
A Service-Oriented Method for System-of-
Systems Requirements Analysis and Architecture 

Design 
 

Ying ZHANG 
Institute of Command Automation, PLA University of Science & Technology, Nanjing, China 

Email: zhywl66@163.com 
 

Xiaoming LIU, Zhixue WANG, Li CHEN 
Institute of Command Automation, PLA University of Science & Technology, Nanjing, China 

 
 

Abstract—Nowadays there are various problems, including 
the rapid growth of complexity, continually changing 
requirements and the alignment of IT with business strategy, 
challenge traditional design principles in analyzing large-
scale complex systems, while Service-Oriented Computing 
offers a flexible integration architecture to meet the 
dynamic requirements of system-of-system. This paper 
introduce a service-oriented modeling method for System-
of-Systems requirements analysis based on a three-tier 
framework with multi-ontologies. The method proposed in 
this paper provides a reusable and flexible solution for 
System-of-Systems requirements modeling and enable the 
high layer requirements description of System-of-Systems 
mapped to service-oriented system design architecture 
directly. A case study is given to demonstrate the 
applicability of the method. 
 
Index Terms—System-of-Systems, service-oriented modeling, 
requirements analysis, ontology 
 

I.  INTRODUCTION 

System-of-Systems (SoS) is defined as an 
interoperating collection of component systems that 
produce results unachievable by the individual systems 
alone[1]. From its earlier application in military, SoS 
development have extended to many and various domain, 
such as transportation, healthcare, internet, search and 
rescue, space exploration, and so on[2]. Analyzing the 
requirements of SoS is a daunting task, usually involving 
a complicated process of enterprise architecture 
development using some standard architecture 
frameworks such as Generalized Enterprise Reference 
Architecture and Methodology (GERAM)[3], Treasury 
Enterprise Architecture Framework (TEAF)[4], Zachman 
Framework[5], The Open Group Architectural 
Framework (TOGAF)[6], DoD Architecture Framework 
(DoDAF)[7], etc. However, the rapid growth of 
complexity accompanied with the continually changing 
requirements makes traditional design principles 
challenging. The challenge would come from following 
aspects. 

Firstly, the architecture framework usually provides a 
number of viewpoints to model the architecture, but the 

viewpoints focus on what should be described rather than 
the concrete modeling method[8].  

Secondly, it may be difficult to keep the low level IT 
requirements consist with the high level business 
concepts, which is a key in maintaining business value[9].  

Thirdly, existing enterprise architecture proposals are 
represented in quite different ways, which results in great 
difficulty in interoperating between different models with 
different approaches and verifying the architecture as a 
whole[10]. 

In this paper, we propose a reusable method of service-
oriented and ontology-based requirements modeling for 
developing SoS architecture within a three-tiers 
framework. The method can map the strategic level 
requirements down to the IT implementation by regarding 
service as basic granularity. It also provides rigorous 
modeling semantics through defining multiple ontology, 
which is important for domain knowledge reuse. 
Compared with the current methods, it provides a more 
efficient and more flexible way of requirements analysis 
for the large-scale complex systems. 

The rest of this article is organized as follows: Section 
II introduces background and related works. Section III 
describes the three-tier modeling framework and multiple 
ontologies definitions. Section IV proposes the modeling 
process in detail. Section V gives an instance to 
demonstrate the applicability of our method. Section VI 
draws some conclusions and future work. 

II.  BACKGROUND AND MOTIVATION 

The SoS discussed in this paper mainly refers to the 
C4ISR (command, control, communication, computers, 
intelligence, surveillance, and reconnaissance) 
systems[11-12], a typical military SoS. In order to ensure 
interchangeability and interoperability between systems, 
analyzing the requirements of C4ISR system usually use 
architecture frameworks such as the DoDAF[7] and the 
MODAF[13]. Recently, Capability-Based Planning 
(CBP)[14] and Capability Engineering[15-16] are 
proposed for C4ISR requirement acquisition, analysis and 
project management. And a series of files and standards 

358 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.358-365



are published, such as JCIDS (Joint Capabilities, 
Integration and Development System)[17], etc. 

