
Deciding the SHOQ(D)-Satisfiability with a Fully
Tiered Clause Group

Huamao Gu, Jinqin Shi and Xun Wang

Zhejiang Gongshang University/Institute of Artificial Intelligence, Hangzhou, China
Email:{ghmsjq, shijinqin, wx}@mail.zjgsu.edu.cn

Abstract—SHOQ(D) is one of the fundamental theories In
Description Logics due to its support to concrete datatypes
and named individuals. At present, deciding the
satisfiability of SHOQ(D)-concepts is mainly completed by
enhancing Tableau algorithm with blocking. However, there
is still much to be desired in performance as there are
tremendous description overlaps in completion forest, thus
causing great spatial waste as a result. To tackle this
problem, this paper presented a new approach to check the
satisfiability of acyclic SHOQ(D)-concepts——FTC(Fully
Tiered Clauses) algorithm. This calculus can make a direct
judgement on the satisfiability of acyclic SHOQ(D)-concept
by translating its description into a fully tiered clause group
whose satisfiability is directly available, and reusing clauses
to block unnecessary extensions. FTC algorithm eliminates
description overlaps to the largest extent as it works on
concept description directly. Therefore, FTC algorithm has
notably better performance than Tableau by saving a lot of
spatial costs.

Index Terms— Satisfiability, Concept Clause, SHOQ(D),
Fully Tiered Clauses

I. INTRODUCTION

Semantic WEB aims at giving WEB content clear
semantics and making computer understand and process
them automatically. Amid it, Ontology is a key
component which is mainly employed to describe
different WEB resources and their relations and
cooperation. However, no matter the early WEB
Ontology languages OIL[1] and DAML+OIL[2] or the
updated OWL[3], they are all based on description logics
(DLs). Besides, with the increasing requirements on
intelligentizing information, description logics will play
growingly important roles in other applications. And in
the researches on description logics, reasoning is
apparently a key issue. Then in reasoning, concept
satisfiability is the most fundamental one (the other basic
issue, concept subsumption, can convert into concept
satisfiability in most cases).

Comparatively speaking, although the reduction based
reasoning[4] can be used to decide the concept
satisfiability, its advantage is embodied by query
answering over large ABoxes. As far as the satisfiability
of a specific concept is concerned, its performance is far

less than Tableaux algorithm in that it hires a reduction
process additionally. As for the structural subsumption, it
has even no practicality since it just applies to much
simple DLs such as FL0. Under such circumstance, the
research on concept satisfiability mainly goes around the
classic concept satisfiability algorithm Tableaux. They
either add new operators or functions to existent
description logics systems and extend Tableaux to certain
extent to fit new systems[5,6,7,8] or integrate description
logics with other fields and still provide modified
versions of Tableaux to support reasoning[9,10,11,12,13].

Actually, though Tableau proved practical in practice,
it has some irresolvable drawbacks induced by its
mechanism. For a specific concept, Tableau algorithm
unfolds its description gradually and at last obtains all the
descriptions that should be entailed. In the process, each
unfolding will produce an overlapped description to the
concept unfolded completely or partially. For example,
let L(x) be a node labeling in a completion tree of
Tableau. If (A∩B)∈L(x), then there will be A∈L(x) and
B∈L(x) according to ∩-rule, that is to say, { A∩B, A, B}∈
L(x). This is complete overlap. Similarly, If A∪B∈ L(x),
then there will be A∈L(x) or B∈L(x) according to ∪-
rule. This is partial overlap. As operators ∩, ∪ are nearly
most frequently used in describing concepts, then such
overlap is very serious in most cases.

The FTC (Fully Tiered Clauses) algorithm presented in
this paper is a novel algorithm which intends to solve this
problem of severe description overlaps which waste
tremendous space in Tableau. Its basic idea is to translate
the acyclic concept description[14] into specially
organized clauses. It doesn’t change model features along
the reorganizations, in other words, if the latter concept
produced by reorganizing is satisfiable, then the concept
before the reorganizing is also satisfiable. Therefore, the
satisfiability of a concept can be decided by enumerating
and testing all the possible variant clauses directly. This
processing mode doesn’t cause description overlaps, thus
saves much more space compared with Tableau, which
makes FTC gain linear space costs in many cases. For
cyclically defined concepts, one may translate them into
general inclusion axioms thus no long appearing as
defined concepts, or take advantage of the connection
with propositional dynamic logic and adopt μ-calculus to
realize reasoning, both being not in the scope of this
paper. Therefore, all the concepts in the rest of this paper
are acyclic implicitly.

Manuscript received Dec. 1, 2010; revised Jan. 5, 2011; accepted
Jan. 12, 2011.

Corresponding author: wx@mail.zjgsu.edu.cn

322 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.322-331

Description logic SHOQ(D)[15] becomes a
cornerstone of WEB Ontology language for its support to
enumerating instances and allowing datatypes and values
to construct concept which are two key properties in
WEB Ontology. Not only the OIL frames could easily be
mapped to equivalent axioms in the SHOQ(D)[16], but
also the DAML＋OIL which is equivalent to SHOIQ(D)
[17], and the OWL DL which is equivalent to SHOIN(D)
[16], are all just slightly modified versions of SHOQ(D).
Besides, reasoning with inverse roles is known to be
difficult and/or highly intractable when combined with
either concrete datatypes [18] or named individuals [19],
while FTC algorithm is still on its early stage. For above
reasons, we take SHOQ(D) as the carrier for FTC
algorithm. Of course, the implementation of FTC
algorithm in SHOQ(D) has still much significance both in
theory and practice because of the important role of
SHOQ(D) for OWL researches and the much higher
utilization rate of concrete datatypes or named individuals
against that of inverse roles [15].

This paper firstly introduces the syntax and semantics
of SHOQ(D) briefly, and then discusses the process,
correctness, and performance of FTC in detail. A
performance comparison between Tableaux and FTC is
given lastly.

II. SHOQ(D) SYNTAX AND SEMANTICS

Description logic SHOQ(D) takes the need of ontology
representation into full consideration and extends the DL
SHQ with concrete datatypes and named individuals,
which makes it an ontology-oriented description logic
with strong expressiveness. Following are brief
introductions to SHOQ(D).

