
How to Find a Rigorous Set of Roles for
Application of RBAC

Lijun Dong, Xiaojun Kang, Maocai Wang

School of Computer, China University of Geosciences, Wuhan, P.R. China
Email: donglijun.cug@gmail.com

Abstract—Role-based access control (RBAC) has been
adopted successfully by a variety of security system by
reducing the complexity of the management of access
control. The least privilege principle is a very important
constraint policy of RBAC. Devising a complete and correct
set of roles for supporting the least privilege principle has
been recognized as one of the most important tasks in
implementing RBAC. A key problem is how to find such sets
of roles which have the least permissions. In fact, when the
number of role-permission assignments is large, it is almost
impossible to find a rigorous set of roles which has the
completely same set of permissions required by a user. To
address this problem, we research the problem how to find
such the rigorous combinations obeying the principle of
least permissions. By bringing forward the concept of the
least privilege mining problem, we describe the methods to
resolve the problem and some instances of its applications,
too. Moreover, the corresponding algorithms are displayed.
Specially, by analyzing the complexity of least privilege
mining problem, the method based on evolutionary
algorithm is shown appreciate. Correspondingly, the
experiments are accomplished to prove our opinions. Finally,
the paper is concluded and some future work is posed.

Index Terms—information security, role-based access
control, least privilege, evolutionary algorithm

I. INTRODUCTION

It is well known that the principle of least privilege is a
design principle to which access control models and
systems should adhere. In role-based access control
(RBAC), roles represent organizational agents that
perform certain job functions within the organization.
Users, in turn, are assigned appropriate roles based on
their qualifications [1-3]. One of the major tasks in
implementing RBAC is to enforce the principle of least
privilege by managing role assignments.

Principle of least privilege means that in a computing
environment, every module (such as a process, a user or a
program on the basis of the layer we are considering)
must be able to access only such information and
resources that are necessary for its legitimate purpose
[4,5]. However, when there is great number of
permissions and roles, it is very troublesome to find an

appropriate set of roles that owns a minimal set of
permissions. In fact, when the number of both roles and
permissions are large, it is almost impossible to find a
completely accurate set of roles which has the completely
same set of permissions required by a user. Therefore, an
important problem is how to find such combinations and
which combination has the least permissions? In other
words, which role set is the most rigorous for application
of RBAC? We call it LPMP (Least Privilege Mining
Problem).

To explore this problem, we consider several LPMPs
including the basic LPMP ant the approximate LPMP
which can formally define the least privilege mining
problem in RBAC. We also introduce some methods to
resolve these problems.

This paper is organized as follows. In section 2 we
review the RBAC model and some preliminary
definitions employed in the paper. In section 3, some
related researches are introduced. In section 4, we define
our basic least privilege mining problem as well as its
variations, followed by section 5 in which we explore the
algorithms to address these problems. The experiments
based on the algorithms are displayed in section 6.
Finally, section 7 concludes our work and provides some
insight into our ongoing and future research.

II. RELATED WORK

A number of approaches have been proposed in the

literature to accomplish the task of ensuring the least
privilege principle in access control system.

Timothy E. Levin etc. extends the separation kernel
abstraction to represent the enforcement of the principle
of least privilege [6]. Levin introduces an approach that
supports an orthogonal, finer-grained flow control policy
by extending the granularity of protected elements to
subjects and resources. In fact, this is just an access
control solution.

For RBAC, the least privilege principle can be
enforced by multiple ways. An important strategy is
constraints [1,2] in RBAC, which is implemented by
separation of duty (SoD). SoD can be static or dynamic,
that has been described in [7,8].The next generation of
RBAC will be dynamic activation and revocation of roles
[9]. The detailed mechanism of dynamic activation and
revocation of sessions is given in [10]. The separation of

Manuscript received March 25, 2011; accepted September 7, 2011.

398 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.398-407

duty is implemented to avoid one man control. By
dynamic SoD, the least privilege principle is enforced
indirectly [11].

Besides, Muhammad Asif Habib has described the
complexities and complications which can be faced after
implementing separation of duty in terms of mutually
exclusive roles (MER) [12]. According to the point of
Habib, both mutual exclusion and role inheritance will
affect least privilege. Liang Chen etc. defines a family of
a simple roles-based models that provide support multiple
hierarchies and temporal constraints [13]. By this means,
the inter-domain role mapping (IDRM) problem is
brought forward. Then, it is implemented to investigate
least privilege and the IDRM problem in the presence of
multiple role hierarchies and temporal constraints.

All these researches are helpful for our work. They
provide some interesting ideas for our research on the
least privilege problem.

Last but not least, it must be mentioned that our work
benefits from the research of Jaideep Vaidya in [14]
greatly. The content of Vaidya’s paper is to define the
role mining problem (RMP) for discovering an optimal
set of roles from existing user permissions in RBAC. In
fact, its main field is role engineering [15] but not least
privilege. But the methods of defining problems of this
paper provide an important reference for our work. We
introduce the basic LPMP, δ-Approx LPMP and
MinNoise LPMP that do formally root in the definitions
of the basic RMP, δ-approx RMP and the Minimal Noise
RMP. The main relation between our work and Vaidya’s
is that the same formalized methods are applied into the
different sides of RBAC.

