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Abstract—Low efficiency of interference calculation has 
become the bottleneck that restricts further development of 
the performance of evolutionary algorithm for the polygon 
layout. To solve the problem, in this paper, we propose an 
algorithm of calculating overlapping area between two 
irregular polygons. For this algorithm, at first, two irregular 
polygons are respectively decomposed into the minimum 
number of convex polygons; afterwards, each pair of the 
overlapping convex polygons from two resulting partitions 
is clipped and their overlapping area is calculated. Because 
through a fast non-overlapping test to all pairs of convex 
polygons to be clipped, invalid computation is decreased; by 
making use of simple internal vertex judgment and shear-
transformation based on intersecting test and intersection 
calculation between a line segment and any convex broken 
line segment, its speed of clipping overlapping convex 
polygons is improved. The time complexity analysis and 
numerical experiments indicate that the performance of our 
presented algorithm superiors to the existing algorithms.  
 
Index Terms—Overlapping area calculation; Irregular 
polygon; Convex polygon Clipping; Evolutionary layout. 

I.  INTRODUCTION 

In the fields of computer graphics, computer-aided 
design, robotics and virtual reality etc., the non interfer-
ence detection[1][2][3] and the overlapping area calculating 
[4][5] of the irregular polygons are often encountered. For 
example, at each iterative for evolutionary layout of 
irregular polygons, the sum of their overlapping area is 
computed and is used to evaluate fitness of population 
individual. Its computation time occupies very large 
proportion of entire optimization time for solving the 
layout problems. So, it has been being studied for many 
years. Then algorithms based on geometric element 
decomposition are presented. For example, Liu De-quan 

[4] and Wang Jin-min[5] publish algorithms for calculating 
the overlapping area of irregular polygons based on 
triangle and trapezium decomposition respectively. The 
directly clipping algorithms [6][7][8] also can be applied to 
compute the overlapping area of the irregular polygons. 

However, for layout schemes of individuals, the 
overlapping objects become fewer and fewer and the sum 
of their overlapping area gets smaller and smaller in the 
process of evolutionary iteration. Directly using them will 
go against improvement of interference calculation 
efficiency. In addition, directly clipping algorithms all 
have high time complexity (the retailed analysis sees 
Section V). So, algorithms for determining overlapping 
boundary of two irregular polygons based on convex 
decomposition are studied currently. For example, Li Jing 
et al[9] propose a clipping algorithm of irregular polygons 
based on monotone piece partition but the number of 
monotone pieces it results is larger than that of [10] or 
[11] results in most of the cases. On basis of convex 
decomposition and clipping, this paper presents an algori-
thm for computing irregular polygon overlapping area 
(CIPOA algorithm). Its convex decomposing and polygon 
clipping strategy are different from the existing algori-
thms respectively. Numerical experiments show that our 
CIPOA algorithm improves the calculation efficiency. 

This paper is organized as follows: in this section, we 
give a brief overview of our CIPOA algorithm. A method 
of decomposing irregular polygons is described in section 
II. A clipping method for convex polygons is proposed in 
section III. Section IV describes our CIPOA algorithm. 
Three test examples are given in Section V. Finally, 
Section VI is a summarization of the paper.  

II.   CONVEX DECOMPOSITION OF THE IRREGULAR 
POLYGON 

For quickly calculating the overlapping area between 
two irregular polygons through convex partition, the 
efficient decomposing strategy is its premise. For the 
irregular polygon decomposition, two kinds of algorithms 
have been published. (і) Native partition algorithms based 
on geometric element. For example, Ref.[4][5] describe 
the triangle and trapezium partition algorithm respectively. 
They are easy to be implemented. But in general cases, 
because the number of triangles or trapeziums to a partit-
ion is large, the efficiency of computing overlapping area 
is decreased. (іі) Convex decomposition algorithms with 
Steiner points and that without Steiner points. For the 
former, in 1985, Chazelle [10] constructed Xk-pattern of 
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reflex vertex group to partition it into minimum convex 
parts in O(n+N3) time; In 1996, Xiao Zhong-hui et al[11] 

proposed coding partition algorithm with O(n+N2) time. 
For the latter, a dynamic programming algorithm of 
Keil[12][13] computes a minimum composition in O(nN2 

logN) time; a partition algorithm with O(n+N2 min(N2,n) 
time is described in [14]; Wang Zheng-Xuan [15] presents 
weighted partition algorithm; the monotone-partitioning 
strategy[16] is applied to the irregular polygon clipping in 
[9]. It is known from [10][11] that algorithms with Steiner 
points may result the minimum number of convex 
polygons. Therefore an irregular polygon convex decom-
position method with Steiner point (IPSPCD method) is 
proposed in this Section. It can product the minimum 
number of convex polygons and improve composition 
efficiency of irregular polygons. 

