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Abstract—SHOQ(D) is one of the fundamental theories In 
Description Logics due to its support to concrete datatypes 
and named individuals. At present, deciding the 
satisfiability of SHOQ(D)-concepts is mainly completed by 
enhancing Tableau algorithm with blocking. However, there 
is still much to be desired in performance as there are 
tremendous description overlaps in completion forest, thus 
causing great spatial waste as a result. To tackle this 
problem, this paper presented a new approach to check the 
satisfiability of acyclic SHOQ(D)-concepts——FTC(Fully 
Tiered Clauses) algorithm. This calculus can make a direct 
judgement on the satisfiability of acyclic SHOQ(D)-concept 
by translating its description into a fully tiered clause group 
whose satisfiability is directly available, and reusing clauses 
to block unnecessary extensions. FTC algorithm eliminates 
description overlaps to the largest extent as it works on 
concept description directly. Therefore, FTC algorithm has 
notably better performance than Tableau by saving a lot of 
spatial costs.  
 
Index Terms— Satisfiability, Concept Clause, SHOQ(D), 
Fully Tiered Clauses 
 

I.  INTRODUCTION 

Semantic WEB aims at giving WEB content clear 
semantics and making computer understand and process 
them automatically. Amid it, Ontology is a key 
component which is mainly employed to describe 
different WEB resources and their relations and 
cooperation. However, no matter the early WEB 
Ontology languages OIL[1] and DAML+OIL[2] or the 
updated OWL[3], they are all based on description logics 
(DLs). Besides, with the increasing requirements on 
intelligentizing information, description logics will play 
growingly important roles in other applications. And in 
the researches on description logics, reasoning is 
apparently a key issue. Then in reasoning, concept 
satisfiability is the most fundamental one (the other basic 
issue, concept subsumption, can convert into concept 
satisfiability in most cases). 

Comparatively speaking, although the reduction based 
reasoning[4] can be used to decide the concept 
satisfiability, its advantage is embodied by query 
answering over large ABoxes. As far as the satisfiability 
of a specific concept is concerned, its performance is far 

less than Tableaux algorithm in that it hires a reduction 
process additionally. As for the structural subsumption, it 
has even no practicality since it just applies to much 
simple DLs such as FL0. Under such circumstance, the 
research on concept satisfiability mainly goes around the 
classic concept satisfiability algorithm Tableaux. They 
either add new operators or functions to existent 
description logics systems and extend Tableaux to certain 
extent to fit new systems[5,6,7,8] or integrate description 
logics with other fields and still provide modified 
versions of Tableaux to support reasoning[9,10,11,12,13]. 

Actually, though Tableau proved practical in practice, 
it has some irresolvable drawbacks induced by its 
mechanism. For a specific concept, Tableau algorithm 
unfolds its description gradually and at last obtains all the 
descriptions that should be entailed. In the process, each 
unfolding will produce an overlapped description to the 
concept unfolded completely or partially. For example, 
let L(x) be a node labeling in a completion tree of 
Tableau. If (A∩B)∈L(x), then there will be A∈L(x) and 
B∈L(x) according to ∩-rule, that is to say, { A∩B, A, B}∈ 
L(x). This is complete overlap. Similarly, If A∪B∈ L(x), 
then there will be A∈L(x) or B∈L(x) according to ∪-
rule. This is partial overlap. As operators ∩, ∪ are nearly 
most frequently used in describing concepts, then such 
overlap is very serious in most cases.  

The FTC (Fully Tiered Clauses) algorithm presented in 
this paper is a novel algorithm which intends to solve this 
problem of severe description overlaps which waste 
tremendous space in Tableau. Its basic idea is to translate 
the acyclic concept description[14] into specially 
organized clauses. It doesn’t change model features along 
the reorganizations, in other words, if the latter concept 
produced by reorganizing is satisfiable, then the concept 
before the reorganizing is also satisfiable. Therefore, the 
satisfiability of a concept can be decided by enumerating 
and testing all the possible variant clauses directly. This 
processing mode doesn’t cause description overlaps, thus 
saves much more space compared with Tableau, which 
makes FTC gain linear space costs in many cases. For 
cyclically defined concepts, one may translate them into 
general inclusion axioms thus no long appearing as 
defined concepts, or take advantage of the connection 
with propositional dynamic logic and adopt μ-calculus to 
realize reasoning, both being not in the scope of this 
paper. Therefore, all the concepts in the rest of this paper 
are acyclic implicitly. 
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Description logic SHOQ(D)[15] becomes a 
cornerstone of WEB Ontology language for its support to 
enumerating instances and allowing datatypes and values 
to construct concept which are two key properties in 
WEB Ontology. Not only the OIL frames could easily be 
mapped to equivalent axioms in the SHOQ(D)[16], but 
also the DAML＋OIL which is equivalent to SHOIQ(D) 
[17], and the OWL DL which is equivalent to SHOIN(D) 
[16], are all just slightly modified versions of SHOQ(D). 
Besides, reasoning with inverse roles is known to be 
difficult and/or highly intractable when combined with 
either concrete datatypes [18] or named individuals [19], 
while FTC algorithm is still on its early stage. For above 
reasons, we take SHOQ(D) as the carrier for FTC 
algorithm. Of course, the implementation of FTC 
algorithm in SHOQ(D) has still much significance both in 
theory and practice because of the important role of 
SHOQ(D) for OWL researches and the much higher 
utilization rate of concrete datatypes or named individuals 
against that of inverse roles [15]. 

This paper firstly introduces the syntax and semantics 
of SHOQ(D) briefly, and then discusses the process, 
correctness, and performance of FTC in detail. A 
performance comparison between Tableaux and FTC is 
given lastly.  

II.  SHOQ(D) SYNTAX AND SEMANTICS 

Description logic SHOQ(D) takes the need of ontology 
representation into full consideration and extends the DL 
SHQ with concrete datatypes and named individuals, 
which makes it an ontology-oriented description logic 
with strong expressiveness. Following are brief 
introductions to SHOQ(D). 