III. PRELIMINARIES

We adopt the NIST standard of the Role Based Access
Control (RBAC) model. For the sake of simplicity, we
restrict ourselves to RBAC0 without sessions, role
hierarchies or separation of duties constraints in this
paper.

RBAC Model [1,2]
 U, ROLES,OPS, and OBJ are the set of users, roles,

operations and objects.
 UAUROLES, a n-to-n mapping user-to-role

assignment relation.
 PRMS (the set of permissions) {(op, obj)|opOPS
 objOBJ}.

 PAPRMS×ROLES, a n-to-n mapping of
permission-to-role assignments.

 UPAU×PRMS, a n-to-n mapping of user-to-
permission assignments.

 assigned_users(r)={uU|(u,r)UA},the mapping of
tole r onto a set of users.

 assigned_permissions(r)={pPRMS|(p,r)PA}, the
mapping of role r onto a set of permissions.

 required_permissions(u)={pPRMS|(u,p)UPA },
the mapping of user u onto a set of permissions.

From definition 1, we can conclude that a role is really
a set of permissions, so there is a relation: ROLES2PRMS.

In this paper, any subset of relation UA is represented
as a boolean matrix, called UR matrix, denoted as M(UA),
where a true in cell {ur} indicates the assignment of role
r to user u. Similarly, any subset of relation PA can be
represented as a boolean matrix, called RP matrix,
denoted as M(PA),where a true in cell {rp} indicates the
assignment of permission p to role r. Finally, any subset
of relation UPA can be represented as a boolean matrix,
called UP matrix, denoted as M(UPA),where a true in cell
{up} indicates the assignment of permission p to user u.
Here, uU, rROLES, and pPRMS. Any one-
dimensional set can be regarded as a relation with its
owner, and its relation matrix is denoted as M(D). For
simplicity we denote true as 1 and false as 0.

For UP matrix, RP matrix and UP matrix, operations
are necessary. They are all Boolean matrix, so we
introduce a operation named boolean matrix congregation
(BMC). BMC between boolean matrices
A{true,false}m×k and B{true,false}k×n is C=AB
where each cell of C should be true if and only if the
corresponding cells of both A and B are true.

For two relation sets X, Y, and their relation matrixes
M(X), M(Y), it is claimed that M(X) is δ-Consistency by
M(Y) or M(Y) is within δ of M(X) if and only if

 | |Y X X Y , denoted as () ()M X M Y .

For UR matrix URM, RP matrix RPM, and UP matrix
UPM, URM RPM UPM means that UPM should be

within δ of the user-permission matrix generated from
URM and RPM. When δ=0, a user will obtain not only all
permissions which he requires, but also none of
permissions which he does not require. δ-Consistency
binds the degree of difference between UA, PA, and UPA.

Now, based on these preliminaries, we will formalize
the least privilege mining problem: how to find a
minimum set of roles which contains all essential
permissions with minimum redundancy.

IV. LEAST PRIVILEGE MINING PROBLEM

A. Basic LPMP

Giver a user u, there may be a corresponding set of
permissions expressed as required_permissions(u). In
order to implement this relation, u must be mapped onto a
corresponding set of roles expressed as assigned_user-(u)
where assigned_user- is the inverse function of
assigned_user. Therefore, the basic LPMP for u asks us
to find a user-to-role assignment UA such that UA and
the role-to-permission assignment PA can exactly
describe the user-to-permission assignment UPA while
excluding any redundant permission. Put another way,
LPMP require us to find an optimum combination of
roles for user to follow the least privilege principle.

LPMP can be described formally as shown in Figure 1.
Figure 1 shows a process: Given a set of permissions

PRMS, a set of roles ROLES, a role-to-permissions
assignment PA, a user-to-permissions assignment UPA,

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 399

© 2012 ACADEMY PUBLISHER

and a user u, find a user-to-role assignment UA for user u,
with M(UA)M(PA) being 0-Consistency by M(UPA).

Figure 1. The basic least mining problem (LPMP)

For an application system equipped with RBAC, roles
are steadier than users. When a user needs to access the
system, he will always hope for all permissions what he
wants. However, there may be any combination of roles
including the same permissions exactly. For example,
supposed that there are 10 roles for 1000 permissions, a
user requests 120 permissions. Which roles should be
assigned to this user? There are 210-1 possible
combinations of roles, that should contain more than one
combination which covers all of the 120 permissions only
if its any role is not be eliminated.

Therefore it could hardly be accomplished to find an
exact match with 0-consistency at most time.