A.  Related Knowledge 
Definition 1 Let P be an irregular polygon with n 

vertices p1,p2,…,pn, in clockwise order and satisfy 
following properties: (1) All vertices are different from 
each other; (2) Each vertex only belongs to the edge 
where it lies; (3) Any two edges of P don’t intersect. A 
convex decomposition of P is a set of convex polygons 
whose union is P. 

Definition 2 Let P be an irregular polygon and α be 
an interior angle consisted of its vertex p and two edges 
adjacent with p. Ifα<180°, then p is called convex, other-
wise, is called reflex.  

Rule 1 Let P be a polygon with n vertices,  pk-1(xk-1,yk-

1), pk(xk,yk) and pk+1(xk+1, yk+1)(1≤k≤n) be three adjacent 
vertices of P, we set sk=(xk-1-xk+1)(yk-yk+1)-(yk-1-yk+1)(xk-
xk+1). According to Section 2 in [11], if sk>0, then pk is a 
convex vertex, otherwise, if sk<0, then pk is a reflex 
vertex. 

Definition 3 Let P be an irregular polygon with N 
reflex vertices (N>0), pk(xk,yk) be a reflex vertex of P (1≤
k≤n). (ⅰ) For p(x,y) on pipi+1(i=1,2,…,n and i≠k-1,k), if 
by connecting p and pk, P is divided into two convex 
polygons for N =1,2 or a convex polygon and a non-
convex polygon whose number of reflex vertices is less 
than or equal to N-1 for N>1, then pkpi  is called the 
subdivision line segment of P; (ⅱ) if q(x',y') lie in the 
interior of P, the broken line segment consists of line 
segment pkq and qpk+1(pk+1 is its reflex vertex) divides it 
into a convex polygon and a non-convex polygon whose 
number of reflex vertices is less than or equal to N-1, then 
pkqpk+1 is the broken subdivision segment of P.  

From definition 3 we can derive following two decom-
position properties for the irregular polygon. 

Property 1.  Let P be an irregular polygon, pi and pj be 
its two consecutive reflex vertices in clockwise order. (і) If 
an open line segment connecting pi and pj lies in the 
interior of P and 2 adjacent edges of pi or pj don’t lie in 
the same side of line pipj, then pipj is its subdivision line 
segment; (іі) if the extension line of pi-1pi or pj+1pj 
intersects with the broken line segment pipi+1…pj-1pj at q 
and open line segment piq or pjq lie in interior of P, then 
pipj is its subdivision line segment.  

Property 2.  Let both pi and pi+1 be the reflex vertices 
of an irregular polygon P. If the extension lines of pi-1pi 
and pi+2pi+1 intersect at q and △pipi+1qi ⊂ P, then the 
broken line segment piqpi+1 is its subdivision segment.    

B.  Convex  polygon decomposition 
Thought of Method Let P be the irregular polygon 

with N reflex vertices, then the decomposition of P can 
deal with as following three cases. 

Case 1: when N = 1, Let pk(1≤k≤n) be only reflex 
vertex of P. Starting from pk in clockwise order around P, 
we use STIC method(see section III) to certainly can 
search out edge pipi+1 (if i=n, then pi+1=p1) which the line 
pk-1pk intersect with at q(x,y). Therefore, by connecting pk 
with q, P can be decomposed into two convex polygons 
according to definition 3(і).        

Case 2:  when N >1, both pi and pi+1(1≤i≤n) are reflex 
vertex, if using STIC method, we can confirm that line pi-

1pi intersects with line pi+2pi+1, compute the x coordinate 
and the y coordinate of intersection q and both line 
segment piq and pi+1q lie in the interior of P except 
endpoint pi and pi+1, then According to property 2, P can 
be decomposed.  