Service-oriented Computing (SOC) and Service-
oriented Architecture (SOA)[18-20] with characteristic of 
loose coupled, dynamic binding and independent of 
development technologies, platforms and organizations, 
offers a new paradigm for C4ISR capability requirement 
analysis. The U.S. Department of Defense issued DoDAF 
2.0[7] in 2009. Compared with the previous version, 
DoDAF 2.0 extends the previous three viewpoints of the 
architecture to more specific viewpoints, which including 
add the SvcV (Services Viewpoint). Wu et al.[21] 
proposed a reuse method of service-oriented modeling. 
Duncan et al.[22] researched how to support military 
capability by SOA, especially focused on the assessment 
framework of military capability, and measurement and 
monitoring of QoS (Quality of Service). 

However, how to map the higher complex 
requirements to service-oriented system design is still a 
challenge for service-oriented C4ISR system integration. 
A capability in C4ISR is defined as “The ability to 
achieve a desired effect under specified (performance) 
standards and conditions through combinations of ways 
and means (activities and resources) to perform a set of 
activities.”[7]. C4ISR capability requirement analysis 
belongs to a cross analysis of both business requirement 
and system requirement. The capability requirements 
describe the expected functions and effectiveness of 
C4ISR system performance in the user’s viewpoint. It 

reflects business architecture requirements of C4ISR 
system. On the other hand, service-oriented system 
design focuses on the IT implementation and technology 
architecture. Therefore, there might be a gap between the 
business expectation and its IT implementation, and our 
research is aiming at bridging the gap. 

The underlying principle of our method is presented in 
Fig. 1, a conceptual model of service-oriented C4ISR 
capability requirement analysis, which improves our 
previous work[23]. All capabilities are provided by 
activities in order to achieve military mission which may 
be divided into several tasks. Activity is performed by 
invoking and integrating a range of services which use 
various resources. The resources may be person, materiel, 
data or information, as well as process, product, 
technology and infrastructure, etc. All kinds of resources 
are encapsulated as services and distributed all over the 
network. Service, introduced as an important concept, 
forms an intermediate level which separates the 
arrangement of resources from capability deployment. 
This conceptual model, applied for analyzing C4ISR 
capability requirements and designing the systems, will 
not only support high-level requirements mapping to 
system architecture design by modeling the services but 
also enhance, through dynamic service composition, 
system flexibility and adaptability to various changes, no 
matter resulted from requirements, implement technology, 
or integration environment. 

 
Figure 1. The conceptual model of service-oriented C4ISR capability analysis and integration 

III.  HIERARCHY MODELING FRAMEWORK AND 
ONTOLOGIES DEFINITION 

A.  Three-tier modeling framework 
Service-oriented analysis and design emphasis on 

integrating and reusing services to implement systems. In 
this paper, we introduce a service-oriented modeling 
method for SoS with a three-layer framework based on 
multi-ontologies as shown in Fig. 2. There are three 
reasons of defining multi-ontologies in this paper. The 
first reason is to provide a uniform semantic for service-
oriented analysis and modeling, in order to avoid the 
semantic interoperability problems[24]. The second 

reason is to increase modeling efficiency by domain 
knowledge reuse. The last one is to support model 
checking by logical reasoning. 

Meta ontology is belonged to the top level, meta 
concept level, which including the fundamental concepts, 
relations and rules of SoS and guiding the whole 
modeling process. 

Domain ontology, which as a projection of meta 
ontology in an specific domain is belonged to the second 
layer, i.e. domain level. In this level, domain experts 
capture domain specific concepts and relations which 
have explicit meanings and widely used in the domain, 
and prescribe the guidelines or rules for modeling the 
application requirements. 

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 359

© 2012 ACADEMY PUBLISHER



The bottom layer is the application layer. In this layer, 
application ontology describes concepts, relations and 
rules of an application by inheriting and extending meta 
ontology or domain ontology. Activity plays an important 
role in this level, because it expands the activity concept 

of application ontology as well as is involved in 
matchmaking with service. The final model and 
specification of SoS requirements is established in this 
layer. 