B. A Typical Eaxmples

The basic LPMP provides us an important reference
for researching the least privilege mining problem. But it
is not appreciate for most real instances. For illuminating
this point, in this section, we introduced several typical
examples to discuss

In Figure 2, we have 30 permissions and 6 roles. Now
a user needs 10 permissions. Obviously, the circumstance
of Fig.2 is very troublesome. Its relations can be
displayed:

Roles’ assignment:
– assigned_permissions(r1)= {p2,p3,…,p9,p15};
– assigned_permissions(r2)= {p2,p3,…,p6,p12,p30};
– assigned_permissions(r3)= {p20,p21,…,p28 };
– assigned_permissions(r4)

= {p1,p9,p10,…p17,p19};
– assigned_permissions(r5)

= {p2,p3,p16,p17,…,p21};
– assigned_permissions(r6)= {p1,p2,p29};
– assigned_permissions(r7)= { p2,p3…,p16,p29};

User’ assignments:
– case 1: required_permissions(u)

= {p1,p2,…,p9,p15,p29};

In this case, user will need role r1 and r6 which will
exactly match the permissions required by user. In other
word, there exists a 0-consistency assignment for case 1.

– case 2: required_permissions(u)
= {p2,p3,…,p6,p9,p15};

In this case, both {r1} and {r1,r2} will contain the
permissions, but none is 0-consistency. {r1} is 3-
consistency; {r1,r2} is 5-consistency.

– case 3: required_permissions(u)
= {p1,p2,p3,p10,…p21};

In this case, {r3,r4,r5} is a 7-consistency assignment.
– case 4: required_permissions(u)

= {p1,p2,…,p9, p12,p29};
This case is similar to case 3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

r1

r2

r3

r4

r5

r6

r7

Case 1

Case 2

Case 3

Case 4

Who to Who ? ?

User’s requirements

Roles’ assignments

Figure 2. A typical example for LPMP

As a matter of fact, sometime we will find there is not
any 0-consistency assignment thoroughly because of the
original architecture of an RBAC system. For a simple
example:

– PRMS = { p1, p2, p3, p4, p5, p6};
– assigned_permissions(r1) = {p1, p2, p4, p6};
– assigned_permissions(r2) = {p1, p2, p5, p6};
– assigned_permissions(r3) = {p2, p3, p5};
– required_permissions(u) = {p1, p3, p5 }
It can be seen that there does not exist any set of roles

matching user’s request exactly but 3 approximate sets
{r1,r3}, {r2,r3} and {r1,r2,r3}. Further, we can find that
{r2,r3} is the best one with 2-consistency redundancy
only. {r2,r3} will be the most appropriate redistribution
for security administrator.

LPMP:
Conditions:

_ ()

{(,) | }

u U

S required permissions u

Qu u p p S

Aim:

0

{(,) | }

() ()

Pu u p p T

M Pu M Qu

,

Subject to:

_ ()

 _ ()

r A
T assigment permissions r

A assigned user u ROLES

400 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

So, we can see that it is very hard to find an exact
match for LPMP. Furthermore, if permissions are
assignment to roles at random, it is almost impossible to
find an exact 0-consistency match for user’s permissions
[14]. If we allow approximate matching – i.e. if it is good
enough to match all permissions required by user besides
some redundant permissions. As long as we make the
redundant permissions few enough, we might consider
that we have found the least permissions combination.
This significantly reduces the burden of maintenance on
the security administrator while generating only a few
redundant permissions which may be shielded specially.
As a matter of fact, sometime we will find there is not
any 0-consistency assignment thoroughly because of the
original architecture of an RBAC system.

So we should consider the approximate LPMP.
Approximate match might be a prudent choice for an
RBAC system with dynamic user-permission assignments.

C. Approximate LPMPs

In this section, we introduce two approximate LPMPs:
δ-Approx LPMP and MinNoise LPMP

Definition 1 (δ-Approx LPMP).
Given a set of permissions PRMS, a set of roles

ROLES, a role-to-permissions assignment PA, a user-to-
permissions assignment UPA, and a user u, find a user-
to-role assignment UA for user u, with M(UA)M(PA)
being δ-Consistency by M(UPA) and minimizing the
number of roles.

Figure 3. δ-Approx LPMP

Obviously, the basic LPMP is simply a special case of

the δ-Approx LPMP with δ=0 and no minimizing the

number of roles. The reason of restricting the number of
roles is that there may be more than one combination of
roles with δ-Consistency but we prefer to the one with
least roles. The merit of minimizing the number of roles
is that less roles would be convenient for the pre-
distribution for security administrator.

δ-Approx LPMP brings a more flexible method for
security administrator if only restrict the value of δ.
However, sometimes user mainly cares the least
permissions but not the least roles for stricter security
principle. Consequently, instead of bounding the
approximation, and minimizing the number of roles, it
might be interesting to do the reverse: bound the number
of roles, and minimize the approximation. We call this
the Minimal Noise Least Privilege Mining Problem
(MinNoise LPMP). The security administrator might
want to do this when he is looking for the top-k roles that
can contain the problem space well enough, and are still
robust to noise. Actually, MinNoise LPMP and δ-Approx
LPMP are important complementarities of two sides of
LPMP.