Definition 1. Let D be a set of concrete datatypes, NC, 
NR=NR

A
∪NR

D, and NI be disjoint sets of concept names, 
abstract and concrete role names, and individual names. 
Then, the set of SHOQ(D)-concepts is the smallest set 
such that: 

1. Each concept name C∈NC is a SHOQ(D)-concept; 
2. For each individual name o∈NI, {o} is a SHOQ(D)-

concept; 
3. For C and D concepts, R∈NR

A an abstract role, 
F∈NR

D a concrete role, S∈NR
A a simple role[15] (abstract 

role that is not transitive and for each role R' ⊆ S, R' is not 
transitive), d∈ D a datatype, n∈IN(natural number), then 
(C∪D), (C∩D), ( ﹁ C), d, ( ﹁ d), (∀R.C), (∃R.C), 
(≥nS.C), (≤nS.C), (∀F.d), (∃F.d) are all SHOQ(D)-
concepts. 

Besides, 丅 is called universal concept which 
subsumes any concepts in domain, while ⊥ is called 
bottom concept which contains nothing and is subsumed 
by any concepts. If A∈NC can only appear possibly at the 
right sides of some concept definitions, namely, there is 
no definition for A and thus it can not be composed of 
other concepts, then A is called primitive concept[14]. 
And we confine number restrictions (including atmost 
restriction and atleast restriction) to simple roles to 
guarantee a decidable logic[20].  

Definition 2. For R and S roles, the statement of form 
R ⊆ S is called role inclusion axiom. For a set of role 
inclusion axioms R, we call R+ =(R, ⊆  ) a role hierarchy 
where ⊆ is the transitive reflexive closure of ⊆ . Besides, 
if an abstract role R is transitive, we mark Trans(R). Note 
that concrete roles have nothing to do with transitivity, in 
other words, they are all not transitive. 

Definition 3. SHOQ(D)-Interpretation I =(△I,·I) 
consists of a non-empty set △I(interpretation domain) 
and a mapping ·I. And set △D is the concrete domain for 
all concrete datatypes and is disjoint from △I. Mapping ·I 
maps different concept descriptions according to Fig. 1. 
Besides, for R and S roles, if R ⊆  S, then <x,y>∈RI implies 
<x,y>∈SI. And for Trans(R), if <x,y>∈RI, <y,z>∈RI, then 
there is <x,z>∈RI. 

 
Constructor Syntax Semantics 

primitive concept A AI ⊆ △I 
abstract role R R I ⊆△I×△I 
concrete role F F I ⊆△I×△D 

named individual {o} {o}I ⊆ △I,#{o}I=1 
datatype d dD ⊆ △D 

conjunction (C∩D) (C∩D) I = C I∩D I 
disjunction (C∪D) (C∪D) I = C I∪D I 

negation 
﹁C ﹁C I =△I \ C I 
﹁d ﹁d D =△D \ d D 

exists restriction (∃R.C) (∃R.C) I ={x∈△I|there is one y∈△I

satisfying <x,y>∈R I and y∈CI} 

value restriction (∀R.C) (∀R.C) I ={x∈△I|for each y∈△I, 
<x,y>∈R I implies y∈CI }

atleast restriction (≥nS.C) (≥nS.C) I ={x∈△I|#{<x,y>| 
<x,y>∈S I∧ y∈CI}≥ n} 

atmost restriction (≤nS.C) (≤nS.C) I ={x∈△I|#{<x,y>| 
<x,y>∈S I∧ y∈CI}≤ n} 

datatype exists (∃F.d) 
(∃F.d) I ={x∈△I| there is one y∈△

D, satisfying <x,y>∈F I 

and y∈dD} 

datatype value (∀F.d) (∀F.d) I ={x∈△I| for each y∈△D, 
<x,y>∈F I implies y∈dD}

Figure 1. Syntax and semantics of SHOQ(D), # denoting set cardinality. 

With negation operator ﹁ in SHOQ(D), subsumption 
reasoning and concept satisfiability can be reduced to 
each other. This is because C ⊆ D holds if and only if C∩
﹁D is unsatisfiable. On the other hand, C is satisfiable if 
and only if C⊆⊥is untenable. Hence, we just talk about 
satisfiability in the following discussion. 

III.  THE FTC ALGORITHM FOR SHOQ(D) 

The FTC adopts idea quite different from Tableau that 
it builds a group of fully tiered clauses on concept to 
decide its satisfiability directly. This section firstly 
provides relevant definitions and then fully describes the 
FTC algorithm in terms of processing, soundness, and 
completeness. 

A.  Relevant Definitions 
Definition 4 (Literal and Restricting Concept). Let A 

be primitive concept, o a named individual, C a concept, 
R an abstract role, S a simple role, F a concrete role, d a 
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datatype, n positive integer, then expressions of the forms 
A, ﹁ A, {o}, ∃R.C, ∀R.C, (≥nS.C), (≤nS.C), (∀F.d), 
(∃F.d), d, ﹁d, 丅 and ⊥ are Literals. Besides, ∃R.C, 
∀R.C are called ∃/∀ role literals (or briefly role literals) 
or more specifically, ∃/∀R role literals, with C being the 
restricting concept of role literals ∃R.C and ∀R.C. In this 
paper, literals are denoted with capital letters such as X, 
Y. And the role of a role literal X is signified by Rol(X). 

Definition 5 (Clause). Clauses are the descriptions 
satisfying: A single literal is a clause; A description 
composed of two or more literals put together 
with∩operator is a clause. In this paper, clauses are 
denoted with lowercased letters such as x, y. The 
restricting concept of a ∃ role literal will also form a 
clause in FTC algorithm. This clause is called restricting 
concept clause. Furthermore, the restricting concept of a 
role literal in a clause is also called the restricting 
concept of this clause. Conversely, this clause is called 
the father clause of the restricting concept (clause), while 
the role is called father role of the restricting concept 
(clause) correspondingly. For a father clause x and its 
child clause y, x can be represented by y as Upper(y) and 
the ∃ role literal whose restricting concept is clause y can 
be represented as y.Letter. Undoubtedly, y.Letter is one 
literal of clause x. A literal X appeared in clause x can be 
represented as X∈x. 