Definition 1. Let D be a set of concrete datatypes, NC,
NR=NR

A
∪NR

D, and NI be disjoint sets of concept names,
abstract and concrete role names, and individual names.
Then, the set of SHOQ(D)-concepts is the smallest set
such that:

1. Each concept name C∈NC is a SHOQ(D)-concept;
2. For each individual name o∈NI, {o} is a SHOQ(D)-

concept;
3. For C and D concepts, R∈NR

A an abstract role,
F∈NR

D a concrete role, S∈NR
A a simple role[15] (abstract

role that is not transitive and for each role R' ⊆ S, R' is not
transitive), d∈ D a datatype, n∈IN(natural number), then
(C∪D), (C∩D), (﹁ C), d, (﹁ d), (∀R.C), (∃R.C),
(≥nS.C), (≤nS.C), (∀F.d), (∃F.d) are all SHOQ(D)-
concepts.

Besides, 丅 is called universal concept which
subsumes any concepts in domain, while ⊥ is called
bottom concept which contains nothing and is subsumed
by any concepts. If A∈NC can only appear possibly at the
right sides of some concept definitions, namely, there is
no definition for A and thus it can not be composed of
other concepts, then A is called primitive concept[14].
And we confine number restrictions (including atmost
restriction and atleast restriction) to simple roles to
guarantee a decidable logic[20].

Definition 2. For R and S roles, the statement of form
R ⊆ S is called role inclusion axiom. For a set of role
inclusion axioms R, we call R+ =(R, ⊆) a role hierarchy
where ⊆ is the transitive reflexive closure of ⊆ . Besides,
if an abstract role R is transitive, we mark Trans(R). Note
that concrete roles have nothing to do with transitivity, in
other words, they are all not transitive.

Definition 3. SHOQ(D)-Interpretation I =(△I,·I)
consists of a non-empty set △I(interpretation domain)
and a mapping ·I. And set △D is the concrete domain for
all concrete datatypes and is disjoint from △I. Mapping ·I
maps different concept descriptions according to Fig. 1.
Besides, for R and S roles, if R ⊆ S, then <x,y>∈RI implies
<x,y>∈SI. And for Trans(R), if <x,y>∈RI, <y,z>∈RI, then
there is <x,z>∈RI.

Constructor Syntax Semantics

primitive concept A AI ⊆ △I
abstract role R R I ⊆△I×△I
concrete role F F I ⊆△I×△D

named individual {o} {o}I ⊆ △I,#{o}I=1
datatype d dD ⊆ △D

conjunction (C∩D) (C∩D) I = C I∩D I
disjunction (C∪D) (C∪D) I = C I∪D I

negation
﹁C ﹁C I =△I \ C I
﹁d ﹁d D =△D \ d D

exists restriction (∃R.C) (∃R.C) I ={x∈△I|there is one y∈△I

satisfying <x,y>∈R I and y∈CI}

value restriction (∀R.C) (∀R.C) I ={x∈△I|for each y∈△I,
<x,y>∈R I implies y∈CI }

atleast restriction (≥nS.C) (≥nS.C) I ={x∈△I|#{<x,y>|
<x,y>∈S I∧ y∈CI}≥ n}

atmost restriction (≤nS.C) (≤nS.C) I ={x∈△I|#{<x,y>|
<x,y>∈S I∧ y∈CI}≤ n}

datatype exists (∃F.d)
(∃F.d) I ={x∈△I| there is one y∈△

D, satisfying <x,y>∈F I

and y∈dD}

datatype value (∀F.d) (∀F.d) I ={x∈△I| for each y∈△D,
<x,y>∈F I implies y∈dD}

Figure 1. Syntax and semantics of SHOQ(D), # denoting set cardinality.

With negation operator ﹁ in SHOQ(D), subsumption
reasoning and concept satisfiability can be reduced to
each other. This is because C ⊆ D holds if and only if C∩
﹁D is unsatisfiable. On the other hand, C is satisfiable if
and only if C⊆⊥is untenable. Hence, we just talk about
satisfiability in the following discussion.

III. THE FTC ALGORITHM FOR SHOQ(D)

The FTC adopts idea quite different from Tableau that
it builds a group of fully tiered clauses on concept to
decide its satisfiability directly. This section firstly
provides relevant definitions and then fully describes the
FTC algorithm in terms of processing, soundness, and
completeness.

A. Relevant Definitions
Definition 4 (Literal and Restricting Concept). Let A

be primitive concept, o a named individual, C a concept,
R an abstract role, S a simple role, F a concrete role, d a

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 323

© 2012 ACADEMY PUBLISHER

datatype, n positive integer, then expressions of the forms
A, ﹁ A, {o}, ∃R.C, ∀R.C, (≥nS.C), (≤nS.C), (∀F.d),
(∃F.d), d, ﹁d, 丅 and ⊥ are Literals. Besides, ∃R.C,
∀R.C are called ∃/∀ role literals (or briefly role literals)
or more specifically, ∃/∀R role literals, with C being the
restricting concept of role literals ∃R.C and ∀R.C. In this
paper, literals are denoted with capital letters such as X,
Y. And the role of a role literal X is signified by Rol(X).

Definition 5 (Clause). Clauses are the descriptions
satisfying: A single literal is a clause; A description
composed of two or more literals put together
with∩operator is a clause. In this paper, clauses are
denoted with lowercased letters such as x, y. The
restricting concept of a ∃ role literal will also form a
clause in FTC algorithm. This clause is called restricting
concept clause. Furthermore, the restricting concept of a
role literal in a clause is also called the restricting
concept of this clause. Conversely, this clause is called
the father clause of the restricting concept (clause), while
the role is called father role of the restricting concept
(clause) correspondingly. For a father clause x and its
child clause y, x can be represented by y as Upper(y) and
the ∃ role literal whose restricting concept is clause y can
be represented as y.Letter. Undoubtedly, y.Letter is one
literal of clause x. A literal X appeared in clause x can be
represented as X∈x.

Definition 6 (Disjunctive Normal Form). the
description consisting of one clause, or two or more
clauses concatenated with ∪ is disjunctive normal form
(DNF).

Definition 7 (Fully Tiered Clause). If a concept
description is in the form of clause, and it contains no ∃
role literal or all its restricting concepts are also fully
tiered clauses, then this concept is called Fully Tiered
Clause (FTC). Note that not only the abbreviation FTC is
used as the name of algorithm but also its italic form FTC
stands for a description with the form of fully tiered
clause.

Definition 8 (∃ Labeling Set, ∃ Original Restricting
Concept). Each ∃ simple role literal X has a labeling set
B to reserve concepts incurred by processing number
restrictions, denoted as B(X). While each ∃ transitive role
literal Y has a data structure E to keep its original
restricting concept, denoted as E(Y).

Definition 9 (Path). For a clause sequence x1,x2,…,xn
in a FTC, xi is the father clause of xi+1 (for i≥1 and i≤n-1),
we say such sequence is a path.