Definition 2 (MinNoise LPMP). Given a set of

permissions PRMS, a set of roles ROLES, a role-to-
permissions assignment PA, a user-to-permissions
assignment UPA, and a user u, find a user-to-role
assignment UA for user u, where not more than k roles
will assure that M(UA)M(PA) is δ-Consistency by
M(UPA) with minimizing the δ.

Figure 4. MinNoise LPMP

MinNoise LPMP:
Conditions:

_ ()

{(,) | }

 (is a constant)

u U

S required permissions u

Qu u p p S

k C C

Aim:

_ ()

{(,) | }

() ()

min{ | () ()}

r B

B ROLES

T assigment permissions r

Pu u p p T

M Pu M Qu

M Pu M Qu

Subject to:

{ | _ () | | }

AS A A assigned user u A k

B AS

δ-Approx LPMP:
Conditions:

_ ()

{(,) | }

 (is a constant)

u U

S required permissions u

Qu u p p S

C C

Aim:

_ ()

{(,) | }

() ()

r B

x

B ROLES

T assigment permissions r

Pu u p p T

M Pu M Qu

Subject to:

{ | _ ()}

, | | | |

AS A A assigned user u

B AS

A AS B A

x

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 401

© 2012 ACADEMY PUBLISHER

D. Application of LPMPs

For an RBAC application, actually, different
initializations will correspond to different solutions for
LPMP. If you are fortunate enough, maybe a basic LPMP
(0-approx LPMP) would take effect, otherwise you must
select δ-Approx LPMP or MinNoise LPMP. In order to
clarify these problems further by means of an example,
we will discuss several cases by Table III that shows a
sample user-permission assignment (UP matrix: M(UPA))
with 3 users and 5 permissions.

Firstly, Table I (b) shows an ideal user-role
assignment (UR matrix: M(UA)) by which a role-
permission assignment (RP matrix: M(PA)) in Table I (a)
can completely describe the given user-permission
assignment (M(UA)M(PA)=M(UPA)) for all of three
users.

TABLE I. USER-PERMISSION ASSIGNMENT (UP MATRIX)

 p1 p2 p3 p4 p5
u1 1 0 0 1 0
u2 1 0 1 1 1
u3 0 0 1 1 1

TABLE II. BASIC LPMP

(a) RP assignment relation matrix
 p1 p2 p3 p4 p5

r1 0 0 1 1 1
r2 0 1 0 1 1
r3 1 0 0 1 0

(b) UR assignment relation matrix

 r1 r2 r3
u1 0 0 1
u2 1 0 1
u3 1 0 0

TABLE III. δ-APPROX LPMP

(a) RP assignment relation matrix
 r1 r2

u1 0 1
u2 1 1
u3 1 0

(b) UR assignment relation matrix

 p1 p2 p3 p4 p5
r1 0 0 1 1 1
r2 1 0 0 1 0

TABLE IV. MINNOISE LPMP

(a) RP assignment relation matrix
 r1 r2

u1 0 1
u2 1 1
u3 1 0

(b) UR assignment relation matrix

 p1 p2 p3 p4 p5
r1 0 0 1 1 1
r2 1 0 0 1 1

Secondly, Table II(a) depicts the optimal user-role
assignment (M(UA)) under the conditions of a role-
permission assignment (M(PA)) in Table II(b). In this
case, both u2 and u3 have still user-role assignments that
can completely describe the given user-permission
assignment, but u1 could only get a 1-consistent
assignment. It must be mentioned that {r1,r3} is also a 1-
consistent assignment for u1, but it is eliminated because
of redundant roles.

Lastly, Tables III(a) and 6(b) show the optimal user-
role assignment and role-permission assignment for
MinNoise LPMP with k=2.

V. EVOLUTIONARY ALGORITHM FOR LPMPS

We have had the formal definitions of the least

privilege mining problem. But we have not the
corresponding formal algorithms still. In fact, the
algorithm to address LPMP is very important.

In the former examples, we can straightly calculate the
appreciate assignments for a user without any algorithm,
since there are a few of roles and permissions. However,
when there are a great number of roles and permissions, it
is almost impossible to calculate straightly. Given a case
with an accurate number of roles and permissions, there
will be a great deal of probability about how to assign
roles to user. Only those combinations that can cover the
request of user are appropriate.

A. Traditional Algorithm

When both m and n are finite number, 2n-1 and k must
be finite, too. So we can design two simple algorithms by
searching all of combinations.

As long as computation environment is good enough,
the final correct combination will must be found. We call
such algorithms ordinary LPMP algorithms (OLAs).