Definition 6 (Disjunctive Normal Form). the 
description consisting of one clause, or two or more 
clauses concatenated with ∪ is disjunctive normal form 
(DNF).  

Definition 7 (Fully Tiered Clause). If a concept 
description is in the form of clause, and it contains no ∃ 
role literal or all its restricting concepts are also fully 
tiered clauses, then this concept is called Fully Tiered 
Clause (FTC). Note that not only the abbreviation FTC is 
used as the name of algorithm but also its italic form FTC 
stands for a description with the form of fully tiered 
clause. 

Definition 8 (∃ Labeling Set, ∃ Original Restricting 
Concept). Each ∃ simple role literal X has a labeling set 
B to reserve concepts incurred by processing number 
restrictions, denoted as B(X). While each ∃ transitive role 
literal Y has a data structure E to keep its original 
restricting concept, denoted as E(Y). 

Definition 9 (Path). For a clause sequence x1,x2,…,xn 
in a FTC, xi is the father clause of xi+1 (for i≥1 and i≤n-1), 
we say such sequence is a path. 

Definition 10 (Clause reuse). for a path x1,x2,…,xn, if 
there are two clauses xi,xj (j>i) satisfying: 

Rol(xi.Letter)= Rol(xj.Letter)= R, and Trans(R), 
E(xi.Letter)= E (xj.Letter), and 
Upper(xj)/R ⊆ Upper(xi)/R. 

Note that x/R is defined as: x/R={ C|∀S.C∈x, and 
R ⊆  S } 

Then xi is a clause reusable by xj. Draw a reuse directed 
line from xj.Letter to the xi to signify that xi can be used 
as the restricting concept clause of xj.Letter, while we 
needn’t do anything more to xj. 

Definition 11 (Concept Description Group and FTC 
Group). If the description of concept C contains named 
individuals and is satisfiable at the same time, then it 
usually requires these named individuals to be instances 
of some certain concepts. In such case, each named 
individual has a corresponding concept description (for a 
specific named individual o, it is denoted as Des(o)). All 
these concept descriptions form a concept description 
group, and the description of C is then called principal 
concept description of this group. This description group 
will form a group of FTCs (namely, FTC group) after 
applying the FTC algorithm. The same way, the FTC 
corresponding to principal concept description is 
principal FTC. 

Definition 12 (Processing Node). In the course of 
turning a concept description into the form of FTC, we 
need to transform not only this concept itself but also 
other restricting concepts at all levels into clauses. 
Therefore, we term the description being turned into 
clause as processing node.  

Definition 13 (Merging Operation). Merging 
operation is to merge two role literals into one role literal. 
Let B, C be two concepts, R, S roles (abstract or 
concrete), then: 

Merging ∃R.B∩∀S.C (with R ⊆  S) into 
∃R.(B∩C∩∀R.C) or ∃R.(B∩C) depending on whether 
Trans(R) or not, and substitute them for the ∃R.B, is 
called ∀-Merge Operation. Such merging operation is 
used to act all ∀ role literals in a clause to all 
corresponding ∃ role literals with the same role in the 
same clause. 

Merging ∃R.B∩∃S.C (with R ⊆  S) into ∃R.(B∩C) and 
substitute it for both the ∃R.B and ∃S.C, is called ∃-
Merge Operation. Such merging operation is used to 
merge some chosen ∃ role literals and reduce their 
number in a clause to meet the semantic requirement of 
atmost restriction. 

If there is description like B∩{o1} occurring in clause 
x, then algorithm transfers description B to concept 
description of individual o1 so as to form Des(o1)= 
Des(o1)∩B, and just keeps {o1} unmoved, namely, 
x={o1} after operation. If clause x is also the concept 
description of another named individual, say o2, then 
mark o1=o2 to stand for the identity of these two 
individuals. This is o-Merge Operation. 

Definition 14 (Clash). For an unsatisfiable concept, its 
description should involve some special description 
fragments which can never be satisfied semantically 
anyway. They are called clash. For a clause, such cases 
include: 

① Bottom concept:⊥.  
② Concept name clash: ﹁ A∩A (A is primitive 

concept). 
③ Datatype clash: Clause contains datatypes d1,…dn, 

but D
1d ∩…∩ D

nd =∅. 
④ Number clash: Clause contains literal ≤nS.C (S 

simple role, n positive integer), but this clause also 
contains more than n ∃R role literals (R ⊆  S) Y0,Y1,…Yn 
satisfying C ∈B(Yi) for all 0≤i≤n. 
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⑤ Individual ≠ clash: Clause x contains two ∃ role 
literals whose restricting concepts only contain same {o} 
(o, a certain named individual), or {o1} and {o2} (o1 and 
o2, two certain named individuals) respectively, while 
these two literals are marked unable to merge with ≠. 

⑥ Individual ﹁ clash: For a certain named individual 
o, there is ﹁{o}∈Des(o). 

If there is any clash occurring in the clause, then mark 
this concept description with ⊥ and finish the 
constructing of this FTC group. This is because if the 
current clause is ⊥, then its father clause will be replaced 
with ⊥ according to ∃R.⊥≡⊥ and C∩⊥≡⊥. Doing so 
repeatedly, the whole expression will be replaced with 
⊥. So does other expressions in this group. However, 
this doesn’t necessarily mean the end of the algorithm; 
after all, there may be other satisfiable FTC group for the 
input concept. 

B.  FTC Algorithm Process 
Starting from an input concept C0, we can decide the 

satisfibility of C0 after applying the FTC process to it. If 
at least one clash free FTC group can be obtained after 
the application of FTC algorithm, then C0 is satisfiable, 
otherwise, unsatisfiable. The following is a detailed 
depiction of FTC algorithm according to the process 
graph shown in Fig. 2: 

(1) Pretreatment: Replace all the concept names in C0 
with their corresponding descriptions until there are no 
concept names except primitive concepts in C0. Then turn 
C0 into negation normal form (NNF), namely, push all 
negation operators as inward as possible so that negation 
only occurs in front of primitive concepts. This can be 
easily done by applying De Morgan's laws and other rules 
such as ﹁∃R.C=∀R.(﹁C) and ﹁∀R.C=∃R.(﹁C), etc. 
the negation of a number restriction can be eliminated by 
changing the number and direction, for example, ﹁
(≤nR.C)=≥(n+1)R.C, and vice versa. After done these, set 
C0 as processing node P, and at the same time, initialize 
Des(o)=丅 for each named individual o. They are also 
called distinguished points[15]. At last, initialize two 
binary relations (i.e. = and ≠) for conserving equivalent 
individual pairs and ∃ role literal pairs unable to merge 
respectively) to be empty. 