 
Figure 2. The hierarchy modeling framework for service-oriented SoS 

B.  Multiple ontologies definition 

Definition 1 Meta Ontology 
Meta Ontology = <MetaConcept, MetaRelation, 

MetaRule > 
where: 
MetaConcept={mc1,mc2,...,mcn}, ,imc  (1 )i n≤ ≤  is a 

meta concept. 
MetaRelation={MR1,MR2,...,MRm}, ,jMR  (1 )j m≤ ≤  is 

a meta relation. For given 1mc MetaConcept∈ , 

2mc MetaConcept∈  and MR MetaRelation∈ , 
expression 1 2( , )MR mc mc  describes there is an 
association MR  between concepts 1mc  and 2mc . 

1 2{ , ,..., }tMetaRule MU MU MU= , ,kMR (1 )k t≤ ≤  is 
a meta rule that defines the constraint necessarily held by 
all concepts and relations in the models.  

The meta ontology defines the essential concepts, 
relations and rules, but are still too abstract to provide 
domain information. Thus we define domain ontology to 
capture domain specific concepts and relations as follows. 
Definition 2 Domain Ontology  

 , ,
,

Domain Ontology DomConcept DomRelation
DomRule DomRef

=<
>

 

where: 
1 2{ , ,..., }nDomConcept dc dc dc= , , (1 )idc i n≤ ≤  is a 

domain specific concept. 
1 2{ , ,..., }mDomRelation DR DR DR= , , (1 )jDR j m≤ ≤  

is a domain specific relation. For given 
1dc DomConcept∈ , 2dc DomConcept∈  and 

DR DomRelation∈ , 1 2( , )DR dc dc  expresses there is an 
association DR  between domain concepts 1dc  and 2dc . 

1 2{ , ,..., }tDomRule DU DU DU= , , (1 )kDU k t≤ ≤  is a 
domain specific rule that specifies necessary constraint of 
all concepts and relations in domain models. It keeps 
consistent with the rules in MetaRule. 

( )DomRef DomConcept MetaConcept⊆ × ∪  
( )DomRelation MetaRelation×  is a mapping function. 
For given dc DomConcept∈  and mc MetaConcept∈ , 
the mapping from dc  to mc  can be described as 

( )dref dc mc= , dref DomRef∈ , which means the meta 
concept of dc  is mc . Similarly, DomRef also can specify 
the mapping from DomRelation to MetaRelation. 

Domain ontology forms domain knowledge which is 
related to common knowledge in a specific domain. It is 
the guide of constructing application ontology. We define 
application ontology as follows. 
Definition 3 Application Ontology 

Application Ontology = < AppConcept, AppRelation, 
AppRule, AppRef >  

where: 
1 2{ , ,..., }nAppConcept ac ac ac= , , (1 )iac i n≤ ≤  is an 

application specific concept in a domain; 
1 2{ , ,..., }mAppRelation AR AR AR= , , (1 )jAR j m≤ ≤  is 

an application specific relation in a domain. For give 
1ac AppConcept∈ , 2ac AppConcept∈ ,

AR AppRelation∈ , 1 2( , )AR ac ac  expresses there is an 

360 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER



association AR  between application concepts 1ac  and 

2ac ; 

1 2{ , ,..., }tAppRule AU AU AU= , , (1 )kAU k t≤ ≤  is an 
application specific rule that constraints application 
concepts and relations according to the rules of DomRule 
or MetaRule. 

( ( ))AppRef AppConcept DomConcept MetaConcept⊆ × ∪
( ( ))AppRelation DomRelation MetaRelation∪ × ∪ , is a 

mapping function. For given ac AppConcept∈ , 
dmc DomConcept MetaConcept∈ ∪ , the mapping from 
ac  to dmc  can be described as ( )aref ac dmc= , 
dref AppRef∈ , which means the meta concept of ac  is 
dmc . Similarly, AppRef also can specify the mapping 
from AppRelation to DomRelation MetaRelation∪ . 

Activity is important role in application level. We 
formally define activity as follows. 
Definition 4 Formal Definition of Activity 

Activity = < ActivityName, ActivityProcess, 
ActivityRelation, ActivityFunction, 
ActivityRef> 

where: 
ActivityName is the name of an activity.  