We have defined three formal least privilege mining
problems: the basic LPMP, δ-Approx LPMP and
MinNoise LPMP. Since the basic LPMP is simply a
special case of the δ-Approx LPMP with δ=0 and no
minimizing the number of roles, we need only two
algorithms for δ-Approx LPMP and MinNoise LPMP.

Figure 5 shows an algorithm for δ-Approx LPMP,
called ALPMP.

Figure 6 shows an algorithm for MinNoise LPMP,
called MLPMP.

The key steps of ALPMP are:
1. Line 1-4: Some conditions.
2. Line 5-6. Some initialization operations are

performed. S is initialized as ROLES for
maximizing |S|, because we need pick out a
minimal set.

3. Line 8-16. Find all appreciate sets of roles for u.
All subsets of ROLES are traversed.

4. Line 18-24. Pick out the minimal set of roles
from all appreciate sets found in step 2.

402 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

5. Line 25: Get the final results.

Algorithm 1 (OLA 1): ALPMP
1 input: uU, δ
2 Q=required_permissions(u) PRMS, Q≠
3 output: SROLES
4
5 {Initialization operations}
6 AS=, V=, P=, S=ROLES
7
8 {Find all appreciate sets of roles for u}
9 for each R2ROLES
10 for each rR
11 P=Passignment_permission(r)

12 end for
13 if | |Q P P Q

14 V=V {R}
15 end if
16 end for
17
18 {Find the minimal set of roles}
19 for each vV
20 if |v|<|S|
21 S=v
22 end if
23 end for
24
25 assigned_user(u)- =S

Figure 5. The ordinary algorithm for δ-Approx LPMP

 Algorithm 2 (OLA 2): MLPMP
1 input: uU, k
2 Q=required_permissions(u) PRMS, Q≠
3 output: SROLES
4
5 {Initialization operations}
6 AS=, W=, P=, =|PRMS|, S=
7
8 {Find all appreciate sets of roles for u}
9 for each R2ROLES
10 for each rR
11 P=Passignment_permission(r)

12 end for
13 if | |Q P R k

14 W=W {(R, P)}
15 end if
16 end for
17
18 {Find the most appreciate set of roles}
19 for each (x,y)W
20 if |y|<
21 =|y|
22 S=x
23 end if
24 end for
25
26 assigned_user(u)- =S

Figure 6. The ordinary algorithm for MinNoise LPMP

The key steps of MLPMP are:
1. Line 1-4: Some conditions.
2. Line 5-6. Some initialization operations are

performed.
3. Line 8-16. All subsets of ROLES are traversed.

All appreciate sets of roles for u and
corresponding sets of permissions are cached by
relation PA.

4. Line 18-25. Pick out the set of roles that contains
the least permissions from all appreciate sets
found in step 2.

5. Line 26: Get the final results.

B. Complexity of LPMP

The mechanisms of OLA are very simple. But its
complexity needs to be considered much. OLS need
search the whole space of solutions of LPMP, so its
efficiency is not so satisfying.

Given a case with an accurate number of roles and
permissions, there will be a great deal of probability
about how to assign roles to user. When n roles hold m
permissions averagely, there are 2n-1 combinations of
roles. Clearly, when n is very large, such approaches are
computationally heavy, since searching and computing 2n
combinations will take an exponential time in the number
of roles.

In fact, all LPMPs are optimization problems. It can be
proved that all LPMPs are NP- complete.

First, we select a basic NP- complete problem:
Definition 3 (SBP: Set Basis Problem) [14]. Given a

collection C of subsets of a finite set S, and a positive

integer K ≤|C|, is there a collection B of subsets of S

with |B| = K such that, for each c C, there is a sub-
collection of B whose union is exactly c?

This problem has been proved NP- complete [14].
For the basic LPMP, S demotes the assignments of

role-permission. C denotes user-permission assignments.
Every set c C stands for one user u. Therefore, LPMP
can be mapped to the SBP directly by polynomial
transformation. By this way, LPMP can be proved NP-
completes [16], too.

The basic LPMP is NP- complete, and the approximate
LPMPs are the variations of the basic LPMP. We have
seen that not only δ-Approx LPMP but also MinNoise
LPMP does not change the real matter of the basic LPMP.
In fact, he approximate LPMPs are more common than
the basic LPMP. So the approximate LPMPs should be
NP- complete [14,16].

About how to detail the complexity of LPMP, this
would go beyond the scope of this paper. We will further
research this problem in our future work.

We have known LPMP is NP-complete. OLA
algorithm is an immediate way to address LPMP, so OLA
is NP-hard, too. Now our task is to construct a simple
substitute algorithm to solve this NP-hard problem.

C. Evolutionary LPMP Algorithm (ELA)

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 403

© 2012 ACADEMY PUBLISHER

In order to constructing a simple substitute algorithm
to solve the NP- complete LPMP, we bring forward an
method based on evolutionary algorithm [17,18].

Evolutionary algorithm can perform well
approximating solutions to all types of problems because
they ideally do not make any assumption about the
underlying fitness landscape; this generality is shown by
successes in fields as diverse as engineering, art, biology,
economics, marketing, genetics, operations research,
robotics, social sciences, physics, politics and chemistry.