(2) Building DNF: Reorganize the literals in 
processing node P into the form of DNF with relevant 
laws (association, commutation, distribution, and 
idempotence, etc.) and choose one clause of it (other 
clauses should be removed). The chosen clause in P is 
also called current clause. And the chosen clause of the 
first processing node for a description is called top 
clause. If there are two same literals occurring at the 
chosen clause with ≠ relation, then they cannot be merged 
into one with idempotence. Then, check clashes. Note 
that the literals defined in definition 4 have enumerated 
all possible elements to form a SHOQ(D)-concept. And 
the only way to form a more complicated concept is to 
concatenate these elements by operator ∪∩ and . Besides, 
both ∪∩ and  support association, commutation and 
distribution law which are just needed to build a DNF. 

Therefore, it is always available to reorganize an acyclic 
concept into a disjunctive normal form. 

If current clause doesn’t have any clashes (clash � and 
� usually cannot appear at this step, but may appear in 
the later steps), then further detect if it contains literals 
like {o}. If so, conduct o-Merge operation. 

(3) Locating reusable clause: If father role of the 
current clause x is transitive, then starting from father 
clause, search the only path to top clause for reusable 
clause. If find one, then there is no need to process x any 
more, set Upper(x) as P and turn to relocating P step. 

 
 

Figure 2. The basic processes of FTC algorithm.  
P means processing node. 

 
 (4) Satisfying number restriction: For current clause 

x, if there are literals ≥nS.C∈x or ≤nS.C∈x, then process x 
as follows (R stands for any roles occurring in x and 
satisfying R ⊆ S). Note that if there are other number 
restriction literals on role S ' with S ' ⊆  S, make sure to 
process those literals first. 

1) Add one of {C,﹁C} to the labeling set B of each 
∃R role literal, and integrate the added C or ﹁C into the 
restricting concept of corresponding role literal by 
conjoining the current restricting concept and C (or ﹁C 
respectively) with operator ∩. 

Locating reusable clause 

No 

Output FTC group of C0 

P unprocessed? 

End 

Begin 

Pretreatment, set C0 as P 

Input C0 

Satisfying number restriction 

Building DNF, choose one clause 

Relocating P 

Dealing with∀ (∀-Merge operation) 

No 

Yes

No

Yes 

Find one? 

Trans(Father role)? 

Yes
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2) If there is literal ≥nS.C∈x and the #{∃R role literal X 
| X∈x and C∈B(X) }<n, append n (∃S.C)s to x and mark 
these newly-added literals unable to merge into each 
other with ≠. This is ≥ satisfying operation.  

3) If there is literal ≤nS.C∈x and the #{∃R role literal X 
| X∈x and C∈B(X) }>n, conduct ∃-Merge operation on 
two randomly selected ∃R role literals without ≠ 
relationship. Repeat this operation until #{∃R role literal 
X | X∈x and C∈B(X)}≤n. If there are no enough ∃R role 
literals available for merging due to the ≠ relations among 
them, then clash � (number clash) occurs and this 
expression needs to be set to ⊥. This is ≤ satisfying 
operation.  

(5) Dealing with∀: For every ∀S.C∈ x (x, current 
clause), apply ∀S.C to each ∃R.D∈x (with R ⊆ S) by ∀-
Merge operation: obtaining newly reorganized literal: 
∃R.(C∩D) or ∃R.(C∩D∩∀R.C) according to the 
transitivity of R. 

(6) Relocating P: If there is no restricting concept 
unprocessed, then trace backward along father clauses 
one after another and check the clash � meanwhile when 
coming to a new clause, until encountering a clause with 
restricting concepts unprocessed or the top clause. Set the 
relocated clause processing node P. If the newly located 
P has still no unprocessed restricting concept, move P to 
next distinguished point which is not in form of FTC and 
repeat steps (2), (3), (4), (5), and (6). Make clear that 
some distinguished points may destroy their FTC forms 
due to the o-Merge operation, thus need to be processed 
further.  

If all the concept descriptions in the group are in form 
of FTC and none of them is ⊥ or there is no possibly 
available FTC group any more, the algorithm ends. The 
former case means the input concept C0 is satisfiable, 
while the later unsatisfiable. 

Now, let’s take a look at an example. Suppose that 
there is an online system whose user management module 
requires: (1) User categories (in ascending order of 
privilege): User, Manager, and Administrator; (2) User 
cannot grant rights to the ones with higher privilege, but 
user can grant rights to the ones in the same category and 
Administrator can grant rights to itself; (3) Grant is a 
management action, any doer of management actions 
should be granted by Administrators. Now, concept C1 
represents the users who have business relations with user 
“LiuGang” and with exactly two users who have business 
relations with Managers. Concept C0 represents the users 
with salary higher than 10,000 dollars who are not 
Manager and have business relations with users of C1 and 
users being granted by Manager. Upon that, C0 can be 
expressed formally as C0 = 
¬A∩∃S.(∃S.{o}∩≤2S.(∃S.A)∩≥2S.(∃S.A))∩∃S.(∃R.A∩∀
P.(∃R.B)) ∩∃F.d; (where A: Manager; B: Administrator; 
R: Granted-from; P: Managed-by; S: Have-business-
relations-with; F: Salary; d:≥10000; o: ”LiuGang”). And 
now let’s work out the FTC group of C0 and gain the 
judgement of its satisfiability (strikethrough stands for 
clause which is not needed any more thanks to clause 
reuse). 

For the best of visual effect for expression, we use 
some intermediate concepts (see C1~C4) and mark the 
processing node with [] and underline. Besides, some 
operating explanations are also given briefly following 
the concept description (unconcerned steps are omitted). 
Following is the whole process on C0. 