  ActivityProcess AtomActivity ActStructure= ∪  
represents the typical implementation process of an 
activity. 1 2{ , ,..., }nAtomActivity ata ata ata= , in which 

, (1 )iata i n≤ ≤  is an atomic activity that is the basic unit 
of activity process;  

{ , , , ,ActStructure sequence split split join Unordered= +
, , , }Choice If Then Else Iterate Repeat Until− − −  is the 

control structure set represents the relationships between 
atomic activities  

{ , }ActivityRelation HasProcess ReqSerOf= , in which 
HasProcess is used to represent the relation between an 
activity and its implementation process, while ReqSerOf 
is represented the relation between an atomic activity and 
services contribute to realize it.  

 ActivityFunction Input Output Precondition= ∪ ∪  
   Effect Constraint∪ ∪  is functional description of an 

activity. Input is the input parameter set of activity, and 
Output is the output parameter set of activity. 
Precondition is the prerequisite set of activity, while 
Effect is the result set of activity. Constraint is a finite set 
of activity attributes that is usually used to specify some 
perform demand of an activity, such as the perform time, 
etc.  

AppRef is a mapping function, specifying the mapping 
from ActivityName to a unique activity concept of 
AppConcept in application ontology. Introduction of 
mapping function can matching the activity concept 
between activity and application ontology.  

Service is reusable assets published in service 
repository. A service usually has at least one function and 
can be reused in a variety of domain. We formally define 
service as follows. 
Definition 5 Formal Definition of Service 

Service = < ServiceName, ServiceFunction, 
ServiceRef > 

where: 
ServiceName is the name of a service. 

 ServiceFunction Input Output Precondition= ∪ ∪  
   Effect Constraint∪ ∪  is functional description of a 

service. Input represents the input parameter set of the 
service. Output is the output parameter set of the service. 
Preconditions represent prerequisite set for service 
implementation. Effect is the effect set of the service. 
Constraint is a finite set of service attributes, generally 
used to describe the QoS properties of service. For C4ISR 
system, the main considerations of QoS are reliability, 
availability, safety, accuracy and so on.  

ServiceRef is a mapping function, specifying the 
mapping from ServiceName to ActivityName or activity 
concept of AppConcept in application ontology, or from 
ServiceFuntion to ActivityFunction. Introduction of this 
mapping function can match the services with its name 
and function between service and activity. 

A simple example of SchemeCreating service is shown 
in Fig. 3. 

<Service> 
<ServiceName> SchemeCreating </ServiceName> 
<ServiceFunction> 

<Input>Type of Vehicle</Input> 
<Input>Dispatch Destination</Input> 
<Input> Dispatch Number </Input> 
<Output>Dispatch Scheme</Output> 
<Precondition>Receive Dispatching Command</Precondition> 
<Effect>Creating Accurate Dispatch Scheme </Effect> 
<Constraint> 

<SafetyGrade>Secret Grade</SafetyGrade> 
</Constraint> 

</ServiceFunction> 
</Service> 

Figure 3. The SchemeCreating service 

IV.  SERVICE-ORIENTED MODELING PROCESS 

The reusable method for service-oriented SoS 
modeling consists of four phases. The whole process 
involves four repositories constituted the domain 
knowledge for modeling, including domain ontology 
repository, application ontology repository, activity 
repository and service repository as shown in Fig. 2. 

Phase 1: capture domain knowledge, i.e. domain 
conceptual modeling. If the domain ontology repository 
has been established, modeler could reuse the existing 
domain ontology instance for domain modeling. 
Otherwise, domain experts and modelers should work 
together to construct domain model. The way is defining 
domain concepts, relations and rules by specializing meta 
ontology according to specific domain features, and 
specifying the corresponding relation between domain 
concepts/relations/rules and meta concepts/relations/rules. 
Domain ontology defines all concepts and relations which 
are general and reusable for a specific domain. The new 
domain model should be restored in domain ontology 
repository after modeled in order to future reuse. 