Definition 10 (Clause reuse). for a path x1,x2,…,xn, if
there are two clauses xi,xj (j>i) satisfying:

Rol(xi.Letter)= Rol(xj.Letter)= R, and Trans(R),
E(xi.Letter)= E (xj.Letter), and
Upper(xj)/R ⊆ Upper(xi)/R.

Note that x/R is defined as: x/R={ C|∀S.C∈x, and
R ⊆ S }

Then xi is a clause reusable by xj. Draw a reuse directed
line from xj.Letter to the xi to signify that xi can be used
as the restricting concept clause of xj.Letter, while we
needn’t do anything more to xj.

Definition 11 (Concept Description Group and FTC
Group). If the description of concept C contains named
individuals and is satisfiable at the same time, then it
usually requires these named individuals to be instances
of some certain concepts. In such case, each named
individual has a corresponding concept description (for a
specific named individual o, it is denoted as Des(o)). All
these concept descriptions form a concept description
group, and the description of C is then called principal
concept description of this group. This description group
will form a group of FTCs (namely, FTC group) after
applying the FTC algorithm. The same way, the FTC
corresponding to principal concept description is
principal FTC.

Definition 12 (Processing Node). In the course of
turning a concept description into the form of FTC, we
need to transform not only this concept itself but also
other restricting concepts at all levels into clauses.
Therefore, we term the description being turned into
clause as processing node.

Definition 13 (Merging Operation). Merging
operation is to merge two role literals into one role literal.
Let B, C be two concepts, R, S roles (abstract or
concrete), then:

Merging ∃R.B∩∀S.C (with R ⊆ S) into
∃R.(B∩C∩∀R.C) or ∃R.(B∩C) depending on whether
Trans(R) or not, and substitute them for the ∃R.B, is
called ∀-Merge Operation. Such merging operation is
used to act all ∀ role literals in a clause to all
corresponding ∃ role literals with the same role in the
same clause.

Merging ∃R.B∩∃S.C (with R ⊆ S) into ∃R.(B∩C) and
substitute it for both the ∃R.B and ∃S.C, is called ∃-
Merge Operation. Such merging operation is used to
merge some chosen ∃ role literals and reduce their
number in a clause to meet the semantic requirement of
atmost restriction.

If there is description like B∩{o1} occurring in clause
x, then algorithm transfers description B to concept
description of individual o1 so as to form Des(o1)=
Des(o1)∩B, and just keeps {o1} unmoved, namely,
x={o1} after operation. If clause x is also the concept
description of another named individual, say o2, then
mark o1=o2 to stand for the identity of these two
individuals. This is o-Merge Operation.

Definition 14 (Clash). For an unsatisfiable concept, its
description should involve some special description
fragments which can never be satisfied semantically
anyway. They are called clash. For a clause, such cases
include:

① Bottom concept:⊥.
② Concept name clash: ﹁ A∩A (A is primitive

concept).
③ Datatype clash: Clause contains datatypes d1,…dn,

but D
1d ∩…∩ D

nd =∅.
④ Number clash: Clause contains literal ≤nS.C (S

simple role, n positive integer), but this clause also
contains more than n ∃R role literals (R ⊆ S) Y0,Y1,…Yn
satisfying C ∈B(Yi) for all 0≤i≤n.

324 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

⑤ Individual ≠ clash: Clause x contains two ∃ role
literals whose restricting concepts only contain same {o}
(o, a certain named individual), or {o1} and {o2} (o1 and
o2, two certain named individuals) respectively, while
these two literals are marked unable to merge with ≠.

⑥ Individual ﹁ clash: For a certain named individual
o, there is ﹁{o}∈Des(o).

If there is any clash occurring in the clause, then mark
this concept description with ⊥ and finish the
constructing of this FTC group. This is because if the
current clause is ⊥, then its father clause will be replaced
with ⊥ according to ∃R.⊥≡⊥ and C∩⊥≡⊥. Doing so
repeatedly, the whole expression will be replaced with
⊥. So does other expressions in this group. However,
this doesn’t necessarily mean the end of the algorithm;
after all, there may be other satisfiable FTC group for the
input concept.

B. FTC Algorithm Process
Starting from an input concept C0, we can decide the

satisfibility of C0 after applying the FTC process to it. If
at least one clash free FTC group can be obtained after
the application of FTC algorithm, then C0 is satisfiable,
otherwise, unsatisfiable. The following is a detailed
depiction of FTC algorithm according to the process
graph shown in Fig. 2:

(1) Pretreatment: Replace all the concept names in C0
with their corresponding descriptions until there are no
concept names except primitive concepts in C0. Then turn
C0 into negation normal form (NNF), namely, push all
negation operators as inward as possible so that negation
only occurs in front of primitive concepts. This can be
easily done by applying De Morgan's laws and other rules
such as ﹁∃R.C=∀R.(﹁C) and ﹁∀R.C=∃R.(﹁C), etc.
the negation of a number restriction can be eliminated by
changing the number and direction, for example, ﹁
(≤nR.C)=≥(n+1)R.C, and vice versa. After done these, set
C0 as processing node P, and at the same time, initialize
Des(o)=丅 for each named individual o. They are also
called distinguished points[15]. At last, initialize two
binary relations (i.e. = and ≠) for conserving equivalent
individual pairs and ∃ role literal pairs unable to merge
respectively) to be empty.

(2) Building DNF: Reorganize the literals in
processing node P into the form of DNF with relevant
laws (association, commutation, distribution, and
idempotence, etc.) and choose one clause of it (other
clauses should be removed). The chosen clause in P is
also called current clause. And the chosen clause of the
first processing node for a description is called top
clause. If there are two same literals occurring at the
chosen clause with ≠ relation, then they cannot be merged
into one with idempotence. Then, check clashes. Note
that the literals defined in definition 4 have enumerated
all possible elements to form a SHOQ(D)-concept. And
the only way to form a more complicated concept is to
concatenate these elements by operator ∪∩ and . Besides,
both ∪∩ and support association, commutation and
distribution law which are just needed to build a DNF.

Therefore, it is always available to reorganize an acyclic
concept into a disjunctive normal form.

If current clause doesn’t have any clashes (clash � and
� usually cannot appear at this step, but may appear in
the later steps), then further detect if it contains literals
like {o}. If so, conduct o-Merge operation.

(3) Locating reusable clause: If father role of the
current clause x is transitive, then starting from father
clause, search the only path to top clause for reusable
clause. If find one, then there is no need to process x any
more, set Upper(x) as P and turn to relocating P step.

