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Abstract—Flight delay prediction remains an important 
research topic due to the dynamics of the flight operating 
process. To solve this problem, a dynamic data-driven 
approach from the control area has been introduced, in 
which real-time data was collected and injected into the 
prediction process to get more accurate and reliable results. 
In the case of predicting the landing delays of consecutive 
arrival flights, delay propagation was analyzed to establish 
the corresponding state space model. Then, dynamic data-
driven prediction architecture for flight delay and the 
prediction steps of on this architecture were presented. 
Several experiments were carried out on historic flight data 
to validate the performance of this solution. Results show 
that the accuracy is high, and not sensitive to the number of 
the predicted flights. Therefore, the solution has good 
predictive stability and reliability. 
 
Index Terms—dynamic data-driven application system, 
flight delays prediction, parameter estimation, data 
assimilation, Kalman filters 
 

I.  INTRODUCTION 

As a result of excessive demand for air transportation, 
flight delay becomes an urgent problem that exacerbates 
national transportation capacity limitations. When a flight 
is delayed, it will probably affect the successive flight’s 
on-schedule arrival or departure, and indirectly affect 
more downstream flights and airports. This is called delay 
propagation. However, if we can predict the state of flight 
in real-time, appropriate measures could be taken to 
reduce propagation effects, and also economic losses. 

Therefore, the real-time predictions of flight delay and 
propagation have great practical significance. 

Over the past decade, studies have been focused on 
analyzing flight delay factors [1], delay propagation 
models [2], delay patterns [3-4], mitigating delays [5] and 
other issues. Deterministic models are commonly used in 
delay prediction. For example, one of the models is to 
estimate delays according to flight schedule. Models like 
this usually ignore random factors such as unexpected 
events and queuing. Prediction models based on random 
density functions of seasonal trends, daily propagation 
and daily delay [3-4] (that to a certain extent reflect the 
overall patterns of flight delays) are insufficient in 
capturing variations in individual flight delay, and can’t 
be applied to predict the real-time state of each flight. 
Real-time prediction of flight delay is the state estimation 
process for a dynamic system in essential. The flight 
operation process is monitored in order to collect data in 
real time, which provides an opportunity to apply a 
dynamic data-driven application system (DDDAS) 
paradigm [6], which is the latest research area in system 
control, to real-time flight delay prediction.  

In section II of this paper, the DDDAS paradigm and 
its application in transportation simulation were 
reviewed. Challenges of applying DDDAS were also 
discussed. Delay propagation among consecutive arrival 
flights was analyzed and a flight delay state space model 
was established in section III. In section IV, architecture 
of the dynamic data-driven system for flight delay 
prediction and the prediction process based on the 
Kalman filter were presented. Experiments were carried 
to validate the proposed architecture in section V. 

II.  DDDAS 

 

Manuscript received January 1, 2011; revised June 1, 2011; accepted
July 1, 2011. 

*corresponding author 

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 263

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.263-268



A. Introduction to DDDAS 
In traditional system simulation, static data collected 

beforehand is input into a well-designed mathematical 
model to predict system states in the present or the future. 
In non-dynamic systems, it’s feasible to use the 
traditional method of simulation. For dynamic systems, as 
the static input data can not capture the real-time changes 
in dynamic processes in a timely manner, the simulation 
results are often very different from the measured data, 
what leads to prediction failures. To compensate for the 
incompleteness of the system models, real-time 
information that can represent the actual state of the 
system can dynamically be added to the running 
simulations to provide more accurate and effective real-
time predictions. For this purpose, DDDAS was proposed 
by the US’s National Science Foundation (NSF) around 
2000 [7] as a new paradigm for simulation and prediction 
applications.  

DDDAS is a symbiotic feedback control system, which 
can dynamically steer the simulations based on the real-
time measurement data, and in reverse, can dynamically 
employ simulations to control and guide the 
measurements, to determine when, where, and how it is 
best to gather additional data. This system promises more 
accurate analysis and prediction, more precise controls, 
and more reliable outcomes, which will improve 
modeling technologies, advance prediction capabilities of 
simulation systems, and enhance efficiency and 
effectiveness of measurement infrastructures. 

DDDAS is an emerging and promising technology and 
has been applied to a variety of engineering and science 
practices in recent years [8], including crisis 
management, environmental science, disaster forecasting, 
engineering design and control, industrial manufacturing, 
medical, biotechnology, finance and trade. Transport 
simulation and air traffic management are further 
important application areas. 