An EA uses some mechanisms inspired by biological
evolution: reproduction, mutation, recombination, and
selection. Candidate solutions to the optimization
problem play the role of individuals in a population, and
the fitness function determines the environment within
which the solutions "live". Evolution of the population
then takes place after the repeated application of the
above operators.
Algorithm 3: MELA

1 input: uU, k
2 Q=required_permissions(u) PRMS, Q≠
3 output: SROLES
4
5 {Initialization operations}
6 CHS=, OES=
7 gen=0, MaxGen ← a constant, mxm=0
8 Generate n k-length chromosomes whose each

locus denotes a role
9 CHS ← n chromosomes
10 objc is a chromosomes variable
11
12 {Search the excellent chromosomes}
13 while gen < MaxGen
14 OES =
15 TmpS=CHS
16 crossover: recombine the n chromosomes in

CHS by crossover operations
17 mutation: mutate each chromosomes of CHS
18 TmpS=CHS TmpS
19 selection: select n chromosomes from TmpS

by the degressive order of oe
20 CHS ←n chromosomes
21 for each chCHS
22 oe = Objective(ch, Q)
23 OES = OES {(ch, oe)}
24 end for
25 end while
26
27 {Search the most excellent chromosome}
28 for each (x, y)OES
29 if y >= mxm
30 y=mxm
31 objc=x
32 end if
33 end for
34
35 Compute the role set S by chromosomes objc
36 assigned_user(u)- =S

Figure 7. The evolutionary algorithm for MinNoise LPMP

We introduce an evolutionary LPMP algorithm (ELA)
to resolve our problems. In ELA, each combination of
roles is look upon as a chromosome. By through a series
of operations such as selection, crossover and mutation,
some more excellent chromosomes are generated
recursively, until the termination conditions are triggered.

Evolutionary algorithm can be used to resolve many
actual problems. Due to limited space, we only introduce
a simple algorithm, called MELA that adapts to
MinNoise LPMP. In fact, minimal noise problem is very
general in the actual applications [6], not only the basic
LPMP but also the δ-Approx LPMP can be resolved with
ELA on basis of MELA.

Algorithm MELA is displayed in Figure 7. Its key
steps are:

1. Line 5-10. Some initialization operations are
performed. Each possible combination of roles is
mapped onto a chromosome.

2. Line 12-25. Through the recursive operations,
some more excellent chromosomes are held. In
this process, EvauFun, an evaluation function of
chromosome, is used. The algorithm EvauFun is
shown in Figure 8.

3. Line 27-33. Pick out the most excellent
chromosome form the result in step 2.

4. Line 35-36. Reconstruct the object set of roles by
the chromosome in step 3.

Algorithm 4: Objective

1 input: ch , where ch is a chromosome
2 Q PRMS, Q≠
3 output: e , where e is a real number
4
5 P=
6 for each locus of ch
7 Generate the role r corresponding to this locus
8 P=P assignment_permission(r)
9 end for
10 if QP
11

| | | |

1
| |

P Q
e

Q

12 else
13 e=-1
14 end if
15 return e

Figure 8. The evaluation function of chromosome

In most of real applications of EAs, computational
complexity is a prohibiting factor. In fact, this
computational complexity is due to fitness function
evaluation. Fitness approximation is one of the solutions
to overcome this difficulty. However, seemingly simple
EA can solve often complex problems; therefore, there
may be no direct link between algorithm complexity and
problem complexity.

In our MELA, there is a fitness function named
Objective at line 22 in Figure 7. Algorithm Objective is
displayed in Figure 8. Its key steps are:

404 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

1. Line 6-9. For each locus of a chromosome,
compute the role set corresponding to this locus.

2. Line 10-14. Compute the relative error.
3. Line 15. Return the relative error which is the

fitness of a chromosome.

VI. EXPERIMENTS

We have the ordinary LPMP algorithm (OLA) and the

evolutionary LPMP algorithm (ELA). In this section, we
will compare the two kinds of algorithms by some
experiments.

For simply displaying our experiments, we introduced
several abbreviations about experimental parameters:

– NoR: the number of roles, corresponding to the
constrained number of roles— k in MinNoise
LPMP.

– NoT: the times of an experiment with a fixed
value of NoR.

– TC: the average time consumed when finds out a
fitness solution for MinNoise LPMP.

– RE: the relative error which is materially the
error of every final fitness solution relative to the
ideal solution.

Now, we will present some experimental results
obtained by applying the OLA and ELA to several cases
about MinNoise LPMP and compare their performance.
We have implemented OLA and ELA with Matlab and
C++. So we will display two groups of experiments
which are performed with Matlab and C++ respectively.

Our experiments are performed on a DELL PC (2GHz
Intel Core Duo, 2GB 667MHz DDR2 SDRAM).