Figure 2. The basic processes of FTC algorithm.
P means processing node.

 (4) Satisfying number restriction: For current clause

x, if there are literals ≥nS.C∈x or ≤nS.C∈x, then process x
as follows (R stands for any roles occurring in x and
satisfying R ⊆ S). Note that if there are other number
restriction literals on role S ' with S ' ⊆ S, make sure to
process those literals first.

1) Add one of {C,﹁C} to the labeling set B of each
∃R role literal, and integrate the added C or ﹁C into the
restricting concept of corresponding role literal by
conjoining the current restricting concept and C (or ﹁C
respectively) with operator ∩.

Locating reusable clause

No

Output FTC group of C0

P unprocessed?

End

Begin

Pretreatment, set C0 as P

Input C0

Satisfying number restriction

Building DNF, choose one clause

Relocating P

Dealing with∀ (∀-Merge operation)

No

Yes

No

Yes

Find one?

Trans(Father role)?

Yes

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 325

© 2012 ACADEMY PUBLISHER

2) If there is literal ≥nS.C∈x and the #{∃R role literal X
| X∈x and C∈B(X) }<n, append n (∃S.C)s to x and mark
these newly-added literals unable to merge into each
other with ≠. This is ≥ satisfying operation.

3) If there is literal ≤nS.C∈x and the #{∃R role literal X
| X∈x and C∈B(X) }>n, conduct ∃-Merge operation on
two randomly selected ∃R role literals without ≠
relationship. Repeat this operation until #{∃R role literal
X | X∈x and C∈B(X)}≤n. If there are no enough ∃R role
literals available for merging due to the ≠ relations among
them, then clash � (number clash) occurs and this
expression needs to be set to ⊥. This is ≤ satisfying
operation.

(5) Dealing with∀: For every ∀S.C∈ x (x, current
clause), apply ∀S.C to each ∃R.D∈x (with R ⊆ S) by ∀-
Merge operation: obtaining newly reorganized literal:
∃R.(C∩D) or ∃R.(C∩D∩∀R.C) according to the
transitivity of R.

(6) Relocating P: If there is no restricting concept
unprocessed, then trace backward along father clauses
one after another and check the clash � meanwhile when
coming to a new clause, until encountering a clause with
restricting concepts unprocessed or the top clause. Set the
relocated clause processing node P. If the newly located
P has still no unprocessed restricting concept, move P to
next distinguished point which is not in form of FTC and
repeat steps (2), (3), (4), (5), and (6). Make clear that
some distinguished points may destroy their FTC forms
due to the o-Merge operation, thus need to be processed
further.

If all the concept descriptions in the group are in form
of FTC and none of them is ⊥ or there is no possibly
available FTC group any more, the algorithm ends. The
former case means the input concept C0 is satisfiable,
while the later unsatisfiable.

Now, let’s take a look at an example. Suppose that
there is an online system whose user management module
requires: (1) User categories (in ascending order of
privilege): User, Manager, and Administrator; (2) User
cannot grant rights to the ones with higher privilege, but
user can grant rights to the ones in the same category and
Administrator can grant rights to itself; (3) Grant is a
management action, any doer of management actions
should be granted by Administrators. Now, concept C1
represents the users who have business relations with user
“LiuGang” and with exactly two users who have business
relations with Managers. Concept C0 represents the users
with salary higher than 10,000 dollars who are not
Manager and have business relations with users of C1 and
users being granted by Manager. Upon that, C0 can be
expressed formally as C0 =
¬A∩∃S.(∃S.{o}∩≤2S.(∃S.A)∩≥2S.(∃S.A))∩∃S.(∃R.A∩∀
P.(∃R.B)) ∩∃F.d; (where A: Manager; B: Administrator;
R: Granted-from; P: Managed-by; S: Have-business-
relations-with; F: Salary; d:≥10000; o: ”LiuGang”). And
now let’s work out the FTC group of C0 and gain the
judgement of its satisfiability (strikethrough stands for
clause which is not needed any more thanks to clause
reuse).

For the best of visual effect for expression, we use
some intermediate concepts (see C1~C4) and mark the
processing node with [] and underline. Besides, some
operating explanations are also given briefly following
the concept description (unconcerned steps are omitted).
Following is the whole process on C0.

Intermediate concepts: C1=∃S.{o}∩≤2S.(∃S.A)∩
≥2S.(∃S.A); C2=∃R.A∩∀P.(∃R.B); C3=∃S.A; C4=∃R.B.
Beginning: Pretreatment stage sets Des(o)=丅, and C0 is
set as processing node P for C0 is already in NNF.

[¬A∩∃S.C1∩∃S.C2∩∃F.d] ;—Relocating P—>
¬A∩∃S.[∃S.{o}∩≤2S.C3∩≥2S.C3]∩∃S.C2∩∃F.d;—
Satisfying number restriction:≤2S.C3, ≥2S.C3—>
¬A∩∃S.[∃S.({o}∩C3)∩≤2S.C3∩≥2S.C3∩∃S.C3]∩∃S.C
2∩∃F.d; —Relocating P,o-Merge operation—>
¬A∩∃S.(∃S.[{o}]∩≤2S.C3∩≥2S.C3∩∃S.C3)∩∃S.C2∩
∃F.d; Des(o)= C3; —Relocating P—>
¬A∩∃S.(C1∩∃S.C3)∩∃S.[∃R.A∩∀P.C4]∩∃F.d; —
Dealing with∀:∀P.C4—>
¬A∩∃S.(C1∩∃S.C3)∩∃S.[∃R.(
A∩C4∩∀R.C4)∩∀P.C4]∩∃F.d; —Relocating P—>
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.[A∩∃R.B∩∀R.C4]∩
∀P.C4)∩∃F.d; —Dealing with∀: ∀R.C4—>
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.[A∩∃R.(B∩C4∩∀R.C4)∩
∀R.C4]∩∀P.C4)∩∃F.d; —Relocating P—>
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.[B∩∃R.B∩∀R.C4]
∩∀R.C4)∩∀P.C4)∩∃F.d; —Dealing with∀: ∀R.C4—>
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.[B∩∃R.(B∩C4∩
∀R.C4)∩∀R.C4]∩∀R.C4)∩∀P.C4)∩∃F.d; —
Relocating P—>
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.(B∩∃R.[B∩C4∩
∀R.C4]∩∀R.C4)∩∀R.C4)∩∀P.C4)∩∃F.d; —Locating
reusable clause —>
¬A∩∃S.(C1∩∃S.C3)∩∃S.(∃R.(A∩∃R.(B∩∃R.[B∩C4∩∀
R.C4]∩∀R.C4)∩∀R.C4)∩∀P.C4)∩∃F.d;
At last, we gain a FTC group:
C0'=¬A∩∃S.(∃S.{o}∩≤2S.(∃S.A)∩≥2S.(∃S.A)∩∃S.(∃S.
A))∩∃S.(∃R.(A∩∃R.(B∩∃R.∩∀R.(∃R.B))∩∀R.(∃R.B))
∩ ∀P.(∃R.B))∩∃F.d; Des(o)=∃S.A. According to this
FTC group, C0 is satisfiable.