B. DDDAS in Transportation 
Current application studies on DDDAS in the 

transportation area are mainly from NSF supported 
projects.  

Reference [9] presented a hierarchical DDDAS 
architecture, including coupled in-vehicle, roadside, and 
traffic management center simulations, to apply dynamic 
data-driven simulation to monitor and manage surface 
transportation systems. However, the implementation and 
effectiveness evaluation of this architecture were not 
described.  

Reference [10] looked into the use of a dynamic data-
driven approach for surface transportation simulation to 
create an accurate estimate of the evolving state of 
transportation systems using real-time roadway data 
aggregated at various update intervals. Experiments based 
on a microscopic surface traffic simulation model show 
that simulation based on inflow data aggregated over a 
short time interval is capable of providing a superior 
representation of the real world over longer aggregate 
intervals. However, the perceived improvements are 

minimal under congested conditions and most 
pronounced under un-congested conditions.  

Reference [11] discussed the potential benefits and 
requirements of dynamic data-driven simulation in rail 
systems, placing emphasis on automated model 
reconfiguration, calibration, and validation through the 
use of data analysis methods. A process model for data-
driven calibration and validation was proposed, where the 
model output and the real measurement data were 
continually compared, and the model parameters would 
be updated if the deviation exceeded a predefined 
threshold. However, the proposed model wasn’t 
implemented and case studies were not given in the 
paper. 

Reference [12] reported on real data testing of a real-
time freeway traffic state estimator, with a particular 
focus on its adaptive capabilities. The pursued general 
approach to the real-time adaptive estimation of the 
complete traffic state in freeway stretches or networks is 
based on stochastic macroscopic traffic flow modeling 
and an extended Kalman filter. Advantages are 
demonstrated via suitable real data testing. The achieved 
testing results are satisfactory and promising for 
subsequent applications. 

Reference [13] proposed a dynamic data-driven multi-
agent simulation framework for maritime traffic, with 
focus on the function description of each agent. However, 
there was no further discussion on how to collect and use 
the real-time data to estimate the runtime state of the 
vessel, and the proposed framework was too simple to be 
applied in the real world conditions. 

Reference [14] presented an airline-flight-delay-
predicting DDDAS – Flight Cast, which was the project 
of the DDDAS curriculum at Wyoming University. It was 
meant to accurately predict the probability of delay or 
cancellation of a flight. The function of the components 
in the framework, data used in the prediction and its 
collection scenario were presented in the paper. However, 
specific issues, such what kind of prediction model was 
to be used in certain applications, were not discussed and 
real data validation was not carried out to evaluate the 
performance of the proposed framework. 

C. Challenges of Applying DDDAS 
Existing studies on applying DDDAS in various types 

of transport provides useful guidelines to construct an 
integral DDDAS for flight delay prediction. From the 
studies reviewed above, challenges of applying the 
DDDAS paradigm can be summarized in the following 
issues: 

(1) Computable prediction model. As the basis for 
DDDAS, a computable prediction model must first be 
established according to the system behavior, so as to 
describe the relationship between states, as well as the 
relationship between states and the measurable data, in a 
mathematical way. 

(2) Data assimilation algorithm. According to the 
complexity of the prediction model, a certain data 
assimilation algorithm should be chosen to dynamically 
integrate the measurable data into the model and update 
the priori estimate to achieve more accurate prediction. 
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Figure 1. Delay propagation occurrence 

Focusing on these two problems, a case study on the 
landing delay prediction of consecutive arrival flights was 
carried out to demonstrate the key steps in applying 
DDDAS for flight delay prediction. 

III  STATE SPACE MODEL OF FLIGHT DELAY 

The state space model is a mathematical model created 
by applying the state space analysis method in dynamic 
systems. There are two equations in a state space model: 
the process equation describes the evolution of the state 
variables of the dynamic system and the measurement 
equation represents how measurement data relate to the 
state variables. By using the state space model, 
immeasurable state variables can be incorporated into the 
measurable model to get an updated state estimate. 

A. Delay Propagation of Consecutive Arrival Flights 
As the runway cannot be used for more than one 

aircraft simultaneously, for any two consecutive arrival 
flights, delay effects will probably propagate to the 
succeeding flight if the previous flight is delayed. This is 
called the delay propagation chain. Here, we suppose that 
delay that occurs before the ready-for-landing signal is 
the cumulative delay, and the delay that occurs after the 
ready-for-landing signal is landing delay. The sum of 
these two delays is the arrival delay of the flight. Let d, l, 
c and p denote the arrival delay, landing delay, 
cumulative delay and delay propagation respectively, 
while m and b denote the minimum time interval and the 
buffer between consecutive flights; m must be included in 
b and be satisfied. The process of delay propagation 
occurrence is demonstrated in Fig. 1, where SAT means 
scheduled arrival time. 