Intermediate concepts: C1=∃S.{o}∩≤2S.(∃S.A)∩ 
≥2S.(∃S.A);  C2=∃R.A∩∀P.(∃R.B); C3=∃S.A; C4=∃R.B. 
Beginning: Pretreatment stage sets Des(o)=丅, and C0 is 
set as processing node P for C0 is already in NNF. 

[¬A∩∃S.C1∩∃S.C2∩∃F.d] ;—Relocating P—> 
¬A∩∃S.[∃S.{o}∩≤2S.C3∩≥2S.C3]∩∃S.C2∩∃F.d;—
Satisfying number restriction:≤2S.C3, ≥2S.C3—> 
¬A∩∃S.[∃S.({o}∩C3)∩≤2S.C3∩≥2S.C3∩∃S.C3]∩∃S.C
2∩∃F.d; —Relocating P,o-Merge operation—> 
¬A∩∃S.(∃S.[{o}]∩≤2S.C3∩≥2S.C3∩∃S.C3)∩∃S.C2∩ 
∃F.d; Des(o)= C3; —Relocating P—> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.[∃R.A∩∀P.C4]∩∃F.d; —
Dealing with∀:∀P.C4—> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.[∃R.( 
A∩C4∩∀R.C4)∩∀P.C4]∩∃F.d; —Relocating P—> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.[A∩∃R.B∩∀R.C4]∩ 
∀P.C4)∩∃F.d; —Dealing with∀: ∀R.C4—> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.[A∩∃R.(B∩C4∩∀R.C4)∩
∀R.C4]∩∀P.C4)∩∃F.d; —Relocating P—> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.[B∩∃R.B∩∀R.C4]
∩∀R.C4)∩∀P.C4)∩∃F.d; —Dealing with∀: ∀R.C4—> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.[B∩∃R.(B∩C4∩ 
∀R.C4)∩∀R.C4]∩∀R.C4)∩∀P.C4)∩∃F.d; —
Relocating P—> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.(B∩∃R.[B∩C4∩ 
∀R.C4]∩∀R.C4)∩∀R.C4)∩∀P.C4)∩∃F.d; —Locating 
reusable clause —> 
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.(B∩∃R.[B∩C4∩∀
R.C4]∩∀R.C4)∩∀R.C4)∩∀P.C4)∩∃F.d;  
At last, we gain a FTC group:  
C0'=¬A∩∃S.(∃S.{o}∩≤2S.(∃S.A)∩≥2S.(∃S.A)∩∃S.(∃S.
A))∩∃S.(∃R.(A∩∃R.(B∩∃R.∩∀R.(∃R.B))∩∀R.(∃R.B))
∩ ∀P.(∃R.B))∩∃F.d; Des(o)=∃S.A. According to this 
FTC group, C0 is satisfiable. 

C.  The Semantics of FTC Group 
If a concept description can gain a satisfiable FTC 

group after applying FTC algorithm, then we can 
construct a model of the input concept easily.  

We firstly introduce a new mode to represent ∃ role 
literal. Literal ∃R.C can be reshaped into a form of 
∃R.→C where → represents a directed edge connecting 
two parts of a ∃ role literal. We call such form separated 
form of ∃ role literal. With a satisfiable FTC group, we 
apply the separated form to all the ∃ role literals in the 
clauses at every level. Then the FTC group becomes a 
multi-tier forest naturally (Of course, when we say it a 
forest, we neglect the reuse directed lines. Otherwise, it is 
not a forest). We call such FTC group forested FTC 
group upon which clauses in different levels form 
instance nodes. Of course, the ∃ role literal in the clause 
encased in an instance node contains only the first part, as 
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its restricting concept is scattered in other instance nodes. 
Note that we just take this form in the descriptions which 
are not embedded in any ∀ role literals. For example, for 
a description: ∀R.(A∪∃S.C), the ∃S.C needn’t to take the 
separated form. Based on the forested FTC group, do the 
following work: 

If the father role of the clause in an instance node is a 
concrete role, then mark this node with a value that 
satisfies all the datatypes in the clause. Otherwise, 
christen the node a distinct name. For a named individual 
o, o is just the name of the node who encases top clause 
of Des(o). 

Now we employ L(a, b)=R to denote relations between 
nodes a and b: (1) a and b (b may be a name or a value 
here) are connected with ∃R.→; (2) a and b are linked 
with a reuse directed line starting from a ∃R role literal in 
a. We also employ L(e, o)=S to denote the relation 
between node e and named individual o, if e contains 
literal like ∃S.{o}. 

Suppose that R and F are the abstract and concrete role 
in FTC group respectively, A is the primitive concept, C ' 
is the principal FTC. Then the model of C ', I =( △I,·I ) 
can be built as follows:   

△I={ x | x is the name for a node in forested FTC 
group}; 

Φ(S) ={<x,y>| There is L(x,y)=R (with R ⊆ S) in 
forested FTC group};    

If Trans(S), then S I=Φ(S)+; otherwise, S I=Φ(S); 
Φ(F)={<x,d>| There is L(x,d)=F in forested FTC 

group};    
A I={ x | node containing literal A is named x};  
C' I={x0 | x0 is the name of the node containing top 

clause of the principal FTC.}. 

Fig. 3 shows the forested FTC group of C0 in 
subsection B. 

 
Figure 3. the forested FTC group of C0 and names for its nodes. 

According to Fig. 3, we can easily find a model of C0' 
(the principal FTC). Of course, it is also a model of C0: 

△I={ a, b, c, e, f, g, h, k, o} 
R I={ <g, h>, <h, k>, <g, k>, <k, k>};  
S I={ <a, b>,<a, g>,<b, c>,<c, e>,<b, o>,<o, f>}; 
F I={ <a, 10001>} 
A I={ f, e, h } ; B I={ k } 
C0

 I= C0' I={ a } 
Now let’s see why I is a model of C '. Actually, we will 

prove later that I is also a model of the input concept. 
Lemma 1: If literal X ∈ cla(x), then x∈X I (cla(x) 

denoting the clause designated by x here). 