Case 3:  when N >1, if pi(xi, yi) (1≤i≤n) be a reflex 
vertex and pi+1 is a convex point. Starting from pi, then 
we can search the next reflex vertex pj of pi in clockwise 
order around P. In order to describe conveniently, we 
give 4 conditional propositions as follows:   

Proposition 1. Open line segment pipj lies in the 
interior of P;  

Proposition 2. fij(pi-1)fij(pj+1)≥0 and fij(pi+1)fij(pj-1)≥
0(See Fig. 1(a)).  

Proposition 3. fij(pj-1)fij(pj+1)≤0 and fij(pi-1)fij(pj+1)≤
0(or fij(pi-1)fij(pi+1)≤0 and fij(pi-1)fij(pj+1) ≤0)(See Fig. 1 
(b) and (c));  

Note: In order to describe conveniently, fij(pk) given by 
(1) is used in Proposition 2 and 3. But their test method is 
STIC in practice. 
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Proposition 4. pi-1pi intersects with line pi+2pi+1, but all 
edges which take the remaining reflex vertices of P as 
endpoint don’t intersect with ray line pj+1pj(the endpoint 
pj+1) or ray line pi-1pi (the endpoint pi-1) (See Fig. 1(d)).  

After confirming whether the conditional propositions 
1~4 are true or not respectively, and the case 3 can be 
divide into the following (і)~ (іv) for partitioning P.  

(і) If both the proposition 1 and 2 are true, then accord-
ing to property 1, pipj is the subdivision line segment of P 
and both two reflex vertices pi and pj are removed;  

(іі) if both the proposition 1 and 3 are true, then accord-
ing to the property 1, pipj is the subdivision line segment 
of P and one reflex vertex is removed;  

(iii) if the proposition 1 is false but the proposition 4 is 
true, then according to property 1, piqi or pjqi is the subdi-
vision line segment of P and one reflex vertex is removed, 
where qi(xi,yi) is the intersection of ray line pj+1pj (or pi-1pi);  

(іv) if both the proposition 1 and 4 are false, then start-
ing from pj find its next reflex vertices, according to the 
cases 1-3 to handle and obtain its subdivision line 
segment. 

IPSPCD module can be described as follows:  
Input: Polygon P(p1,p2,…,pn), whose vertices are order-

ed in clockwise order; 
Output: the resulting convex polygons; 
Step1. Judge and mark the reflex vertices of P through 

rule 1, count the number N of its reflex vertices, l=1,  k=N 
; 

Step2. If k=0, then output P, stop partition; otherwise, if 
k=1, then find its reflex vertex pi(1≤i≤n) and compute 
its subdivision point pj as case 1 and output Pl={pi, pi+1,…
, pj,pi}, Pl+1= {p1,…,pi,pj,…,pn}, stop partition, otherwise, 
i=1, go to next step; 

Step3. Starting from pi, in clockwise order, find the 
next reflex vertex pj (when j=N, then starting form p1 
again). If pi and pj belong to the case 2, output Pl={pi,pi+1 
and qi are ordered in clockwise}, set P={p1,…, pi-1, qi pi+1,
…,pn} and k=k-1; otherwise, go to next step; 

Step4. if pi and pj belong to the case 3(i or ii), output 
Pl={pi,pi+1,…,pj,pi},set P={p1,…,pi, pj,…,pn} and k=k-2 
for case 3(i)(or k=k-1 for case 3(ii)); otherwise, if it 
belongs to the case 3(iii), then output Pl={pi, qi,…,pi-2, pi-

1},set P={p1,…,pi, qi,…,pn} and k=k-1. Go to next step; 
Step5. Set i=j, l=l+1, if k<2, then go to step2; other-

wise, go to step3; 
Given an irregular polygon with N reflex vertices, our 

IPSPCD method uses N+1 single list structure to store the 
N+1 convex polygons resulting. The number of its 
storage units is the same as [11], but less n+2N storage 
units of weigh than [15]. Our IPSPCD method doesn’t 
need to code and calculate weight, so its time complexity 
is O(n+N), lower than [10] [11][15]. Experiments show 
the number of convex polygons decomposed by our 
IPSPCD method is the same as that done by [10][11] and 
smaller than or equal to that done by [9] (see appendix B). 

