,467,174
431,575,650 412,029,972 406,945,074 410,907,269

Average: 410,076,756 409,095,489 405,042,463 408,605,162
Variance: 13,330,393,417,558 943,973,889,922 1,706,936,654,588 1,535,642,083,490
Minimum: 408,711,409 408,433,649 404,686,516 407,513,400
Maximum: 431,575,650 412,029,972 406,945,074 410,907,269

TABLE VI.
CPU TIME AVAILABLE TO THE MEASUREMENT TASK AND RELATED STATISTICS

than the waiting time of PI. Another point in favor of IPC
protocol appears when we compare the difference in the
worst-case response time observed in the tests since the
IPC was about a critical section faster than PI, as can be
seen in Table III. Protocol PI has a response time that can
vary depending on the resource sharing and sequences of
activation patterns, which does not occur with IPC. IPC
blocking time will always be at most one critical section.

Although blocking/response times are smaller with
IPC, tests show that the overhead of the non-optimized
version of IPC is greater than the native PI in PREEMPT-
RT. This overhead is most likely caused by the absence of
a fast path in the implementation of IPC. There is a set of
operations on lock/unlock that can not be executed atom-
ically as in PI. These operations involve priority changes
and tracking mutexes acquired by tasks, for example.
However, the optimized version of IPC showed equivalent
overhead to the PI implementation. This equivalence
arises due to the fact that IPC executes more instructions

in lock/unlock primitives (however, considerably less than
in non-optimized version of IPC). This is compensated by
the fact that protocol PI performs more context switches
and chained priority adjustments.
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