(1) If X is primitive concept A, then clearly it holds 
x∈X I according to the building of I. And then by 
induction, we have:  

(2) If X is the negation of primitive concept, ﹁A, then 
because there is no clash � in cla(x), so A ∉ cla(x). 
Therefore, x∈△I \ AI =X I . 

(3) If X is 丅, and cla(x) contains only X, then it holds 
x∈△I =X I according to the semantics of 丅. 

(4) If X is ≤nS.C or ≥nS.C, then there should be 
#{<x,y>|<x,y>∈S I∧ y∈CI}≤n or ≥n according to the 
building processes of FTC group. Therefore, x∈X I. 

(5) If X is ∀S.C, meanwhile cla(x) contains ∃R role 
literals with R ⊆ S, then because the C has been merged to 
each ∃R literal, the individuals corresponding to 
restricting concepts of these ∃R literals are necessarily the 
instances of C. Hence x∈X I. However, if cla(x) contains 
no ∃R role literal with R ⊆ S, then there is no individual 
having S relations with x. therefore, it is obvious that 
x∈(∀S.C) I =X I. This is also quite similar with (∀F.d).  

(6) If X is ∃R.C, there is undoubtedly one individual y 
∈(C) I having <x, y>∈( R)I. Hence, it holds x∈X I. Similar 
inference also applies to (∃F.d). 

Proposition 1: I is a model of C '. 
Proof: Actually, The description of concept C ' is just 

the top clause which corresponds to an individual, say, x0. 
Then x0 is the instance of all the literals in the top clause 
according to lemma 1. Clearly, x0 is an instance of this 
clause, namely, C '. Therefore, I is a model of C '. 

D.  Soundness, Completeness, and termination of FTC 
algorithm 

In this subsection, we firstly present four lemmas to 
demonstrate the semantic features of merging operations 
(∀-Merge,∃-Merge, and o-Merge) and number restriction 
satisfying, and then prove the soundness, completeness, 
and termination of FTC algorithm based on them.   

Lemma 2: Providing a concept C turns into a new 
concept C' after being applied ∀-Merge once, then C and 
C ' share same models, namely, if I is a model of C ', then 
I is also a model of C and vice versa. 

Proof: Because each ∀-Merge operation only 
inferences two role literals, Let C=∃S.d1∩∀S.d2∩C3 (S 
being concrete role, d1 and d2 being datatypes). Then, 
C'=∃S.(d1∩d2)∩∀S.d2∩C3 after being applied with ∀-
Merge. 

Supposing that I is a model of C, there is certainly an 
individual a∈ΔI with a∈CI. Because of the existence of 
∃S.d1, there is surely a value t∈△D with <a,t>∈SI and 
t∈d1

D. And because of the existence of ∀S.d2, t should be 
also a value within datatype d2, namely, t∈d2

D. Therefore, 
we have a∈(∃S. (d1∩d2)∩∀S.d2∩C3)I= (C ') I, In other 
words, I is also a model of C '. 

Conversely, let I be a model of C'. Due to (d1∩d2) ⊆ 
d1, It holds ∃S.(d1∩d2)⊆∃S.(d1) according to their 
semantics. Further, we have: ∃S.(d1∩d2)∩∀S.d2∩C3 ⊆ 
∃S.d1∩ ∀S.d2∩C3, namely, C'⊆C. Hence, I is also a 
model of C. 
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The way of proving also applies to ∀-Merge on 
abstract role. 

Now, we know that a concept description won’t 
change its models (if it has) after receiving a ∀-Merge 
operation. We call such operation model-keeping 
operation. 

Lemma 3: Providing a concept G turns into a new 
concept G' after being applied ≥ satisfying operation, 
then G is satisfiable if and only if G' is satisfiable. 

Proof: (1)“if”direction: If G' is satisfiable, then G is 
satisfiable. 

Supposing that the current clause x contains literal 
≥nS.C, G turns into G' after undergoing ≥ satisfying 
operation, with x turning into clause x' accordingly. It 
holds x'⊆x because x' contains all literals of x. Let I be a 
model of G'. Then there is surely an individual a∈ΔI with 
a∈( x')I and a∈( x)I as a result. Furthermore, except x, the 
rests of G and G' are completely the same. Therefore, I is 
also a model of G.  

(2)“only if”direction: If G is satisfiable, then G' is 
satisfiable. 

Supposing that the current processing clause x contains 
literal ≥nS.C, x turns into x'= 
x∩∃S.C1∩∃S.C2∩…∩∃S.Cn(Ci =C,1 ≤ i ≤ n) after 
undergoing ≥ satisfying operation, with G turning into G' 
accordingly. I=(ΔI, .I) is a model of G. Therefore, there 
should be an individual a∈ΔI with a∈(x)I and at least 
c1,c2,…cn∈ΔI with (a,ci)∈SI and ci∈CI. Prorate these n 
individuals (namely, ci for 1 ≤ i ≤ n) to the restricting 
concepts of newly created n role literals (∃S.Ci, 1≤ i ≤n), 
namely, ci∈(Ci)I. This shows a∈(x')I. therefore, ≥ 
satisfying is also model-keeping operation. 

Lemma 4: o-Merge is semantically equivalent 
operation. 

Proof: The o-Merge is just to move a description from 
its original place to extinguished point. Supposing the 
current clause x={o}∩C1, while extinguished point 
Des(o)=C2 currently. Because o is named individual, it 
holds o∈(x)I, thus holds o∈(C1)I in semantics. 
Furthermore, it holds o∈(C2)I due to Des(o)=C2. 
Therefore, individual o is actually an instance of 
(C1∩C2), namely, o∈(C1∩C2)I. And this is right the result 
of o-Merge operation: x'={o} and Des(o)=C1∩C2. This 
process is totally reversible, in other words, a concept 
won’t change anything in semantics after receiving o-
Merge operation. This is called semantics equivalent 
operation. 

Lemma 5: Providing a concept G can be possibly 
turned into new concepts G'1, G'2,…, or G'n after being 
applied ≤ satisfying operation, then G is satisfiable if and 
only if at least one G'i (1 ≤ i ≤ n) is satisfiable. 