Phase 2: construct the initial application model. The 
first step is looking up and retrieving eligible application 

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 361

© 2012 ACADEMY PUBLISHER



model in the application ontology repository. If there is 
no reusable application model in current repository, it is 
need to define application ontology and establish 
application model under the guide and constraint of 
domain ontology. Application ontology is a projection of 
domain ontology in a concrete application which 
describes concepts and relationships for specific 
application in domain. It is the static reusable asset of 
domain knowledge. Therefore, the application model 
should be stored in the repository after built. In the future 
modeling process, modeler should find whether there is 
available application model in domain knowledge 
repository or not at first, which could improve the 
modeling efficiency by reuse. 

Phase 3: for each activity established in the initial 
application model, analyze and model activity process. 
Activities are divided into two kinds: simple activity and 
complex activity. The former is performed by an atomic 
activity while the latter is performed by several atomic 
activities. The activity repository restored both of the two 
kinds of activities. For each activity, if the activity is 
included in the activity repository, modeler could reuse 
the activity process directly. Otherwise, the modeler 
could modify the most similar existing activity process 

according to specific application requirements then reuse, 
or model a new activity with new relations, processes, 
attributes, rules of the activity to supplement and improve 
the repository. 

Phase 4: create the final application model by 
matchmaking the atomic activities and services. An 
activity is implemented by activity process which consists 
of atomic activities. And an atomic activity is realized by 
service which could be one service or services 
composition. Because the concepts and relations of 
activity and service are all formally descript in the same 
domain knowledge, we could regard atomic activity as 
service requester. That means the ActivityFunction of 
atomic activity could be regarded as service request 
description, and the ServiceFunction of service could be 
regarded as service provider advertisement. For each 
atomic activity, use the ALGORITHM 1 (as shown in 
Fig. 4) to find the matched service set which could 
implement it. If the matchmaking is fail, then clue the 
modeler either modify the inputs and outputs then 
matching one more time or define a new service. Finally, 
the final application model is constructed by supplement 
the initial application model with the matched services.  

 

ALGORITHM 1 the matchmaking algorithm between atomic activity and service 
INPUT: the atomic activity set APSET which is obtained by previous phase. Service repository SS, time limit Tout 
OUTPUT: the atomic activity implementation set MatchServiceListSet which is consist of services 
INITIALIZATION: MatchServiceListSet NULL= ; 
ALGORITHM STEPS:  
Step1: Select the first atomic activity in APSet  as the current activity, obtain its output-set { }1 2, , ,act nO O O O=  and input-set 

{ }1 2, , ,act mI I I I= . 
Step2: new actO O= , new actI I= , SStemp SS= , .ServiceList Ser NULL= , .ServiceList Ctr NULL= . 

Step3: For each service jSer  in SStemp , compute the intersection set jjiset new serO O O= ∩  and | |jisetO , where 

{ }
1 2
, , , jjserO O O O=  is the output-set of jSer . The result may be four mutually exclusive cases, as follow: 

 For each ① jisetO  is satisfied jisetO ∅= , which means there is at least one element (output) of newO  can not be provided by 
services in current service repository, matching failed, .ServiceList Ser NULL= , .ServiceList Ctr NULL= , do Step5. 

 There is at least one ② jisetO  satisfying jiset newO O⊇ . This means there is at least one service could match all output concepts 
needed by newO  directly. Add jSer  to .ServiceList Ser , .ServiceList Ctr Choice= , do Step4. 

 This case is means that although there is no single service could provide all output concepts in current service repository, ③
there are some services can provide the concepts corporately, i.e. the service composition could provide all output concepts 
requested by newO . Therefore, choice the jSer  which has the biggest | |jisetO , add jSer  to .ServiceList Ser , and let 

. &ServiceList Ctr Split Join= , jnew new isetO O O= − , jSStemp SStemp Ser= − , do Step3. 
④ The searching time is out of time limit, matching failed, .ServiceList Ser NULL= , .ServiceList Ctr NULL= , do Step5. 

Step4: For each service jSer  in .ServiceList Ser , compute j jdset new serI I I−= , where { }
1 2
, , , jjserI I I I=  is the input-set of jSer . And 

the result is divided into two situations:  
 For each ① jSer , the jdsetI  is satisfied jdsetI = ∅ , which means that all input concepts of jSer  have already included by 
service request, matching is successful, do Step5.  

 If ② jSer  has jdsetI ≠ ∅ , which means there are at least one input concept of jSer  could not be provided by current service 
request. Therefore, it is need to find the predecessor services of current service. For each jSer , let 

jnew dsetO I= , jSStemp SStemp Ser= − , .ServiceList Ctr Sequence= , do Step3 again.  
Step5: Add ServiceList  to MatchServiceListSet , complete the process of current activity. Select the next activity in APSet  as current 

activity, while get its input and output concept sets as actO  and actI , do Step2, until process all atomic activities in APSet . 
Step6: Return MatchServiceListSet  

Figure 4. The matchmaking algorithm between atomic activity and service

All concepts used during the whole modeling process 
should be included in domain knowledge. If there is 
necessary concept has not been defined, it is need to add 
the concept into domain knowledge. That means all 
newly-built domain model and application model 

including activity process and service should be added 
and stored in repositories to improve and enrich the 
domain knowledge for modeling. 

In addition, because the modeling process involves 
multi-tiers and multi-models, the correctness and 

362 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER



consistency between models can be ensured by model 
verification. An effective method is transforming the 
models to OWL DL[25] ontology, then accomplish the 
model verification of correctness and consistency by 
ontology reasoning technology based on Description 
Logics (DLs)[25-26].  

V.  CASE STUDY 

In this section, we introduce a case study of C4ISR 
system to illustrate the applicable and available of the 
method proposed in this paper. The instance is belonged 

to military armament supply domain, and the specific 
application is dispatch vehicle LAV-I. 

According to the Meta-Model Data Groups in DoDAF 
2.0[7], the meta ontology of C4ISR capability analysis is 
shown in Fig. 5. Meta concepts define all basic concepts 
for C4ISR capability analysis such as Capability, Activity, 
Performer, Resource, etc. Meta relations define all 
associations between meta concept, such as 
RuleConstrainsActivity, ActivityPerformedByPerformer, 
etc. Both meta concepts and meta relation keep the same 
semantics as those in DoDAF 2.0[7]. 

 
Figure 5. An example of C4ISR capability meta ontology

Firstly, we define domain ontology of military logistics 
by inheriting and extending meta ontology according to 
domain requirements and features. The logistics domain 
model (fragment) is shown in Fig. 6, we use UML 
stereotype to describe the mapping between meta 

ontology and domain ontology. For example, domain 
concept VehicleSupply is specialized from meta concept 
Capability, and domain concept DispatchVehicle is 
specialized from meta concept Activity, etc. 

 
Figure 6. The vehicle supply domain model (fragment)

Secondly, we suppose that there is no reusable instance 
in application ontology repository currently. Therefore, it 
is need to define application ontology in application level 
by instantiating domain ontology, and establishing the 
initial application model. As shown in Fig. 7, application 
concept DispatchLAV-I is an instance of domain concept 

DispatchVehicle, and application concept 
LAVDispatchCenter is an instance of domain concept 
VehicleDispatchDept., etc. The initial application model 
should be added to application ontology repository which 
could be reuse in future. 

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 363

© 2012 ACADEMY PUBLISHER



 
Figure 7. The initial application model of dispatch LAV-I

The next phase is analyzing and modeling each activity 
established in the initial application model with its 
implement process. We suppose that the activity process 
named DispatchProcess has stored in activity repository 
and reuse it directly. Then matchmaking each atomic 
activity of DispatchProcess with services by using the 
ALGORITHM 1 in the service repository. Finally, 

composite all the services into the initial application 
model, and obtain the final application model with 
service as the basic granularity, as shown in Fig. 8. Both 
the RepairProcess and services CommandReceiving, 
SchemeCreating, SchemeSending may also be used in 
modeling other application such as dispatch MBT, 
dispatch APC and so on. 