Besides, in our experiments, the number of permissions
is 3000 and the set of permissions required by user is
generated at random each time. But both OLA and ELA
use just the same condition parameters each time.

A. Experiment by Matlab

TABLE V. EXPERIMENT OF OLA (MATLAB)

NoR NoT TC(seconds) RE(acute value)
5 10 0.029 0.241
6 10 0.057 0.026
7 10 0.116 0.117
8 10 0.257 0.173
9 10 0.581 0.079

10 10 1.306 0.111
11 10 2.883 0.144
12 10 6.999 0.089
13 10 16.407 0.097
14 10 42.779 0.181
15 10 121.628 0.061
16 6 391.546 0.064
20 3 90045.208 0.047

300 — — —

In this experiment, both OLA and ELA are

implemented by using MATLAB 7.0. The results of OLA
and ELA are displayed in Table V and Table VI
respectively.

TABLE VI. EXPERIMENT OF ELA (MATLAB)

NoR NoT TC(seconds) RE
5 10 2.320 0.241
6 10 3.288 0.026
7 10 3.252 0.117
8 10 3.318 0.173
9 10 3.928 0.079

10 10 4.218 0.111
11 10 5.052 0.144
12 10 5.32 0.089
13 10 6.01 0.122 ↑
14 10 5.965 0.181
15 10 5.464 0.061
16 6 6.387 0.074 ↑
20 3 5.355 0.057 ↑
300 1 320.186 0.086

There are 10 groups of tests with the number of roles

being not more than 15; there are 6 groups with 16 roles,
3 groups with 20 roles. There is 1 group test with 300
roles for ELA only, since it could hardly be accomplished
by using OLA for too many roles.

Experiment by C++

TABLE VII. EXPERIMENT OF OLA (C++)

NoR NoT TC(seconds) RE(acute value)
5 20 0.023 0.248
6 20 0.04 0.109
7 20 0.072 0.112
8 20 0.201 0.076
9 20 0.488 0.102

10 20 0.73 0.15
11 20 1.219 0.142
12 20 3.46 0.07
13 20 9.303 0.095
14 20 14.338 0.173
15 20 45.06 0.055
16 15 127.5 0.028
20 10 16000.2 0.06

300 — — —

TABLE VIII. EXPERIMENT OF ELA (C++)

NoR NoT TC(seconds) RE
5 20 1.12 0.248
6 20 1.154 0.109
7 20 2.501 0.112
8 20 2.8 0.086 ↑
9 20 3.02 0.102

10 20 2.88 0.152 ↑
11 20 3.336 0.142
12 20 3.093 0.092 ↑
13 20 3.6 0.095
14 20 4.206 0.173
15 20 3.885 0.055
16 15 4.38 0.029 ↑
20 10 4.46 0.06
300 10 288.46 0.075

In this experiment, both OLA and ELA are

implemented by using C++. The results of OLA and ELA
are displayed in Table VII and Table VIII respectively.

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 405

© 2012 ACADEMY PUBLISHER

Because C++ is more efficient than Matlab, we can
perform more tests in this experiment. But for NP-hard
OLA, when there are too many roles, it is still too hard to
accomplish. We do 20 groups of tests with no more than
15 roles; 15 groups with 16 roles, 6 groups with 20 roles.
We perform 10 group tests with 300 roles for ELA only
but not for OLA.

C. Analysis of Experimrnts

From the experimental results we can conclude:
1. With not only Matlab but also C++, when the

number of roles is small, OLA is more efficient
than ELA. But when the number of roles exceeds
11, ELA is clearly more efficient than OLA.
Furthermore, along with the increase of roles,
ELA’s superiority is more and more obvious.

2. ELA owns better robustness than OLA. When
there 20 roles, ELA still needs only 4~6 seconds,
but OLA needs more than 90000 seconds for
Matlab or 16000 seconds for C++. Even in the
face of 300 roles, ELA can still finish the test in
limited time. For OLA, however, we can not
accomplish the test on our PC at all, with using
not only easy Matlab but also efficient C++.

3. The relative error of OLA is exact, which can
reach to the theoretic minimum. Correspondingly,
the results of ELA are rough a bit, which have
been marked with “↑” in Table VI and VIII. But
this is tolerable relative to its efficiency. From
Fig.9, we can see this point, too.

5 6 7 8 9 10 11 12 13 14 15 16 20

0.00

0.05

0.10

0.15

0.20

0.25

R
e
la

tiv
e

 E
rr

o
r

(1
0
0
%

)

Number of Roles

 OLA with Matlab
 ELA with Matlab
 OLA with C++
ELA with C++

Figure 9. Comparison of OLA & ELA

It can be concluded that when need to assign a few
roles, OLA is more efficient, and otherwise, ELA is a
more appreciate substitute.