C. The Semantics of FTC Group
If a concept description can gain a satisfiable FTC

group after applying FTC algorithm, then we can
construct a model of the input concept easily.

We firstly introduce a new mode to represent ∃ role
literal. Literal ∃R.C can be reshaped into a form of
∃R.→C where → represents a directed edge connecting
two parts of a ∃ role literal. We call such form separated
form of ∃ role literal. With a satisfiable FTC group, we
apply the separated form to all the ∃ role literals in the
clauses at every level. Then the FTC group becomes a
multi-tier forest naturally (Of course, when we say it a
forest, we neglect the reuse directed lines. Otherwise, it is
not a forest). We call such FTC group forested FTC
group upon which clauses in different levels form
instance nodes. Of course, the ∃ role literal in the clause
encased in an instance node contains only the first part, as

326 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

its restricting concept is scattered in other instance nodes.
Note that we just take this form in the descriptions which
are not embedded in any ∀ role literals. For example, for
a description: ∀R.(A∪∃S.C), the ∃S.C needn’t to take the
separated form. Based on the forested FTC group, do the
following work:

If the father role of the clause in an instance node is a
concrete role, then mark this node with a value that
satisfies all the datatypes in the clause. Otherwise,
christen the node a distinct name. For a named individual
o, o is just the name of the node who encases top clause
of Des(o).

Now we employ L(a, b)=R to denote relations between
nodes a and b: (1) a and b (b may be a name or a value
here) are connected with ∃R.→; (2) a and b are linked
with a reuse directed line starting from a ∃R role literal in
a. We also employ L(e, o)=S to denote the relation
between node e and named individual o, if e contains
literal like ∃S.{o}.

Suppose that R and F are the abstract and concrete role
in FTC group respectively, A is the primitive concept, C '
is the principal FTC. Then the model of C ', I =(△I,·I)
can be built as follows:

△I={ x | x is the name for a node in forested FTC
group};

Φ(S) ={<x,y>| There is L(x,y)=R (with R ⊆ S) in
forested FTC group};

If Trans(S), then S I=Φ(S)+; otherwise, S I=Φ(S);
Φ(F)={<x,d>| There is L(x,d)=F in forested FTC

group};
A I={ x | node containing literal A is named x};
C' I={x0 | x0 is the name of the node containing top

clause of the principal FTC.}.

Fig. 3 shows the forested FTC group of C0 in
subsection B.

Figure 3. the forested FTC group of C0 and names for its nodes.

According to Fig. 3, we can easily find a model of C0'
(the principal FTC). Of course, it is also a model of C0:

△I={ a, b, c, e, f, g, h, k, o}
R I={ <g, h>, <h, k>, <g, k>, <k, k>};
S I={ <a, b>,<a, g>,<b, c>,<c, e>,<b, o>,<o, f>};
F I={ <a, 10001>}
A I={ f, e, h } ; B I={ k }
C0

 I= C0' I={ a }
Now let’s see why I is a model of C '. Actually, we will

prove later that I is also a model of the input concept.
Lemma 1: If literal X ∈ cla(x), then x∈X I (cla(x)

denoting the clause designated by x here).

(1) If X is primitive concept A, then clearly it holds
x∈X I according to the building of I. And then by
induction, we have:

(2) If X is the negation of primitive concept, ﹁A, then
because there is no clash � in cla(x), so A ∉ cla(x).
Therefore, x∈△I \ AI =X I .

(3) If X is 丅, and cla(x) contains only X, then it holds
x∈△I =X I according to the semantics of 丅.

(4) If X is ≤nS.C or ≥nS.C, then there should be
#{<x,y>|<x,y>∈S I∧ y∈CI}≤n or ≥n according to the
building processes of FTC group. Therefore, x∈X I.

(5) If X is ∀S.C, meanwhile cla(x) contains ∃R role
literals with R ⊆ S, then because the C has been merged to
each ∃R literal, the individuals corresponding to
restricting concepts of these ∃R literals are necessarily the
instances of C. Hence x∈X I. However, if cla(x) contains
no ∃R role literal with R ⊆ S, then there is no individual
having S relations with x. therefore, it is obvious that
x∈(∀S.C) I =X I. This is also quite similar with (∀F.d).

(6) If X is ∃R.C, there is undoubtedly one individual y
∈(C) I having <x, y>∈(R)I. Hence, it holds x∈X I. Similar
inference also applies to (∃F.d).

Proposition 1: I is a model of C '.
Proof: Actually, The description of concept C ' is just

the top clause which corresponds to an individual, say, x0.
Then x0 is the instance of all the literals in the top clause
according to lemma 1. Clearly, x0 is an instance of this
clause, namely, C '. Therefore, I is a model of C '.

D. Soundness, Completeness, and termination of FTC
algorithm

In this subsection, we firstly present four lemmas to
demonstrate the semantic features of merging operations
(∀-Merge,∃-Merge, and o-Merge) and number restriction
satisfying, and then prove the soundness, completeness,
and termination of FTC algorithm based on them.

Lemma 2: Providing a concept C turns into a new
concept C' after being applied ∀-Merge once, then C and
C ' share same models, namely, if I is a model of C ', then
I is also a model of C and vice versa.

Proof: Because each ∀-Merge operation only
inferences two role literals, Let C=∃S.d1∩∀S.d2∩C3 (S
being concrete role, d1 and d2 being datatypes). Then,
C'=∃S.(d1∩d2)∩∀S.d2∩C3 after being applied with ∀-
Merge.

Supposing that I is a model of C, there is certainly an
individual a∈ΔI with a∈CI. Because of the existence of
∃S.d1, there is surely a value t∈△D with <a,t>∈SI and
t∈d1

D. And because of the existence of ∀S.d2, t should be
also a value within datatype d2, namely, t∈d2

D. Therefore,
we have a∈(∃S. (d1∩d2)∩∀S.d2∩C3)I= (C ') I, In other
words, I is also a model of C '.

Conversely, let I be a model of C'. Due to (d1∩d2) ⊆
d1, It holds ∃S.(d1∩d2)⊆∃S.(d1) according to their
semantics. Further, we have: ∃S.(d1∩d2)∩∀S.d2∩C3 ⊆
∃S.d1∩ ∀S.d2∩C3, namely, C'⊆C. Hence, I is also a
model of C.