Fig.1 shows that no delay propagation will occur to the 
succeeding flight if d1 is not greater than the difference 
between b2 and m, otherwise, delay propagation, p2=d1-
b2+m, will occur on the succeeding flight to ensure the 
minimum time interval. The landing delay of the 
succeeding flight can be expressed as: 

2211222 εε ++−+=+= mbclpl .           (1) 

Where ɛ2 denotes the delay caused by the uncertainties. 
It can be found that landing delay is linearly spread 
between consecutive flights. 

B. Modeling of the State Space Model 
Based on the analysis of landing delay, the state space 

model can be expressed as a piecewise linear model as 
follows: 

k -1 k -1 k k k k -1 k -1 k
k

k k k -1 k -1 k

x +c - b +m+ + w ,   x +c b - m
x =
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ε

ε
≥⎧

⎨
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 (2) 

k k ky = x +v   .                               (3) 

Where, (2) is the process equation, (3) is the 
measurement equation, xk, and ck, denote the landing 
delay and cumulative delay of the kth flight, bk is the 
buffer between the k-1th and the kth flights, and yk 
denotes the real-time measurement data. wk and vk denote 
the process and measurement noise, respectively; both are 
random white noise, that can be generated from the 
predefined variances. Since the relationships between the 
uncertainties and flight delays are not to be represented 
by any mathematical models, which leave the calculation 
of ɛk to be a problem in the establishment of the state-
space model. Intelligent data mining algorithms can be 
used here to learn the model of the uncertainties effect 
from large amounts of historical data, so that ɛk under 
current conditions can be estimated by online update of 
the model using real-time data. ɛk should be defined by 
the expert in extreme circumstances, such as air 
controlled, snowstorm, etc.. The algorithm employed in 
the online estimate of ɛk and the validation of its 
generalization have been discussed in detail in reference 
[15], where the finite Gaussian Mixture model was 
applied to present the effect pattern of the uncertainties, a 
genetic EM algorithm was used to search to maximum 
likelihood estimation of the parameters, and the final 
model had generalization performance of over 90% in the 
validation. 

IV  DYNAMIC DATA-DRIVEN PREDICTION FOR FLIGHT 
DELAY 

A. Dynamic Data-driven Application System 
Architecture for Flight Delay 

Based on the state space model of landing delay, the 
dynamic data-driven application system architecture can 
be constructed, as shown in Fig. 2. 

There are four main components in the architecture:  
 The data acquisition and processing module collects 

and trims the real-time data, such as flight data, 
arrival schedule, airport conditions, weather 
conditions, etc., to for provide the online parameter 
estimation module and data assimilation module 
with available input data.  

 The online parameter estimation module estimates 
the parameters ck, bk, wk, vk, ɛk in real-time 
conditions to improve the adaptability of the state 
space model.  

 The system state space model, as the kernel of the 
architecture, calculates the landing delay priori 
estimate of the succeeding flight, according to the 
process equation and the results of on-line parameter 
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Figure 2.    Dynamic Data-driven Application System Architecture for 

Flight Delay 

estimation, and provides the input data to the data 
assimilation module. 

 The data assimilation module updates the landing 
delay priori estimate with real-time measurement 
data. This is the essence of a dynamic data-driven 
approach. There are two methods available for data 
assimilation, the Kalman filter [16] for the state 
estimation of linear systems, and particle filter [17] 
for the state estimation of nonlinear non-Gaussian 
systems, as well as the extensions form of the two 
filters. Here we adopt the Kalman filter to complete 
data assimilation. 