VII. CONCLUSION

In this paper, we have formally defined the least

privilege mining problem (LPMP) for RBAC. Besides the
basic LPMP, we define the approximate LPMPs
including not only δ-Approx LPMP but also MinNoise
LPMP. It has been mentioned that the basic LPMP is a
special case of δ-Approx LPMP. Both δ-Approx LPMP
and MinNoise LPMP are useful in the real RBAC
applications. The former emphasizes the scale of roles but
the latter emphasizes the minimal redundancy of
permissions, while they all provide the least privilege
principle for applications. Some material cases are
discussed to clarify these problems further. The
algorithms are displayed simply in order to clarify how to
resolve LPMP.

The main contributions of this paper is to provide a
material aim for research the least privilege principle of
RBAC by mapping this problem to some formal
definitions in mathematics. But there is some
insufficiency that is our future work.

1. For simplify the work, we restrict ourselves to
RBAC0. However the standard RBAC is more
complicated. We need to consider the
standardization and application of LPMP in the
complete RBAC.

2. We introduce two kinds of simple algorithms:
OLA and ELA. Despite ELA is more efficient in
general, its LPD is not so accurate as OLA’s. We
need research more appreciate evolutionary
algorithms to improve our work.

3. We have provide the definition of LPMP, but
there is not a complete model including some
necessary formalized definitions and predicates.
This will be our future work.

ACKNOWLEDGMENT

This research is supported by by the Special Fund for
Basic Scientific Research of Central Colleges, China
University of Geosciences (Wuhan) No. CUGL100228.

REFERENCES

[1] American National Standards Institute, Inc.: American
National Stnadard for Inormation Technology-Role Based
Access Control (ANSI INCITS359-2004), 2004.

[2] R.S. Sandhu et al. Roles-based Access Control Models.
IEEE Computer, p38-47, Febuary 1996

[3] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R.
Chandramouli. Proposed NIST Standard for Role-based
Access Control. TISSEC, 2001

[4] F.B. Schneider. Least privilege and more [computer
security]. IEEE Security & Privacy, 2003, 1(5):55-59.

[5] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey et al.
Make least privilege a right (not a privilege). Proceedings
of the 10th conference on Hot Topics in Operating Systems,
2005, 10:21-29.

[6] Timothy E. Levin, Cynthia E. Irvine and Thuy D. Nguyen.
Least Privilege in Separation Kernels. Communications in
Computer and Information Science, 2008, 9:146-157

406 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

[7] V. Gligor, S. Gavrila, and D. Ferraiolo. On the formal
definition of separation-of-duty policies and their
composition. In Proceedings of 1998 IEEE Symposium on
Research in Security and Privacy, 1998, p172-183

[8] R. Simon, and M. Zurko. Separation of duty in role-based
environments. In Proceedings of 10th IEEE Computer
Security Foundations Workshop, 1997, p183-194

[9] Ravi Sandhu and Venkata Bhamidipati, The ASCAA
Principles for Next-Generation Role-Based Access Control.
Proc. 3rd International Conference on Availability,
Reliability and Security, 2008, p532-537

[10] Jorg R. Muhlbacher, Christian Praher. DS RBAC-Dynamic
Sessions in Role Based Access Control. Journal of
Universal Computer Science, 2009, 15(3):538~554

[11] M.A. Habib, Christian Praher. Object based dynamic
separation of duty in RBAC. Internet Technology and
Secured Transactions (lCITST), 2009

[12] M.A. Habib. Mutual exclusion and role inheritance
affecting least privilege in RBAC. 2010 International
Conference for Internet Technology and Secured
Transactions (ICITST), 2010, p1-6

[13] Liang Chen and Jason Crampton. Inter-domain role
mapping and least privilege. Proceedings of the 12th ACM
symposium on Access control models and technologies,
2007, p157-162

[14] Jaideep Vaidya, Vijayalakshmi Atlur, Qi Guo. The role
mining problem: finding a minimal descriptive set of roles.
Proceedings of the 12th ACM symposium on Access
control models and technologies, 2007, p175-184.

[15] Charles E. Youman, Ravi S. Sandhu, Edward J. Coyne.
Role engineering. Proceedings of the first ACM Workshop
on Role-based access control, 1995

[16] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness,
chapter 3. W. H. Freeman, 1979.

[17] Daniel Ashlock. Evolutionary Computation for Modeling
and Optimization. Springer Verlag (2006). ISBN 978-0-
387-22196-4

[18] Thomos Blickle. Theory of Evolutionary Algorithms and
Application to System Synthesis. Ph. D Thesis, Swiss
Federal Institute of Technology, Zurich,1996

Lijun Dong, born in 1978. Dong
received his Ph.D. degree in
Computer Architecture from
Huazhong University of Science &
Technology in Wuhan, P.R. China in
2008. Dr. Dong is currently a
lecturer for School of Computer,
China University of Geosciences,
Wuhan, P.R. China. His main

research interests include network security, operating
system security, access control and evolutionary
algorithms. Email: donglijun.cug@gmail.com.

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 407

© 2012 ACADEMY PUBLISHER