 
Figure 8. The final application model of dispatch LAV-I

After these phases, the higher complex C4ISR 
requirements had been mapped to the application model 
with service as basic granularity. The final application 
model provides a blueprint for service-oriented C4ISR 
system integration. The successional phase could 
assemble and deploy services by using the existing SOA 
tools according to the blueprint. 

VI.  CONCLUSIONS AND FUTURE WORKS 

This paper studies how to apply SOC with its reusable, 
flexible, loose couple features to SoS requirement 
analysis such as C4ISR system. Firstly, a service-oriented 
conceptual model for C4ISR is presented. Based on the 
conceptual model, a novelty modeling method with three 
layer and multiple ontologies is proposed for service-
oriented C4ISR capability analysis. The features 
represent of our work is summarized as follows: 

(1) This method drives service modeling by activity 
analysis, and provides C4ISR capability by invoked and 
integrated services. It resolve the alignment of C4ISR 
requirements analysis and system design by taking 
service as the basic granularity, which will enable the 

high layer requirements description to be mapped to 
system design architecture. 

(2) This method is a hybrid modeling method. On the 
one hand, this method could increase the modeling 
efficiency by reuse domain knowledge, i.e. the assets 
restored in the repositories. On the other hand, it also 
supports dynamic modeling by service matchmaking and 
composition. 

(3) This method is flexible because it focuses on the 
requirements modeling of problem domain rather than the 
technical details of application implementations. 
Therefore, if the higher requirements change, only the 
abstract solution specification needs to be updated to 
reflect the new requirements, modeler can reconstruction 
the application model through invoking and integrating 
services flexibly and fast. Correspondingly, if the 
implementation technology changes, it should be possible 
to reuse the same abstract solution specification defined 
by the domain experts. This will reduce the cost and 
decrease the time to implement a change. This method 
also supports updating services that the new and better 
services could replace the old ones without influencing 
the high-level model.  

364 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER



The future work will include supplement the 
repositories in order to improve the efficiency of reuse, 
the validation methods to ensure the dynamic consistency 
of the modeling, as well as study how to map the model 
to code generation in the system design phase under the 
guide of domain knowledge, etc. 

ACKNOWLEDMENT 

This research is supported by the National High-Tech 
Research and Development Program of China under the 
project number 2007AA01Z126. The authors are grateful 
for the anonymous reviewers who made constructive 
comments. 

REFERENCES 

[1] Krygiel, Behind the Wizard’s Curtain, CCRP Publication 
Series, July, 1999, pp. 33. 

[2] WANG Yuan-fang, ZHOU Hong-ren, JING Zhong-liang, 
“System-of-Systems, an Overview”, Journal of System 
Simulation, 19(6), pp. 1182-1185, 2007 (in Chinese with 
English abstract). 

[3] IFAC-IFIP Task Force on Architecture for Enterprise 
Integration, GERAM: Generalized Enterprise Reference 
Architecture and Methodology (Version 1.6.3). 1999. 

[4] Department of the Treasury CIO Council, Treasury 
Enterprise Architecture Framework (Version l), 2000. 

[5] Zachman J, The Zachman framework: a primer for 
enterprise engineering and manufacturing, 2003. 

[6] Open Group, TOGAF: The Open Group Architecture 
Framework (Version 9), Document Number: G091, 2009. 

[7] US Department of Defense, DoD Architecture Framework 
(Version 2.0), 2009. 

[8] LUO Aimin, HUANG Li, LUO Xueshan, “Research on 
activity-centric architecture methodology”, Systems 
Engineering and Electronics, 30(3), pp. 499-502, 2008 (in 
Chinese with English abstract). 

[9] Cuenca L., Ortiz A., Boza A, “Business and IS/IT Strategic 
Alignment Framework”, In: Camarinha-Matos L., Pereira 
P., Ribeiro L. (Eds.), Emerging Trends in Technological 
Innovation, IFIP Advances in Information and 
Communication Technology, vol. 314, pp. 24-31, 2010. 

[10] Chen D., Doumeingts G., Vernadat F, “Architectures for 
enterprise integration and interoperability: Past, present 
and future”, Computers in Industry, 59(7), pp. 647-659, 
2008. 

[11] Schorling, S., Rine, D, “A methodology for designing 
toolkits for specification level verification of interval-
contained information systems requirements”, Information 
and Software Technology, 44 (2), pp. 77-90, 2002. 

[12] Liao, S., Sun, B., Wang, R. “A knowledge-based 
architecture for planning military intelligence, surveillance, 
and reconnaissance”, Space Policy, 19(3), pp. 191-202, 
2003. 

[13] UK Ministry Of Defence. MOD Architecture Framework 
(Version 1.2.004), 2010. 

[14] SUN Yan, DAI Hao, “Brief Introduction of Military 
Requirement Method Based on Capability”, Science 
Technology And Engineering, 9(7):2170-2176, 2007 in 
Chinese with English abstract). 

[15] Lam S, Lemieux F, Lalancette C, et al. “Toward a 
Capability Engineering Process”, Report No. ADA432358, 

Canada Valcartier(Quebec): Defence Research and 
Development, 2004. 

[16] Lam S, Mokhtari M, Lizotte M, et al. “CapDEM - Toward 
a Capability Engineering Process: A Discussion Paper”, 
Report No. ADA440003, Canada Valcartier(Quebec): 
Defence Research and Development, 2005. 

[17] Joint Chief of CHIEFOFSTAFF. CJCSI 3170.01F Joint 
Capabilities, Integration and Development System, 2007. 

[18] Arsanjani A, “Service-Oriented Modeling and 
Architecture”, IBM Technical Report, 2004. 

[19] Erl Thomas, Service-Oriented Architecture 
(SOA):Concepts, Technology, and Design, Pearson 
Education, Inc, 2005. 

[20] Huhns Michael N, Service-oriented computing semantics, 
processes, agents, Chichester : John Wiley & Sons, Ltd, 
2006. 

[21] Budan Wu, Zhi Jin, “Service-Oriented Modeling: An 
Extensive Reuse Method”, Proc. of Annual IEEE 
International Computer Software and Applications 
Conference, 2008. 

[22] Duncan Russell, Nik Looker, Lu Liu , Jie Xu, “Service-
Oriented Integration of Systems for Military Capability”, 
Proc. of 11th IEEE Symposium on Object Oriented Real-
Time Distributed Computing (ISORC), 2008. 

[23] ZHANG Ying, WANG Zhixue, LIU Xiaoming, et al. 
“C4ISR Capability Analysis based on Service-Oriented 
Architecture”, Proc. of 5th IEEE international symposium 
on Service-oriented system engineering (SOSE), 2010. 

[24] Stanislav Vassilev Pokraev, Model-driven Semantic 
Integration of Service-Oriented Applications, Enschede, 
The Netherlands, 2009. 

[25] Franz Baader, Diego Calvanese, Deborah L. Mcguinness, 
et al. The Description Handbook. Cambridge University 
Press, 2003. 

[26] DONG Qingchao, WANG Zhixue, ZHU Wei-xing, etal. 
“Domain-specific language for C4ISR capability analysis”, 
Systems Engineering—Theory&Practice. 31(3), pp. 552-
560, 2011 (in Chinese with English abstract). 

 
 
 
 
Ying ZHANG was born in 1982. She is a candidate for 

doctor in Institute of Command Automation, PLA University of 
Science & Technology. Her main research is software 
engineering, requirement engineering, SOA; Email: 
zhywl66@163.com 

Xiaoming LIU was born in in 1956. He is a professor for 
doctor in Institute of Command Automation, PLA University of 
Science & Technology. His main research is system engineering, 
computer simulation. 

Zhixue WANG was born in 1961. He is a professor for 
doctor in Institute of Command Automation, PLA University of 
Science & Technology. His main research is requirement 
engineering, system engineering, SOA. 

Li CHEN was born in 1982. He received the Bachelor of 
Engineering and Master of Engineering degrees from Institute 
of Meteorology, PLA University of Science and Technology in 
2005 and 2008, respectively. He began his PhD study in 
Institute of Command Automation, PLA University of Science 
and Technology since 2008. His research interests include 
semantic Web, data mining, and Web services. 

 
 

 

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 365

© 2012 ACADEMY PUBLISHER