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 327

© 2012 ACADEMY PUBLISHER

The way of proving also applies to ∀-Merge on
abstract role.

Now, we know that a concept description won’t
change its models (if it has) after receiving a ∀-Merge
operation. We call such operation model-keeping
operation.

Lemma 3: Providing a concept G turns into a new
concept G' after being applied ≥ satisfying operation,
then G is satisfiable if and only if G' is satisfiable.

Proof: (1)“if”direction: If G' is satisfiable, then G is
satisfiable.

Supposing that the current clause x contains literal
≥nS.C, G turns into G' after undergoing ≥ satisfying
operation, with x turning into clause x' accordingly. It
holds x'⊆x because x' contains all literals of x. Let I be a
model of G'. Then there is surely an individual a∈ΔI with
a∈(x')I and a∈(x)I as a result. Furthermore, except x, the
rests of G and G' are completely the same. Therefore, I is
also a model of G.

(2)“only if”direction: If G is satisfiable, then G' is
satisfiable.

Supposing that the current processing clause x contains
literal ≥nS.C, x turns into x'=
x∩∃S.C1∩∃S.C2∩…∩∃S.Cn(Ci =C,1 ≤ i ≤ n) after
undergoing ≥ satisfying operation, with G turning into G'
accordingly. I=(ΔI, .I) is a model of G. Therefore, there
should be an individual a∈ΔI with a∈(x)I and at least
c1,c2,…cn∈ΔI with (a,ci)∈SI and ci∈CI. Prorate these n
individuals (namely, ci for 1 ≤ i ≤ n) to the restricting
concepts of newly created n role literals (∃S.Ci, 1≤ i ≤n),
namely, ci∈(Ci)I. This shows a∈(x')I. therefore, ≥
satisfying is also model-keeping operation.

Lemma 4: o-Merge is semantically equivalent
operation.

Proof: The o-Merge is just to move a description from
its original place to extinguished point. Supposing the
current clause x={o}∩C1, while extinguished point
Des(o)=C2 currently. Because o is named individual, it
holds o∈(x)I, thus holds o∈(C1)I in semantics.
Furthermore, it holds o∈(C2)I due to Des(o)=C2.
Therefore, individual o is actually an instance of
(C1∩C2), namely, o∈(C1∩C2)I. And this is right the result
of o-Merge operation: x'={o} and Des(o)=C1∩C2. This
process is totally reversible, in other words, a concept
won’t change anything in semantics after receiving o-
Merge operation. This is called semantics equivalent
operation.

Lemma 5: Providing a concept G can be possibly
turned into new concepts G'1, G'2,…, or G'n after being
applied ≤ satisfying operation, then G is satisfiable if and
only if at least one G'i (1 ≤ i ≤ n) is satisfiable.

Proof: (1)“if”direction: If one certain G'i (1 ≤ i ≤ n) is
satisfiable, then G is satisfiable.

Note that formula ∃R.(Ci∩Cj) ⊆ ∃S.Ci∩∃R.Cj holds for
any simple roles S, R with R ⊆ S and any concepts Ci, Cj.
And it follows that ∃-Merge is in deed an extension
shrinking operation. Therefore, according to the
transitivity of ⊆ and axiom: if Ci ⊆ Cj then ∃S.Ci ⊆ ∃S.Cj,
it holds G'i ⊆ G for 1 ≤ i ≤ n. Now, we conclude that if

one certain G'i (1 ≤ i ≤ n) is satisfiable, then G is
satisfiable.

(2)“only if”direction: If G is satisfiable, then at least
one certain G'i (1 ≤ i ≤ n) is satisfiable.

Let current clause in G be x=C0∩∃S.C1∩∃S.C2

∩…∩∃S.Cm∩≤nS.C with n<m and Ci ⊆ C, I=(ΔI, .I) be a
model of G. Then there are at least one individual a∈ΔI
with a∈xI and individuals c1,c2,…cm∈ΔI with (a,ci) ∈SI
and ci∈Ci

I. To satisfy atmost number restriction, there
should be some ci(1 ≤ i ≤ m) identical. Based on this fact,
we conduct ≤ satisfying operation on G as follows:

If cj and ci are identical, then apply ∃-Merge to ∃S.Cj
and ∃S.Ci. Repeat this until atmost number restriction
holds.

After taking above process, we can develop a new
clause x'. At the same time, G turns into G'. I is obviously
also a model of G'. To such operation which is guided by
certain relevant information, we called it guided
operation.

Proposition 2 (Soundness and Completeness): A
concept G is satisfiable if and only if at least one of
principal FTCs generated from it is satisfiable. And the
models of these satisfiable principal FTCs are also
models of G.

Proof: Suppose that G can be possibly turned into
principal FTCs G'1, G'2,…, G'n after undergoing FTC
algorithm.

(1) “if”direction, namely, soundness: From lemma 2, 3,
and 5, we know ∀-Merge and ≥ satisfying are model-
keeping operations, while ∃-Merge is an extension
shrinking operation. The o-Merge and the building of
DNF are both semantically equivalent transformations
according to lemma 4 and the semantics features of ∩ and
∪. Clearly, the choosing clause from a formed DNF is an
extension shrinking operation. Therefore, it holds G'i ⊆ G
for 1 ≤ i ≤ n. If a principal FTC is satisfiable, say, G'i (1 ≤
i ≤ n). Let I=(ΔI, .I) be a model of G'i. Then I is surely a
model of G. Of course, there may be some primitive
concepts or/and roles in G while not in G'i. We just need
to map them to ∅, which doesn’t intervene the fact that I
is a model of G.

(2) “only if”direction, namely, completeness: Let
I=(ΔI, .I) be a model of G. Starting from G, we can
generate a principal FTC, say, G', such that I is a model
of G'. To ensure I is a model of G', we need to do slight
modification on FTC algorithm:

(1) For each processing node C, according to
semantics, there should be an individual a∈ΔI with a∈CI.
If the DNF of C has several clauses, say, C'1, C'2,…,C'm,
then there should be an i (1 ≤ i ≤ m) such that a∈Ci

I.
Choose Ci and delete the rest clauses.

(2) When doing ≤ satisfying operations, take the
guided mode provided in lemma 5.