B. State Prediction Based on Kalman Filter 
The Kalman filter is an optimal autoregressive data 

processing algorithm widely used in solving navigation, 
control, data integration and other problems. There are 
two parts to the Kalman filter: the time updating part 
which calculates the current state and error covariance in 
time to provide the priori estimate for next state, and the 
measurement-updating part which assimilates the priori 
estimate and the new arrival measurement data to 
produce an improved posteriori estimate, as a feedback to 
the model. To the linear system state space 

model k k -1 k -1 k

k k k

x = Ax + Bu + w
y = Hx +v

⎧
⎨
⎩

, the process of state 

estimation and prediction based on the Kalman filter can 
be described as following steps: 

Step1 Initial: giving state variable x0 and its covariance 
P0; 

Step2 Time updating: calculating the priori estimates 
of xk and Pk by expression (4) and (5) respectively. 

| 1 1k k kx Ax   − −=                           (4) 

| 1 1k k k kP P Q− −= +                          (5) 

Where,  

var( )k kQ w= .                           (6) 

Step3 Measurement updating: updating the priori 
estimates of xk and Pk by expression (7) when new 
measurement data yk arrives, to get the posterior estimate 
of xk and Pk.  

| 1 | 1( )k k k k k k kx x K y Hx− −= + −               (7) 

Where, K is the Kalman gain and can be calculated by 
the following expression. 

'
| 1

'
| 1
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k

k k k

P H
K

HP H R
−

−

=                      (8) 

Where,  

var( )k kR v= .                        (9) 

Step4 repeat Step2 and Step3 to carry forward the 
predictions. 

C. Realization of Delay State Prediction  
Based on the state space model defined in section III, 

realization of the state estimates and predictions were 
carried out on Matlab 7.1, as follows: 

Define the variables: N, m, R, Q, x(0), P(0) 
For k = 1:N 

(1) Calculate the priori estimate of the state 
A=0; 
x(k)=ɛ(k); 
If (x(k-1)+c(k-1)-b(k)+m >=0) 

A=1; 
x(k)= x(k)+ x(k-1)+c(k-1)-b(k)+m; 

end 
P(k)=A*P(k-1)*A'+Q;  
K(k)=P(k)/(P(k)+R);  

(2) Update the priori estimate to get the posterior 
estimate 

x(k)=x(k)+K(k)*(yc(k)–y(k)); 
P(k)=(1-K(k))*P(k); 
y(k)= x(k); 

(3) Calculate the errors and root mean square errors  
e(k)= yc(k)–y(k); 
rmse(k)=sqrt((norm(yc-y))^2/k); 

end 

V  EXPERIMENTS AND ANALYSIS 

To validate the performance of the proposed dynamic 
data-driven prediction for flight delay, a series of 
experiments were carried out for different considerations, 
such as prediction accuracy, noise effect, and steps of 
continuous predictions. Flight data, arrival schedules, 
observed landing times and other useful data were 
extracted from the flight operation records of a domestic 
hub airport to construct the data set for the experiments. 

Experiment 1 was to verify the accuracy of the 
dynamic data-driven flight delay prediction and the 
impact on prediction accuracy when using different (R, 
Q). The parameters are set as follows: x(0) = 8, P(0) = 1, 
m= 4, (R, Q)=(1, 4). Fig. 3 demonstrates the landing 
delay predictions (the posteriori estimates) of 50 
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Figure 3. Landing Delay Predictions of 50 Consecutive Arrival Flights

consecutive arrival flights, given by a particular run of 

the program. The final Root Mean Square Errors 
(RMSEs) of priori estimates and posteriori estimates 
when using five pairs of experiential (R,Q) are shown in 
Table 1. 

RMSE comparisons show that prediction accuracy can 
be greatly improved by injecting the observed real-time 
data into the prediction process, which is verified by the 
prediction experiments. Both prove the effectiveness of 
the proposed dynamic data-driven prediction architecture 
for flight delay. It can also be seen that (R,Q)  has a 
significant impact on the prediction accuracy. However, 
as errors between the observed value and the 
immeasurable true value always exist in practice, 
measurement accuracy should be improved to collect 
more reliable observed values, and (R,Q)  should be 
estimated and adjusted real-time according to the 
characteristics of the predicted process, so as to obtain 
more accurate and reliable prediction. 

Experiment 2 was to study the prediction accuracy at 
different numbers of consecutive arrival flights. 
Parameters are set as follows: x(0) = 8, P(0) = 1, m= 4, 
(R, Q)=(1, 4). The RMSEs of the delay predictions at 20, 
30 and 50 consecutive flights are listed in Table 2.  

It can be found from Table 2 that the number of 
consecutive flights has little effect on the prediction 
accuracy. That is, the proposed dynamic data-driven 
approach for flight delay prediction has good stability. 