III.    CLIPPING BETWEEN TWO CONVEX POLYGONS 

After minimum convex decompositions for irregular 
polygons are implemented, quickly clipping convex 

polygons against convex polygon window is a key step for 
improving computation efficiency of their overlapping 
area.      

Some classical algorithms, concerning the clipping 
against polygon windows, have been published such as 
Sutherland-Hodgman algorithm[17] and Cyrus-Beck[18] 

whose cutting window are rectangle and convex polygon 
respectively. In addition, Weiler et al[6] present an clipping 
algorithm for eliminating the hidden surfaces and line 
segments. In 2003, Huang You-qun et al[8] put forward a 
fast clipping algorithm in which clipping window is a non 
convex polygon. For clipping algorithm in [9](2007), 
resulting convex polygons are organized in a binary space 
partition tree. By using it, the candidate convex polygons, 
which intersect with clipped line segment, are found 
quickly. In this section, on basis of fast intersection test 
between the line segment and the convex broken line 
segment, we suggest the fast convex polygon clip method 
(FCPC method) for CIPOA algorithm.  

Definition 4:  Let Pl and Ql be two polygons and p be 
the vertex of Pl , if p lie in Ql, then the attribute of pl about 
Ql is called as “internal”(value:1), otherwise as “external” 
(value:0), and directed edge with start point (attribute:1) 
and endpoint (attribute:0) is called as 1-0 edge of Pl about 
Ql. Likewise 0-1,0-0 and 1-1 edge of Pl about Ql can be 
defined. 

Property 3: Judging the position relation (namely 
internal or external of definition 4) of a point with any 
polygon through intersection parity test (IPT) method, its 
complex operation is O(1) multiplication-divisions (with 
regard to IPT method and proof of this property, see 
appendix A). 

 Thought of Method Suppose that Pl and Ql are convex 
polygon with n1 vertices and one with m1 vertices, we use 
[3] to detect whether they intersect or not. If not, then Pl∩
Ql=Φ(null), otherwise, return their common point v1. Then 
using IPT method, we calculate the internal and external 
attribute values of all vertices of Ql about Pl and Pl about 
Ql quickly, and count the numbers c1, c2 of internal 
vertices of Pl and Ql respectively. (i) If c1=n1(or c2=m1), 
then Pl∩Ql = Pl (or Ql); (ii) If 0<c1<n1(Fig. 2(a))(if c1= 
0 and 0<c2<m1, then Pl and Ql are interchanged), then we 
determine all intersections of Pl and Ql quickly. Its process 
is as follows: Construct edge list of Pl: Sp={ep,1,ep,2,…,ep,n1 

| ep,1:1-0} and that of Ql: Sq={eq,1, eq,2,…, eq,m1}. Starting 
from eq,1, we search for eq,v which intersects with 1-0 edge 
ep,1, and calculate their intersection; the next process is 
divided into two cases: (a) when eq,v (1≤v≤m1) is 0-1 
edge, we search for 1-0 edge eq,v+i of Sq in clockwise order, 
then starting from the next edge of ep,1, search for ep,u(1≤

(a) At least an internal vertex of Pl about Ql  (b) No internal vertex
Fig. 2    the two cases of intersection 
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u≤n1) which intersects with eq,v+i, …; (b) when eq,v is 0-0 
edge, starting from the next edge of ep,1, we search for the 
edge ep,u of Sp which intersects with eq,v,…. Continuously, 
the next 1-0 edge of Sp or Sq is met or all 1-0 edge in Sp 
and Sq are traversed. For the former, repeat above step 
until all their intersections are computed. (iii) If c1=0 and 
c2=0 (see Fig. 2(b), then we calculate the intersection g of 
the line segment w1q1 and Pl and regard g as an internal 
vertex of Pl about Ql. So, it is reduced to (ii). 

In addition, for a line segment and any convex broken 
line segment, we give shear-transformation based inter-
section computation (STIC) method. In our FCPC method, 
it can be applied to determine quickly the intersections of 
Pl and Ql. STIC method is described as follows: 

It is shown as Fig. 3(a) that papb is a line segment with 
endpoint pa (xa,ya) and pb (xb,yb), the broken line segment 
consists of k line segment q1q2, q2q3,…,qkqk+1. Where the 
two coordinates of qi are xi and yi respectively (i=1,…,k). 
If xa≠xb and ya≠yb, then through translation and shear 
transformation given by (2),  papb  and qiqi+1 (i=1,…,k) are 

     
1
0 1 ,

a a

d
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x y

⎡ ⎤
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⎢ ⎥− −⎣ ⎦

 a b

b a

y yd
x x
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transformed into the horizontal line segment pa'pb' and the 
line segment qi'qi+1' with endpoint qi'(xi',yi') and qi+1'(xi+1', 
yi+1')(Fig.3(b)). Where yi'=d(xi-xa)+yi-ya, yi+1'=d(xi+1-xa)+ 

yi+1-ya. If the signs of yi' and yi+1' are the same or the 
abscissa xc,i' of the intersection Ci' between the line qi'qi+1' 

and pa'pb' doesn’t satisfy xi'≤xc,i'≤xi+1', then qiqi+1 and 
papb don’t intersect; Otherwise, their intersection is Ci(xc,i' 

+ xa, ya-dxc,i'). Where xc,i'is computed by (3). 
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Note: STIC method also can be used to the intersection 
test and the computation of a line segment and any non-
convex broken line segment. Its two special cases are that 
(a) if k=1,then it tests on two line segments; (b) if changes 
the line segment the ray line, then xi'≤xc,i'≤xi+1' is replac-
ed into xi'≤xc,i' or xi+1'≤xc,i', if the line, then it is removed. 

FCPC module can be described as follows: 
Input: Vertices of Pl: p1,p2,…,pn1 and vertices of Ql: q1, 

q2,…,qm1 in clockwise order; 
Output: A convex polygon Pc in clipping list L; 
Step1. Use algorithm [3] to detect whether Pl and Ql 

intersect or not. If not, then output null, stop clipping; 
otherwise, attain one common point v1 of them, go to next 
step;  

Step2. Use IPT method to determine the attribute value 
of p1~pn1 about Ql and that of q1~q m1 about Pl. Count the 
numbers c1 and c2 of Pl and Ql respectively. If c1=n1(or 
c2=m1), then L<=Pl (or Ql), output Pc in L, stop clipping, 
otherwise, construct Sp and Sq , go to next step; 

Step3. If c1+c2=0 calculate the intersection g of w1q1 
and Pl as a internal vertex of Pl, go to next step; 

Step4. Starting from eq,1 of Sq, use STIC to find eq,i that 
intersects with ep,1 of Sp and calculate their intersection. 
Store it into L and move eq,1,…,eq,j-1 to the tail of Sq in turn. 
Set i=2, go to Step6; 

Step5. If ep,i is 1-0 edge, then starting from eq,j+1 of Sq, 
use STIC method to find eq,j+v that intersects with ep,i, 
calculate their intersection and insert it into the tail of L. 
Set j=j+v, go to next step; 

Step6. If eq,j is 0-1 edge, then in clockwise order of Ql 
insert its internal vertices from eq,j to the next 1-0 edge 
eq,j+v into the tail of L in turn. Starting from ep,i of Sp, use 
STIC method to find ep,i+u which intersects with eq,j+v and 
calculate their intersection. Insert it into the tail of L. Set 
i=i+u, j=j+v,If ep,i is 0-1edge, then go to Step7; If ep,i is 0-
0 edge, go to step 8; 

 Step7. In turn insert all internal vertices between ep,i 
and next 1-0 edge ep,i+u of Pl into the tail of L in clockwise 
order, if ep,i+u is adjacent to ep,1, output Pc in L, stop 
clipping; otherwise set i=i+u, go to step 5.  

Step8. Starting from eq,j+1 Use STIC method to find 
eq,j+v that intersected with ep,i and calculate their 
intersection. Insert it into the tail of L, set j=j+v, if j=m1, 
then output Pc in L, stop clipping; otherwise, if eq,j is 0-1 
edge, go to step 6; otherwise, go to next step;  

Step9. Starting from ep,i+1, use STIC to find ep,i+u that 
intersects with eq,j, calculate their intersection and insert it 
into the tail of L. Set u=u+i, v=v+j, if ep,i is 0-1 edge, go to 
step 7; otherwise, go to step 8;  

The time complexity of [18] is O(n1m1). According to 
property 3, the time complexity of step1 in our FCPC 
method is O(n1+m1). It is known from [3] that the time 
complexity of its step3 is O(log(n1)+log (m1)). So, we can 
deduce that the time complexity of its step4-7 is O(n1+ 
m1). And then the time complexity of Our FCPC method 
is O(n1+m1), which is lower than [18]. Because [8][9] are 
non-convex clipping algorithm, the comparison for our 
CIPOA algorithm and them is only given in Section IV. 

   IV.    CALCULATING THE OVERLAPPING AREA OF TWO 
IRREGULAR POLYGONS 

After computing the vertices (xi,yi) (i=1,…,n2) of over-
lapping region for each pair of convex polygons to 
decomposition through FCPC method, its area can be 
calculated by (4). 

( )
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1 1
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i i i i
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= −∑                   (4) 

CIPOA algorithm can be described as follows: 
Input: P = {p1, p2,…, pn}, Q = {q1, q2,…,qm} in clock-

wise order; 
Output: the area S of P∩Q; 
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Fig. 3 The intersecting test and computing intersection based shear 
transformation 
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Step1. Using IPSPCD module to decompose P and Q 
into P = P1∪…∪Pn2, Q = Q1∪…∪Qm2, Set S=0, i=1 
go to next step; 

Step2.  If i> n2 then output S, the calculation end, 
otherwise Set j=1 go to next step; 

Step3. Using FCPC module to solve Pi ∩ Qj and 
calculate its area Sij by (4) go to next step; 

Step4. S= S + Sij, If j<m2, then j= j+1, go to Step3, 
otherwise i= i+1, go to Step2; 

V.   EXAMPLES AND ALGORITHM ANALYSIS 

A.  Examples 
 Experiment environment: PC with 2.4G, 1G memory, 

VC + + 6.0. 
Example1 it cites from [3], Fig. 4 shows two irregular 

polygons: P={(7,2),(4,2),(3,3),(0,4),(1,8),(3,8),(4,6),(5,6), 
(6,8),(9,5)};Q={(7,0),(2,1),(8,3),(7,9),(11,7),(12,5),(10,1)}
. The algorithms in [4][5] and our CIPOA can all compute 
the overlapping area and its value is 2.99. The computing 
time is shown in Table I. 

Example2 Fig. 5 shows two irregular polygons: 
P={(0.5, -1),(-1.5,-4),(-2,3),(-1,1),(1,1),(1.5,3),(3,2), (2, 
0.5),(3.5,-1), (2.5,-2),(2,-2),(1,-1)}; Q={(0,-3),(-4,-3),(-1,-
1),(-3,2.5),(1, 2),(3,4), (3,1)}. The algorithms in [4][5] and 
Our CIPOA can all compute the overlapping area and its 
value is 13.06. The computing time is shown in Table I. 

Example3 (a) Fig.6 shows two irregular polygons: P= 
{(2, 2),(0,2),(2,5),(3.5,3.5),(5,3.5),(7,5),(8,3.5),(5.5,2),(6,-
1),(0,-1),}; Q={(1.5,3), (0,4), (1,5), (2,4), (3.5,4), (6,5), 
(7, 2.5),(5,3),(4,0),(3,0),(2,2.5),(1,0),(0,1)};  
(b)P=(9,2),(7,2), (9,5),(10.5,3.5),(12,3.5),(14,5),(15,3.5), 
(12.5,2),(13,-1),(7, -1),};Q={(8.5,3),(7,4),(8,5),(9,4), 
(10.5,4),(13,5),(14, 2.5), (12,3),(11,0),(10,0),(9,2.5),(8,0), 
(7,1)}. All algorithms in [4] [5] and Our CIPOA can 
compute the overlapping area in (a) and (b) and their 
values are 12.32 and 0, respect-tively. The computing 
time is shown in Table I. 

TABLE I 
 COMPUTING TIME COMPARISON FOR THREE ALGORITHMS(ms). 

 B.  Algorithm Analysis 
 Let N and M denote the numbers of reflex vertices of 

two irregular polygons P with n vertices and Q with m 
vertices respectively, where, N<<n, M<<m. The link list 
is used in Our CIPOA algorithm. The storage space it 
needs is the same as [7][8] but less than [6][9](data in [6] 
[9] are all organized into tree structure). The time comp-
lexity of [9] is O(mlog n) in most cases, but O(mn) in the 
worst case. The time complexity of [8] is O(mn), because 
n sear transformations are executed on the polygon 
window Q when n edges of P are transformed to a 
horizontal line in turn. After P and Q are decomposed 
through our IPSPDA module, the numbers of their 
convex polygons can be at most N+1 and M+1, 
respectively. That is to say, our CIPOA needs to clip (N+ 
1)(M+1) pairs of convex polygons at most. We can draw 
a conclusion that the time complexity of the clipping 
component of CIPOA is O(Mn+Nm) which is lower than 
that of [8][9]. Furthermore, the time complexity of our 
CIPOA algorithm is also O(Mn+Nm), but both time 
complexity of [4][5] are O(mn) which is higher than that 
of our CIPOA. Therefore the computational efficiency of 
our CIPOA algorithm is superior to [4][5][8][9] for 
computing overlapping area of two irregular polygons. 
The experiment data in table I prove it. 

C. Algorithm application for evolutionay polygon layout  
Our CIPOA algorithm consists of IPSPCD module, 

FCPC module and the component of computing overlap-
ing area. The contribution of IPSPCD module to inter-
ference calculation in evolutionary polygon layout lies in 
its minimum convex polygons to the decomposition, 
which plays an important role for improving efficiency of 
FCPC module. This is because its time complexity O(Mn 
+Nm) of each iteration has a linear relation with the 
numbers of convex polygons to their two decompositions. 

Example 
No. Cost time Ref [4] Ref [5] Ref [8] Ref [9] Our  

CIPOA 

1 
Partition 0.031 0.015  0.015 0.010 
clipping 0.266 0.266 0.248 0.193 0.103 

Total 0.296 0.281 0.248 0.208 0.113 

2 
Partition 0.047 0.016  0.025 0.015 
clipping  0.391  0.438 0.286 0.311 0.152 

Total  0.437  0.454 0.286 0.336 0.167 

3 
(a) 

Partition 0.078 0.016  0.026 0.015 
clipping 0.687 0.328 0.319 0.327 0.261 

Total 0.766 0.359 0.319 0.353 0.276 

(b) clipping 0.650   0.616 0.271 0.201 0.180 
Total 0.750   0.648 0.271 0.227 0.196 
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Fig. 4 The test example 1 for calculation of overlapping area 

Fig.6 The test example 3(a) for calculation of overlapping area
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In the process of evolution, its implementation is at either 
first iterative or pro-process stage. So its influence to 
efficiency of CIPOA algorithm and the evolutionary 
polygon layout algorithm can be omitted. For evolution-
ary polygon layout, FCPC module is executed at each 
iterative step, therefore, it plays the key role for improve-
ing the calculation efficiency of our CIPOA algorithm 
and evolutionary polygon layout algorithm. For further 
improving speed of the interference calculation we can 
combine FCPC method with 2D axis-aligned rectangle 
bounding box test in evolutionary polygon layout. 

VI.  CONCLUSION 
In this paper, an efficient algorithm for computing the 

overlapping area between two irregular polygons is 
developed. It is based on decomposing irregular polygon 
into the minimum number of convex polygons and 
clipping convex polygon against a convex polygon. 
Numerical experiments show that calculation efficiency 
of our CIPOA algorithm outperforms the existing 
algorithms, and the less two irregular polygons overlap, 
the more obvious computation efficiency of our CIPOA 
algorithm improves. It can be applied to compute the 
overlapping area for both the convex and the non-convex 
polygon objects. Therefore, our CIPOA algorithm can be 
suitable for calculating their overlapping area for the 
evolutionary polygon layout. Its validity for other 
problems should be discussed in the future. 

APPENDIX A  IPT METHOD AND ITS TIME COMPLEXITY 
It is shown as Appendix Fig. 1(a)(b) in which gives a 

point p and any polygon P, IPT method is described as 
follows:  

Taking p as the endpoint draw the horizontal ray line, 
we in turn detect whether each edge of P intersect with it 
or not and count the number of their intersections. If the 
number is odd number (see Fig. (a)), then p lies in interior 
of P; otherwise, p lies in exterior of P(see Fig. (b). 

In the process of counting intersection, there are two 
special intersecting cases as follows: 

(a) For an edge of P, if an endpoint of the edge lie on 
the horizontal ray line we draw, but another one lies 
below it, then we consider that they don’t intersect.  

For example, in Fig. (a), both two edges pi-1pi and pipi+1 
of P don’t intersect with the horizontal ray line. 

(b) For an edge of P, if it coincides with the horizontal 
ray line we draw, then consider that they don’t intersect. 

For example, in Fig. (b), the edge pi-1pi of P doesn’t 
intersect with the horizontal ray line we draw. 

Let P be a planar polygon with N flex vertices, pi(xi,yi) 
(i=1,2,…,n) be its n vertices of P, p(xd,yd) be a point on 

the plane then the x coordinate Ix of the intersection can 
computed by (1) and procedure module of IPT method is 
described as follows: 

for i=1, 2,…,n 
     if ((yi> yd and yi+1≤yd) or(yi+1> yd and yi≤yd)) 
          if(Ix≥xd ) j=j+1; 
if (j%2=0) the attribute (p)=1; 
else the attribute (p)=0; 

             
1

1

( )d i
x i i i

i i

y yI x x x
y y +

+

−= + −
−

              (1) 

Proof of the property 3: 
For the polygon with N flex vertices it is obvious that 

the number of the edges of P intersect with the horizontal 
ray line we draw is 2(N+1) at most. So its complex 
operation is 4(N+1) multiplication-divisions at most, 
namely O(1) multiplication-divisions. Particularly, when 
P is a convex polygon (N=0), its complex operation is 4 
multiplication-divisions at most. 

APPENDIX B  COMPARISON OF 4COMPOSITION ALGORITHM  

Appendix example1. 
Appendix Fig. 3 cites 
from [16] (pp.54). Their 
graphs de-composed by 
[10][9][11] and our 
IPSPCD method are 
shown as (a), (b), (c) and 
(d) in appendix Fig. 2, 
respectively and the 
numbers of decompositi-
on are shown in appendix Tab.1.                    

(a) (b) 

App. Fig.2. Two special cases of intersection of the horizontal ray line
and P. (a) Passes through a vertex of P; (b) Coincides with an edge of P.

Pi-1

Pi 

Pi+1

P

P
Pi 

Pi-1

Pi+1

P 

P Pi-2

Appendix Fig.3 The test graph 1 
for comparison of 4 algorithms. P 

p 

(a) 

P 
p 

Appendix Fig.1 The relation between a point p with any
polygon P. (a) p lies in interior of P, (b) p lies in exterior of P.

(b) 

Appendix Fig.4 Partition graphs of 4 algorithms for the test graph 1.
(a) Partition graph for [10]; (b) Partition graph for [9]; (c) Partition
graph for [11]; (d) Partition graph for our IPSPCD method. 

(b) (a) 

(c) (d) 
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Appendix example2. In appendix Fig. 5, P={(0,-3), (-6, 
1),(-1,6), (1,4), (4,4), (6, 6), 
(6,0)} is a polygon with 2 
reflexes. The graphs decom-
posed by [10][9][11] and our 
IPSPCD method are shown 
as (a), (b), (c) and (d) in ap-
pendix Fig.4, respectively, 
and the numbers of convex 
polygons to partition are shown in appendix Tab.1.   

Appendix example3. An irregular polygon in appendix 
Fig.7 cites from example 2 
in Section V. The graphs 
decomposed by 
[10][9][11] and our 
IPSPCD method are 
shown as (a),(b),(c) and 
(d) in appendix Fig. 3, 
respectively, and the num-
bers of convex polygons 
to  partition are shown in 
appendix Tab.1.      

Appendix example4. An 
irregular polygon in 
appendix Fig. 9 takes from 
example 3 in section V. 
Their graphs decomposed 
by [10] [9][11] and our 
IPSPCD method are shown 
as (a), (b), (c) and (d) in 
appen-dix Fig.10, 

respectively, and the numbers of de-composition are 
shown in appendix Tab.1. 

APPENDIX  TABLE I 
COMPARISON OF THE NUMBERS OF CONVEX POLYGONS TO A PARTITION 

FOR 4 ALGORITHMS 
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