This way, we can guarantee for any new descriptions
generated by each step of operations, I is a model of
them. Therefore, for the final G', I is obviously a model
of it.

Lemma 6: Let m be number of subconcepts of concept
G, n be integer with n> m*2m, R be role in G with

328 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

Trans(R). And let clause sequence x1, x2,… ,xn be a path
in one FTC of FTC group of G. Then there is a clause xi
reusable by xj for j>i.

Proof: The subconcepts of G have at most m
possibilities, such that,

|{ xi.Letter| 2≤i≤n}| < m, and
|{ Upper(xi)/R | 2≤i≤n }| < 2m.

Therefore, in this path, there should be two clauses xi,
xj (j>i) satisfying:

Rol(xi.Letter)=Rol(xj.Letter)=R,
Trans(R),E(xi.Letter)=E(xj.Letter), and
Upper(xj)/R ⊆ Upper(xi)/R.

This implies that xi is the clause reusable by xj.
Proposition 3(Termination): FTC algorithm will

terminate after having processed a certain amount of
processing nodes.

Proof: Let m be number of subconcepts of concept G.
Distinctly, m is linear in length of G. The termination of
FTC algorithm is decided by the following properties.

(1) The process of FTC doesn’t remove processing
nodes, and doesn’t remove literals from clause except o-
Merge operation. It seems that ∃-Merge deletes
restricting node or ∃ role literal. However, to be more
exact, such operations move descriptions from one node
to another.

(2) New processing nodes can only be created by
literals like ∃R.C and ≥nS.C. And ∃R.C can create at most
one processing node, while ≥nS.C may produce n or no
processing nodes. Moreover, such literals like ∃R.C or
≥nS.C can only be at most m. Hence, the outbound degree
of a clause can be nm at most.

(3) According to lemma 6, the length of a path in FTCs
of G will be m*2m maximum.

 E. Complexity issues
The FTC-based satisfiability algorithm for SHOQ(D)

presented above may need exponential time and space.
Undoubtedly, the length of clauses in the instance nodes
of forested FTC group is linear in the length of input
concept description. Then, the temporal and spatial costs
of FTC algorithm both focus on the number of instance
nodes of forested FTC group, which is just the number of
∃ role literals at all levels in the final description (namely,
the FTC group). This number is linear in the length of
input concept description in many cases. However, it can
reach exponential level due to the interaction between ∀
role literals and ∃ role literals. Take the following classic
example [14] for instance:

C1=∃R.A∩∃R.B;
…

Cn=∃R.A∩∃R.B∩∀R.Cn-1;

Obviously, the size of Cn grows linearly in n.
However, the number of the instance nodes of forested
FTC of Cn can be exponential in n.

Moreover, from lemma 6, we know that the length of
the path of FTC may reach m*2m (m is the number of
subconcepts of input concept) due to the non-shrinking
passing down of transitive ∀ role literals. Because

different paths can be processed independently, we can
keep only one path in the memory when processing. And
the processing time and space on one instance node are
all linear in the size of input concept. Therefore, both the
temporal and spatial complexities are O(m2·2m).

IV. THE COMPARISON BETWEEN FTC AND TABLEAUX

In description logics, most (even slightly) complex
languages (say, with negation) take Tableaux algorithms
to decide the concept satisfiability. Therefore, we make a
comparison between these two algorithms in temporal
and spatial performances from which we can conclude
that FTC algorithm is much better than Tableau spatially.

The instance nodes of the forested FTC group actually
correspond to the nodes in Tableau completion forest
because there are all linked by roles and interpreted as
individuals later. And the processing in one node in
Tableau and FTC needs only linear time. Therefore, both
have the same temporal complexity.

For each node, Tableau algorithm unfolds the
descriptions gradually with ∪∩/ -rules until no
descriptions can be applied to. At this moment, the group
of descriptions which cannot be broken down further
forms the right literals of the clause that can be obtained
in FTC algorithm. The difference lies in the fact that
Tableau reserves all the initial and intermediate
descriptions in the decomposition, while the FTC just
keeps the final undecomposable descriptions which really
avail later. For example, for a concept
x0={A∩B∩(C∪B)}, Tableau will turns it into
x0={A∩B∩(C∪D), A, B∩(C∪D), B, (C∪D), C/D }, while
FTC generates x0={A∩B∩C/D}. Actually, the initial and
intermediate descriptions are just used to generate the
final undecomposable descriptions (we call them literals
in FTC) and become unnecessary once done with their
duties. The problem is that Tableau still keeps all these
discardable descriptions due to its inner mechanism thus
causing great spatial losses. This is the first advantage of
FTC algorithm.

Besides, on the process of ∃ operator in Tableaux, each
description prefixed with ∃ (namely, the ∃ role literal in
FTC) create a new node. For example, providing there is
∃R.C in node x, then ∃-rule will be triggered to create a
new node y labeled with C, together with a new edge
R(x,y). In such mode, description C will appears twice
(both in nodes x and y). FTC algorithm has no such
expense. This is the second advantage of FTC algorithm.
Nevertheless, to stop the unnecessary extension, FTC still
keeps the original restricting concepts for transitive roles,
which amounts to having the same costs as Tableaux in
this regard. However, the fraction of transitive roles used
in concept is usually small; therefore the cost saved here
is still considerable in many cases in FTC algorithm.

In general, for each node, it is labeled with a set of
subconcepts in Tableau, and a clause (with the ∃ role
literals’ restricting concepts scattered in other nodes) in
FTC algorithm respectively. Furthermore, the length of
each subconcept is certainly linear in the size and also the
subconcept number of input concept. Therefore,
providing m is the number of subconcepts of input

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 329

© 2012 ACADEMY PUBLISHER

concept, the spatial cost of one node in Tableau is O(m2),
while that of FTC is just O(m). Besides, the numbers of
nodes in Tableaux and FTC algorithm are almost the
same which could be linear (or exponential) in the length
of input concept. As a result, FTC algorithm can save
linear (or exponential) space compared with Tableau. It is
the significance of FTC.

Still taking the C0 in subsection B of section III for
example, let’s take a look at the space cost of Tableau on
C0 (see Fig. 4).

Figure 4. The Tableau’s completion forest built according to concept C0.

By comparing Fig. 3 with Fig. 4 and the statistics of
length of descriptions labeled in the nodes in both figures,
we can discover that the size of the description of C0 is 61
characters, while that of Tableau forest is 360 characters
and FTC 111 characters (108 for descriptions in Fig. 3,
and 3 for labeling), being 5.9 and 1.8 times the length of
C0 respectively. From this statistics, we clearly know that
the overlaps caused by ∪∩, , ∃ operators in Tableaux are
very serious. Furthermore, the fraction of ∪∩, , ∃
operators in most concepts is very large. Therefore, such
huge difference in space cost shown here has
considerable universality. Because of this, the advantage
of FTC in space looks much obvious and the
popularization of it seems much urgent.

V. CONCLUSION AND DISCUSSION

Tableau algorithm adopts the consistence of ABox to
decide the satisfiability of SHOQ(D)-concepts, while
FTC algorithm reorganizes the input concept description
and obtains the judgment of satisfibility, thus “working
out” the concept satisfiability in a very real sense. In
implementation, Tableau features extending around
individuals, while FTC focuses on clauses. In this sense,
they are interlinked, for a clause corresponds to an
individual when forming interpretation.

In performance, FTC is a direct decision process on
concept satisfiability, discarding those unnecessary
operations. Especially on the process of ∪∩, , ∃
operators, FTC is obviously much better than Tableau.
Therefore, compared with Tableau, FTC can save linear
(or exponential) space depending on the number of nodes.
Besides, FTC algorithm has still room for improvement.
For simple roles, the ∀ role literals can be eliminated
after applying ∀-Merge to ∃ each role literals with the
same roles, which can also save considerable space in

many cases. However, Tableau algorithm is not only used
to judge to concept satisfiability, while FTC just aims at
this single function currently. Whether FTC can be used
in other reasoning issues is still under research. We
firmly believe, with the deepening of the research, FTC
should be a new basic support for reasoning in
description logics and semantic WEB.

ACKNOWLEDGMENT

This work is supported in part by the Natural Science
Foundation of ZheJiang Province of China under Grant
No. Y1090734.

REFERENCES

[1] D. Fensel, F. van Harmelen, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, “OIL: An ontology
infrastructure for the semantic web,” IEEE Intelligent
Systems, vol. 16, no. 2, pp. 38-45, 2001.

[2] D. Connolly, F. van Harmelen, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, L. A. Stein,
“DAML+OIL (March 2001) reference description,” W3C
Note, December 2001, Available at
http://www.w3.org/TR/2001/NOTE-daml+oil-reference-
20011218.

[3] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I.
Horrocks, D. L. McGuinness, P.F. Patel-Schneider, L. A.
Stein, “OWL web ontology language reference. W3C
Working Draft,” March 2003, Available at
http://www.w3.org/TR/2003/WD-owl-ref-20030331.

[4] U. Hustadt, B. Motik, U. Sattler, “Reasoning in
Description Logics by a Reduction to Disjunctive
Datalog,” Journal of Automated Reasoning, vol. 39, pp.
351-384, 2007.

[5] H.W. Christian, P. Bijan and S. Evren, “Description logic
reasoning with syntactic updates,” In: The 5th
international conference on ontologies, databases, and
applications of semantics, Springer Berlin/Heidelberg, Vol.
4275, pp. 722-737, 2006.

[6] I. Horrocks, U. Sattler, “A Tableau Decision Procedure for
SHOIQ,” Journal of Automated Reasoning, vol. 39, no. 3,
pp. 249-276, 2007.

[7] T. Liebig, F. Müller, “Parallelizing Tableaux-Based
Description Logic Reasoning,” In On the Move to
Meaningful Internet Systems 2007: OTM 2007
Workshops, Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, Vol. 4806, pp. 1135-1144. 2007.

[8] C. Lutz and M. Miličić, “A Tableau Algorithm for
Description Logics with Concrete Domains and General
Tboxes,” Journal of Automated Reasoning, Springer
Netherlands, vol. 38, no. 1-3, pp. 227-259, 2007.

[9] J. Bao, D. Caragea, and V. Honavar, “A Distributed
Tableau Algorithm for Package-based Description
Logics,” In Proceedings of the Second International
Workshop on Context Representation and Reasoning
(CRR 2006), Riva del Garda, Italy, CEUR, 2006.

[10] L. Chang, F. Lin, and Z.Z. Shi, “A Dynamic Description
Logic for Representation and Reasoning About Actions, ”
In: Zhang Z. and Siekmann J. (Eds.), KSEM 2007. LNAI
4798, pp. 115-127, 2007.

[11] L. Chang, Z.Z. Shi, L.R. Qiu, F. Lin, “A Tableau Decision
Algorithm for Dynamic Description Logic,” Chinese

330 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

Journal of Computers, vol.31, no.6, pp. 896-909, 2008. (In
Chinese)

[12] Y.C. Jiang, Z.Z. Shi, Y. Tang, J. Wang, “Fuzzy
Description Logic for Semantics Representation of the
Semantic Web,” Journal of Software, vol. 18, no. 6, pp.
1257−1269, 2007. (In Chinese)

[13] G. Stoilos, G. Stamou, J. Z. Pan, V. Tzouvaras, I.
Horrocks, “Reasoning with Very Expressive Fuzzy
Description Logics,” Journal of Artificial Intelligence
Research, vo. 30, pp. 273-320, 2007.

[14] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P.
F. Patel-Schneider, “The Description Logic Handbook:
Theory, Implementation, and Applications,” Cambridge:
Cambridge University, 2003.

[15] I. Horrocks, and U. Sattler, “Ontology reasoning in the
SHOQ(D) description logic,” In Proc. of IJCAI 2001,
pp.199-204, 2001.

[16] I. Horrocks, P. F. Pate1-Schneider, F. van Harmelen,
“From SHIQ and RDF to OWL: The Making of a Web

Ontology Language,” Journa1 of Web Semantics, vol. 1,
no.1, pp.7-26, 2003.

[17] I. Horrocks, “DAML+OIL: A description logic for the
semantic Web,” Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, vol.25, no.1,
pp. 4-9, 2002.

[18] F. Baader and P. Hanschke, “A scheme for integrating
concrete domains into concept languages,” In: Proc. of
IJCAI-91, pp. 452-457, 1991.

[19] A. Schaerf, “Reasoning with individuals in concept
languages,” Data and Knowledge Engineering, vol. 13, no.
2, pp. 141-176, 1994.

[20] I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning
for expressive description logics,” In: Ganzinger H.,
McAllester D., and Voronkov A.(eds.), Proceedings of the
6th International Conference on Logic for Programming
and Automated Reasoning (LPAR'99), number 1705 in
Lecture Notes in Artificial Intelligence, Springer-Verlag,
pp.161-180, 1999.

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 331

© 2012 ACADEMY PUBLISHER