VI  CONCLUSIONS AND FURTHER WORK 

A dynamic data-driven approach for flight delay 
prediction has been presented in this paper to assimilate 
real-time measurement data with the priori estimates 
received from the system state space model, so as to 
refine the predictions dynamically. Case studies 
demonstrate that the proposed dynamic data-driven 
prediction approach has high prediction accuracy, and the 
prediction accuracy is almost insensitive to the number of 
consecutive flights. For further use of this dynamic data-
driven prediction in air transportation, the flight state 
transition patterns at various stages should be analyzed 
with the existing measured data to establish computable 
state space models, based on which additional states of 
the flights can be estimated real-time. This will provide 
strong support to the airports or airlines to make 
reasonable decisions and arrangements to reduce flight 
delays 

Further work can focus on the following three issues: 
how to improve the state space model to employ more 
real-time data, how to estimate the immeasurable 
variables using the existing or measurable data, and how 
to adjust the noise variances adaptively. 

ACKNOWLEDGMENT 

This research is funded by the High Technology 
Research and Development Program of China under 
Project 2006AA12A106. Authors would like to thank the 
anonymous domestic airline which provided historical 
flight information. 

REFERENCES 

[1] K. F. Abdelghany, S. S. Shah, S. Raina and A. F. 
Abdelghany, “A model for projecting flight delays during 
irregular operation conditions”, J. Air Transport Manag., 
vol.10, no.6, pp. 385-394, 2004. 
doi:10.1016/j.jairtraman.2004.06.008 

[2] C. L. Hsu, C. C. Hsu and H. C. Li, “Flight Delay 
Propagation, Allowing for Behavioral Response”, Int. J. 
Crit. Infrastruct, vol.3, no. 3/4, pp. 301-326, 2007. 
doi:10.1504/IJCIS.2007.014113 

[3] Y. Tu, M, Ball, and W. Jank, “Estimating Flight Departure 
Delay Distributions—A Statistical Approach With Long-
Term Trend and Short-Term Pattern”, J. Amer. Statistical 
Assoc., vol.103, no.481, pp. 112-125, 2008. doi: 
10.1.1.132.1147 

[4] M. Abdel-Aty, C. Lee, Y. Bai, X. Li and M. Michalak, 
“Detecting Periodic Patterns of Arrival Delay”, J Air 

TABLE I.  RMSES AT DIFFERENT NUMBERS OF CONSECUTIVE 
FLIGHTS 

N REMSs 

20 0.649 

30 0.794 

50 1.0046 

TABLE II.  RMSES AT DIFFERENT (R,Q) 

(R,Q) 
RMSEs 

Priori Estimates Predictions 

(1,1) 6.3555 2.6563 

(1,4) 5.1724 1.0046 

(1,9) 6.5458 1.2130 

(0.01,9) 8.9549 0.0099 

(4,9) 8.3408 2.2920 

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 267

© 2012 ACADEMY PUBLISHER



Transport Manag., vol.13, no.6, pp. 355-361, 2008. 
doi:10.1016/j.jairtraman.2007.06.002  

[5] S. AhmadBeygi, A. Cohn and M. Lapp, “Decreasing 
Airline Delay Propagation by Re-allocating Scheduled 
Slack”, IIE Trans., vol.42, no.7, pp. 478-489, 2010. doi: 
10.1080/07408170903468605 

[6] F. Darema, “Dynamic Data Driven Application Systems: A 
New Paradigm for Application Simulations and 
Measurement”, in: Proc. of the Intl Conf. on 
Computational Science, Poland, 2004. doi:10.1.1.104.5449 

[7] F. Darema, “Dynamic Data Driven Application Systems”, 
NSF Workshop Report. http://www.dddas.org/nsf-
workshop-2000/workshop_report.pdf, 2010-10-12 

[8] F. Darema, “Introduction to the ICCS 2007 Workshop on 
Dynamic Data Driven Applications Systems”, in: Proc. of 
the Intl Conf. on Computational Science, China, 2007. doi: 
10.1007/978-3-540-72584-8_125 

[9] R. M. Fujimoto, R. Guensler, M. Hunter, H. K. Kim, J. Lee, 
J. Leonard, et al, “Dynamic Data Driven Application 
Simulation of Surface Transportation Systems”, in: Proc. 
of the Intl Conf. on Computational Science, UK,  2006. doi: 
10.1007/11758532_57 

[10] M. Hunter, R. M. Fujimoto, and W. Suh, “An Investigation 
of Real-time Dynamic Data Driven Transportation 
Simulation”, in: Proc. of  the 2006 Winter Simulation 
Conference, USA, pp. 1414-1421, 2006. doi: 
10.1145/1218112.1218369 