Proof: (1)“if”direction: If one certain G'i (1 ≤ i ≤ n) is 
satisfiable, then G is satisfiable.  

Note that formula ∃R.(Ci∩Cj) ⊆ ∃S.Ci∩∃R.Cj holds for 
any simple roles S, R with R ⊆ S and any concepts Ci, Cj. 
And it follows that ∃-Merge is in deed an extension 
shrinking operation. Therefore, according to the 
transitivity of ⊆ and axiom: if Ci ⊆ Cj then ∃S.Ci ⊆ ∃S.Cj, 
it holds G'i ⊆ G for 1 ≤ i ≤ n. Now, we conclude that if 

one certain G'i (1 ≤ i ≤ n) is satisfiable, then G is 
satisfiable. 

(2)“only if”direction: If G is satisfiable, then at least 
one certain G'i (1 ≤ i ≤ n) is satisfiable. 

Let current clause in G be x=C0∩∃S.C1∩∃S.C2 

∩…∩∃S.Cm∩≤nS.C with n<m and Ci ⊆  C, I=(ΔI, .I) be a 
model of G. Then there are at least one individual a∈ΔI 
with a∈xI and individuals c1,c2,…cm∈ΔI with (a,ci) ∈SI 
and ci∈Ci

I. To satisfy atmost number restriction, there 
should be some ci(1 ≤ i ≤ m) identical. Based on this fact, 
we conduct ≤ satisfying operation on G as follows: 

If cj and ci are identical, then apply ∃-Merge to ∃S.Cj 
and ∃S.Ci. Repeat this until atmost number restriction 
holds. 

After taking above process, we can develop a new 
clause x'. At the same time, G turns into G'. I is obviously 
also a model of G'. To such operation which is guided by 
certain relevant information, we called it guided 
operation. 

Proposition 2 (Soundness and Completeness): A 
concept G is satisfiable if and only if at least one of 
principal FTCs generated from it is satisfiable. And the 
models of these satisfiable principal FTCs are also 
models of G. 

Proof: Suppose that G can be possibly turned into 
principal FTCs G'1, G'2,…, G'n after undergoing FTC 
algorithm. 

(1) “if”direction, namely, soundness: From lemma 2, 3, 
and 5, we know ∀-Merge and ≥ satisfying are model-
keeping operations, while ∃-Merge is an extension 
shrinking operation. The o-Merge and the building of 
DNF are both semantically equivalent transformations 
according to lemma 4 and the semantics features of ∩ and 
∪. Clearly, the choosing clause from a formed DNF is an 
extension shrinking operation. Therefore, it holds G'i ⊆ G 
for 1 ≤ i ≤ n. If a principal FTC is satisfiable, say, G'i (1 ≤ 
i ≤ n). Let I=(ΔI, .I) be a model of G'i. Then I is surely a 
model of G. Of course, there may be some primitive 
concepts or/and roles in G while not in G'i. We just need 
to map them to ∅, which doesn’t intervene the fact that I 
is a model of G. 

(2) “only if”direction, namely, completeness: Let 
I=(ΔI, .I) be a model of G. Starting from G, we can 
generate a principal FTC, say, G', such that I is a model 
of G'. To ensure I is a model of G', we need to do slight 
modification on FTC algorithm: 

(1) For each processing node C, according to 
semantics, there should be an individual a∈ΔI with a∈CI. 
If the DNF of C has several clauses, say, C'1, C'2,…,C'm, 
then there should be an i (1 ≤ i ≤ m) such that a∈Ci

I. 
Choose Ci and delete the rest clauses. 

(2) When doing ≤ satisfying operations, take the 
guided mode provided in lemma 5. 

This way, we can guarantee for any new descriptions 
generated by each step of operations, I is a model of 
them. Therefore, for the final G', I is obviously a model 
of it. 

Lemma 6: Let m be number of subconcepts of concept 
G, n be integer with n> m*2m, R be role in G with 
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Trans(R). And let clause sequence x1, x2,… ,xn be a path 
in one FTC of FTC group of G. Then there is a clause xi 
reusable by xj for j>i.  

Proof: The subconcepts of G have at most m 
possibilities, such that, 

|{ xi.Letter| 2≤i≤n}| < m,  and 
|{ Upper(xi)/R | 2≤i≤n }| < 2m. 

Therefore, in this path, there should be two clauses xi, 
xj (j>i) satisfying:  

Rol(xi.Letter)=Rol(xj.Letter)=R, 
Trans(R),E(xi.Letter)=E(xj.Letter), and 
Upper(xj)/R ⊆ Upper(xi)/R. 

This implies that xi is the clause reusable by xj. 
Proposition 3(Termination): FTC algorithm will 

terminate after having processed a certain amount of 
processing nodes.  

Proof: Let m be number of subconcepts of concept G. 
Distinctly, m is linear in length of G. The termination of 
FTC algorithm is decided by the following properties. 

(1) The process of FTC doesn’t remove processing 
nodes, and doesn’t remove literals from clause except o-
Merge operation. It seems that ∃-Merge deletes 
restricting node or ∃ role literal. However, to be more 
exact, such operations move descriptions from one node 
to another. 

(2) New processing nodes can only be created by 
literals like ∃R.C and ≥nS.C. And ∃R.C can create at most 
one processing node, while ≥nS.C may produce n or no 
processing nodes. Moreover, such literals like ∃R.C or 
≥nS.C can only be at most m. Hence, the outbound degree 
of a clause can be nm at most. 

(3) According to lemma 6, the length of a path in FTCs 
of G will be m*2m maximum. 

 E.  Complexity issues 
The FTC-based satisfiability algorithm for SHOQ(D) 

presented above may need exponential time and space. 
Undoubtedly, the length of clauses in the instance nodes 
of forested FTC group is linear in the length of input 
concept description. Then, the temporal and spatial costs 
of FTC algorithm both focus on the number of instance 
nodes of forested FTC group, which is just the number of 
∃ role literals at all levels in the final description (namely, 
the FTC group). This number is linear in the length of 
input concept description in many cases. However, it can 
reach exponential level due to the interaction between ∀ 
role literals and ∃ role literals. Take the following classic 
example [14] for instance: 

C1=∃R.A∩∃R.B; 
… 

Cn=∃R.A∩∃R.B∩∀R.Cn-1; 

Obviously, the size of Cn grows linearly in n. 
However, the number of the instance nodes of forested 
FTC of Cn can be exponential in n.  

Moreover, from lemma 6, we know that the length of 
the path of FTC may reach m*2m (m is the number of 
subconcepts of input concept) due to the non-shrinking 
passing down of transitive ∀ role literals. Because 

different paths can be processed independently, we can 
keep only one path in the memory when processing. And 
the processing time and space on one instance node are 
all linear in the size of input concept. Therefore, both the 
temporal and spatial complexities are O(m2·2m). 

IV.  THE COMPARISON BETWEEN FTC AND TABLEAUX 

In description logics, most (even slightly) complex 
languages (say, with negation) take Tableaux algorithms 
to decide the concept satisfiability. Therefore, we make a 
comparison between these two algorithms in temporal 
and spatial performances from which we can conclude 
that FTC algorithm is much better than Tableau spatially.  

The instance nodes of the forested FTC group actually 
correspond to the nodes in Tableau completion forest 
because there are all linked by roles and interpreted as 
individuals later. And the processing in one node in 
Tableau and FTC needs only linear time. Therefore, both 
have the same temporal complexity.  

For each node, Tableau algorithm unfolds the 
descriptions gradually with ∪∩/ -rules until no 
descriptions can be applied to. At this moment, the group 
of descriptions which cannot be broken down further 
forms the right literals of the clause that can be obtained 
in FTC algorithm. The difference lies in the fact that 
Tableau reserves all the initial and intermediate 
descriptions in the decomposition, while the FTC just 
keeps the final undecomposable descriptions which really 
avail later. For example, for a concept 
x0={A∩B∩(C∪B)}, Tableau will turns it into 
x0={A∩B∩(C∪D), A, B∩(C∪D), B, (C∪D), C/D }, while 
FTC generates x0={A∩B∩C/D}. Actually, the initial and 
intermediate descriptions are just used to generate the 
final undecomposable descriptions (we call them literals 
in FTC) and become unnecessary once done with their 
duties. The problem is that Tableau still keeps all these 
discardable descriptions due to its inner mechanism thus 
causing great spatial losses. This is the first advantage of 
FTC algorithm.  

Besides, on the process of ∃ operator in Tableaux, each 
description prefixed with ∃ (namely, the ∃ role literal in 
FTC) create a new node. For example, providing there is 
∃R.C in node x, then ∃-rule will be triggered to create a 
new node y labeled with C, together with a new edge 
R(x,y). In such mode, description C will appears twice 
(both in nodes x and y). FTC algorithm has no such 
expense. This is the second advantage of FTC algorithm. 
Nevertheless, to stop the unnecessary extension, FTC still 
keeps the original restricting concepts for transitive roles, 
which amounts to having the same costs as Tableaux in 
this regard. However, the fraction of transitive roles used 
in concept is usually small; therefore the cost saved here 
is still considerable in many cases in FTC algorithm. 

In general, for each node, it is labeled with a set of 
subconcepts in Tableau, and a clause (with the ∃ role 
literals’ restricting concepts scattered in other nodes) in 
FTC algorithm respectively. Furthermore, the length of 
each subconcept is certainly linear in the size and also the 
subconcept number of input concept. Therefore, 
providing m is the number of subconcepts of input 
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concept, the spatial cost of one node in Tableau is O(m2), 
while that of FTC is just O(m). Besides, the numbers of 
nodes in Tableaux and FTC algorithm are almost the 
same which could be linear (or exponential) in the length 
of input concept. As a result, FTC algorithm can save 
linear (or exponential) space compared with Tableau. It is 
the significance of FTC. 

Still taking the C0 in subsection B of section III for 
example, let’s take a look at the space cost of Tableau on 
C0 (see Fig. 4). 

 
Figure 4. The Tableau’s completion forest built according to concept C0.  

By comparing Fig. 3 with Fig. 4 and the statistics of 
length of descriptions labeled in the nodes in both figures, 
we can discover that the size of the description of C0 is 61 
characters, while that of Tableau forest is 360 characters 
and FTC 111 characters (108 for descriptions in Fig. 3, 
and 3 for labeling), being 5.9 and 1.8 times the length of 
C0 respectively. From this statistics, we clearly know that 
the overlaps caused by ∪∩, , ∃ operators in Tableaux are 
very serious. Furthermore, the fraction of ∪∩, , ∃ 
operators in most concepts is very large. Therefore, such 
huge difference in space cost shown here has 
considerable universality. Because of this, the advantage 
of FTC in space looks much obvious and the 
popularization of it seems much urgent. 

V.  CONCLUSION AND DISCUSSION 

Tableau algorithm adopts the consistence of ABox to 
decide the satisfiability of SHOQ(D)-concepts, while 
FTC algorithm reorganizes the input concept description 
and obtains the judgment of satisfibility, thus “working 
out” the concept satisfiability in a very real sense. In 
implementation, Tableau features extending around 
individuals, while FTC focuses on clauses. In this sense, 
they are interlinked, for a clause corresponds to an 
individual when forming interpretation. 

In performance, FTC is a direct decision process on 
concept satisfiability, discarding those unnecessary 
operations. Especially on the process of ∪∩, , ∃ 
operators, FTC is obviously much better than Tableau. 
Therefore, compared with Tableau, FTC can save linear 
(or exponential) space depending on the number of nodes. 
Besides, FTC algorithm has still room for improvement. 
For simple roles, the ∀ role literals can be eliminated 
after applying ∀-Merge to ∃ each role literals with the 
same roles, which can also save considerable space in 

many cases. However, Tableau algorithm is not only used 
to judge to concept satisfiability, while FTC just aims at 
this single function currently. Whether FTC can be used 
in other reasoning issues is still under research. We 
firmly believe, with the deepening of the research, FTC 
should be a new basic support for reasoning in 
description logics and semantic WEB. 
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