[11] Y. Huang, M. D Seck and A. Verbraeck, “Towards 
Automated Model Calibration and Validation in Rail 
Transit Simulation”, Procedia Comput. Sci., vol.1 no.1 pp. 
1259-1265, 2010. doi: 10.1016/j.procs.2010.04.140 

[12] Y Wang, M Papageorgiou, A Messmer, P. Coppola, A. 
Tzimitsi, A. Nuzzolo, “An Adaptive Freeway Traffic State 
Estimator”, Automatica, vol.45, no.1, pp. 10-24, 2009. doi: 
10.1016/j.automatica.2008.05.019 

[13] Y J Xiao, H Zhang and S Li, “Dynamic Data Driven Multi-
Agent Simulation in Maritime traffic”, in: Proc. of the Inlt. 
Conf. on Computer and Automation Engineering, Thailand, 
pp. 234-237, 2009. doi: 10.1109/ICCAE.2009.17 

[14] R Hyatt, D Bansal and S Chakraborty, “Flight Cast – An 
Airline Flight Delay Prediction DDDAS”, in: Proc. of the 
Inlt. Symp. on Distributed Computing and Application to 
Business, Engineering and Science, China, pp. 85-88, 2007. 
http://dcabes.meeting.whut.edu.cn/.../ 
DCABES%202007%20Proceedings%20Volume%20I.pdf, 
2011-1-5 

[15] H Y Chen, J D Wang and T Xu, “Modeling of Flight Delay 
State-space Model Based on Genetic EM Algorithm”, 
Transactions of NUAA, China, in press, 2011.   

[16] R E Kalman, R S Bucy, “New Results in Linear Filtering 
and Prediction Problems”, J. Basic Eng., vol.83, no.1, pp. 
95-108, 1961. doi: 10.1.1.129.6247 

[17] E Bølviken, P J Acklam and N Christophersen, “Monte 
Carlo Filters for Non-linear State Estimation”, Automatica, 
UK, vol.37, no.2, pp. 177-183, 2001. doi: 10.1016/S0005-
1098(00)00151-5  

Haiyan Chen was born in Changzhou, 
P.R. China, in 1979. She received the 
B.S. degree in Computer Science and 
Technology from the Nanjing University 
of Aeronautics and Astronautics 
(NUAA), Nanjing, P.R. China, in 2002, 
and the M.S. degree in Computer 
Application from NUAA, Nanjing, P.R. 
China, in 2005.  

From 2005 to 2006, she worked as a Teaching Assistant at 
College of Computer Science and Technology at NUAA and as 
a Lecture since 2007. From 2006 to 2010, she worked as a Data 
Analyst for the project of High Technology Research and 
Development Program of China No. 2006AA12A106. 

Haiyan Chen is currently pursuing her Ph.D. in system 
modeling and simulation research at college of computer 
science and technology of NUAA. Her study concerns data 
mining, modeling and simulation. 
 
 

Jiandong Wang was born in Shuyang, P. 
R. China, in 1945. He received the M.S. 
degree in Electrical Engineering from 
Shanghai Jiao Tong University. He was a 
visiting scholar at the University of 
Ottawa, Canada, from 1990 to 1991.  

He is currently Professor and Doctoral 
Students Adviser in the College of 
Computer Science and Technology at 
NUAA. His main research interests 

include artificial intelligence, data mining and information 
security. 

 
 

Lirong Feng was born in Nantong, P.R. 
China, in 1979. She received the B.S. 
degree in Computer Science and 
Technology from the Nanjing University 
of Aeronautics and Astronautics, 
Nanjing, P.R. China, in 2002, and the 
M.S. degree in electrical engineering 
from the Colorado state university, Fort 
Collins, Colorado, in 2007. 

From 2007 to 2009, she worked with Sallie Mae, Inc., the 
leading student loan corporation, as a financial risk analyst, 
focused on the North America market. Prior to joining Sallie 
Mae, she worked as a research assistant at Colorado State 
University, focused on weather radar signal processing in 2005, 
and as a student operation scientist for the NASA CloudSat 
project in 2006.    

Lirong Feng is currently pursuing her Ph.D. in industrial 
engineering and operations research at the m echanical 
engineering department, Colorado state university. Her research 
interest is on the modeling and optimization in a variety of areas 
includes experimental design, risk theory, and inventory 
management. 

 

268 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER


