

Research and Implementation of Dots-and-Boxes
Game System

Shuqin Li

Department of Computer Science, Beijing Information& Science Technology University, Beijing 100192, P.R. China
Email: lishuqin_de@126.com

Dongming Li

Department of Computer Science, Beijing Information& Science Technology University, Beijing 100192, P.R. China
Email: dongmingbiti@126.com

Xiaohua Yuan

College of Information, Shanghai Ocean University，Shanghai 201306, P.R. China
 Email: yuanxia8631_cn@sina.com

Abstract—This paper has studied the game rules, victory or
defeat rules, and the key techniques of Dots-and-Boxes, and
has designed and realized one 6×6 Dots-and-Boxes based on
the representing method of Strings and Coins. By
corresponding Dots-and-Boxes chessboard to strings and
coins chessboard, the proposed representing method is not
only intuitive and convenient in chessboard representation,
but also has other 3 merits which include: (1) can reduce the
size of representing data largely, and simplify the
chessboard stored matrix, thus easy to store and analysis the
data, (2) help to judge the key chains and rings among
elements of chessboard, and (3) help to calculate the number
of chains, and apply the long-chain rule. In the 4th machine
gambling tournament took in 2010, the realized
Dots-and-Boxes system gained the second best, which
indicates the feasibility of the proposed chessboard
representing method and the validity of the Dots-and-Boxes
system.

Index Terms—Computer game; dots and boxes;
description of chessboard; Strings and Coins

I. INTRODUCTION

Computer gambling, also called as Machine Gambling,
is one of the important research fields of artificial
intelligence (AI), and just from computer gambling began
the research of early AI. Since computer gambling is not
only simple and convenient, economical and practicable,
but also rich of connotation, full of changeful thoughts,
and can take effect quickly in short cycle when used to
check the intelligence of computer, thus it is called as the
drosophila in AI [1]. Computer gambling has induced
many important method and theories into AI, and has
produced a comprehensive influence on society and
science, thus at a certain sense we can say that computer
gambling is the token of AI development.

Dots-and-Boxes is one civilian chess popular in
America. It is a point matrix game played by two persons.
The chessboard of Dots-and-Boxes is showed in Fig. 1.

Fig.1 indicates the description of Dots and Boxes board,
it is a 6*6 dots matrix or 5*5 boxes matrix, and it can be
another size also. Rules of the game are that each player
connect adjacent dots on alternate turns, it is required that
player should only connect adjacent dots and should not
make cater corners; the lines, which are also called edges,
are not belong to any side, and players only need to take
boxes into account. The player can get a box by
connecting the four adjacent dots with lines, and when one
player make a box, he(or she) can put his(or her) name in
it, and move again, when all boxes are formed, the game is
over, and the winner is the player who get the most boxes.

The complex degree of Dots and Boxes is moderate,
and it is a typical adding chessman game that suit for some
deeply research. Generally, computer gambling is
composed by modules of board representation, estimation
function, and searching algorithm, in which whether the
representation method is efficient will directly affect the
realization and the efficiency of other modules. In this
paper, using the board representation method of
Strings-and-Coin as reference, we proposed one new
representation method of Dots and Boxes board, which
can conveniently and quickly judge the phase of play, thus
at a certain extent can improve the speed of estimating and
searching during the play.

II. BASIC CONCEPTS OF DOTS AND BOXES

During the gambling, there can be more than one phase,
and machine’s every move can be taken as the
combination of recognition model and gambling strategy.
In analyzing of each phase, firstly only some commonly
used board elements are recognized, for example the
number and position of C-shape box, Long Chain, Short
Chain, Cycle, Then abide by strategies of First-Hand,
After-Hand, Odd Number, or Even Number to calculate
the go position that favor to self side, and etc. For the
convenience of description, here give the definitions of
some main board elements.

Definition 1 Legality of Box

256 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.256-262

Refers to box whose grid coordinates are within the
board, and will not cause any array subscript out of
boundary.

Definition 2 Freedom degree of Box
Refers to unowned edge number of Box.
Definition 3 C-shape Box
 Box formed by three edges.
Definition 4 Dead Box
 Box if and only if can be caught by the current rival.
 Definition 5 Dead Tree
 Of each side in the gambling, there are a set of moves,

and every move can catch one box which is called as Dead
Box. Taking a Dead Box as a node, and link the adjacent
nodes with one edge, then all nodes connected together
will form a Dead Tree.

 Definition 6 Chain
Chain is formed by a connected pairs of box in a legal,

each box along the chain is legal and only enveloped by
two edges. The number of boxes connected by the chain
is the length of that chain.

Definition7 Long Chain
Refers to a chain whose length is more than 2.
Definition 8 Short Chain
Refers to a chain whose length is equal to 1or 2.
Definition 9 Cycle
Refers to a long chain whose length is equal or more

than 4 and which is end to end.

III. THE NEW DESCRIPTION OF DOTS CHESSBOARD BASED
ON STRINGS-AND-COINS

The traditional description of the Dots chessboard is a
6*6 dots grid, and a 2*2 sub grid is called a box, node(i,j)
and node(k,l) are adjacent only when the expression
|i-k|+|j-l|=1 be satisfied. When all the four edges of one
box have been connected, then the box will be got by the
player.

Strings-and-Coins is another game invented by Elwin
Berlekamp and we can use it to generalize Dots-and-Coins
to general graphs. The game is played on a graph, where
the edges are strings and the vertices are coins.

The rules of game Strings-and-Games are simply, the
players alternate cutting strings. When a player cuts all the
edges surrounding a coin, he takes the coin and moves
again. The player having the most coins wins the game.

Strings-and-Coins plays on the dual graph of
Dots-and-Boxes, which means that: for any
Dots-and-Boxes position, the corresponding
Strings-and-Coins game is constructed by considering the
boxes as coins, and the edges of the Dots-and-Boxes game
as strings. Since placing an edge in the Dots-and-Boxes
position will separate two boxes, so this has exactly the
effect of cutting a string in the corresponding
Strings-and-Coins position. From this point of view, the
two games above are equivalent.

Strings-and-Coins has the advantage that it can be
played on any graph, and it can also simplify certain
Dots-and-Boxes observations. Inspired by the equivalent
game Strings-and-Coins, we can deprive the ideas that

providing another easier description of the board. Fig.1
shows the initial board in traditional way, while Fig.2
shows the Strings-and-Coins chessboard.

Figure 1． Dots-and-Boxes chessboard

Figure 2． Strings-and-Coins chessboard

The corresponding relationships of the two types of

boards are:
 Boxes correspond with coins

Fig.1 shows the initial Dots chess board of 6*6 type and
we can get 5*5 boxes in this Dots-and-Boxes board, while
Fig.2 shows the description of Stings-and-Coins chess
board of 5*5 type. We can regard the boxes in
Dots-and-Boxes as the coins in the Strings-and-Coins, so
we get the corresponding relationship of boxes and coins.

 Edges correspond with strings
The initial chess board of Dots-and-Boxes has no

connected edges at all, but in Stings-and-Coins chess
board, each coin is connected with four strings, we can
take the edges of the Dots-and-Boxes game as strings, but
since placing an edge in the Dots game position will
separate two boxes, so this has exactly the effect of cutting
a string in the corresponding Strings-and-Coins position.
Similarly each coin has a degree property which represents
the count of strings connected to it.

Each edge in Dots will has the corresponding position
in Strings, and Fig.3 shows how the edges correspond with
strings.

Figure 3． Corresponding of edges and strings

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 257

© 2012 ACADEMY PUBLISHER

In Fig.3, the left one is a box in Dots and it can have
four edges, which are a, b, c and d, while the right one is a
coin with four strings, which also are the a, b, c and d
connected to it in Strings game. When placing the edge a
in the left Dots box, it will has the same effect in the right
coin by cutting the corresponding string, when all of the
four edges of one box are connected, it represents that all
of the four strings will be cut from the coin, and Fig.4
shows the coin’s corresponding state while setting an edge
a in the left box, we can see that in Strings-and-Coins, the
string of this coin has been removed.

Figure 4． Corresponding when placing one edge in Dots

 The corresponding relationship of chains and cycles

Fig.5 shows that a chain has been made, and from what
we introduced above we can easily learn how to get the
corresponding graph in Strings-and-Coins game. The way
is just to cut the corresponding strings and we will get the
right chessboard description just like what Fig.6 shows.
We can see that the representation of chain in
Strings-and-Coins is clearer and it is vivid for us to judge
if there’s a chain exists or distinguish the different coins.
Similarly, Fig.7 and Fig. 8 shows the corresponding
relationship of cycles in two games.

Figure5． Chain in Dots-and-Boxes

 Figure 6． Corresponding Chain in Strings-and-Coins

Figure 7． Cycle in Dots-and-Boxes

Figure 8． Cycle in Strings-and-Coins

IV. STRATEGY ANALYSIS OF DOTS-AND-BOXES SYSTEM

Our system divides the whole play of Dots-and-Boxes
into three phases, which include the Start, the Middle, and
the Final, and adapts different strategies according to the
characteristic of different phases. Since in the play of
Dots-and-Boxes, Long Chain and Cycle are two
frequently present formations, thus how to process Long
Chain and Cycle is key to win, and the parity of Long
Chain number is very important. In our system we abide
by Berlekamp’s Long-Chain theorem, which controls the
number of Long Chain in the whole play.

Theorem 1 Long-Chain Theorem [4]
If total number of the board nodes is odd, then the

Upper Hand side must form an odd number of Long Chain
in order to win, and the After Hand side must form an even
number Long Chain for win, and vice versa.

In a Dots-and-Boxes play, the Taking the chess side in
the last run is the side which force the rival first enter into
the Long Chain or Cycle. As to a 6×6 Dots-and-Boxes,
which has 36 nodes (case of even number), the Upper
Hand side will try hard to form an even number Long
Chains, and the After Hand side then will try hard to form
an odd number Long Chains. Since it is difficult to form
more than one Long Chain, thus at the start, the Upper
Hand side will consider to form 2 or 4 Long Chains, and
the After Hand side will search moves that in favor of
forming 3 or 5 Long Chains.

258 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

We take for that the Start Phase is the transition period
for form Long Chain, Short Chain and Cycle, the Middle
Phase is the formation period of the three formation, and
the process of Chains and Cycles are in the Final Phase,
because in the Start and Middle Phase Chains and Cycles
will always not be processed, and only C-shape Boxes will
be caught. In the Final Phase, Chessboard is always
combined by all of or some of Long Chains, Short Chains,
and Cycles.

 (1) Process of Short Chain
Short Chain is the first problem need to deal with after

entering the Final Phase, that is to own the conjunct edge
that link two adjacent boxes, otherwise, the 2C active
opportunities will be remised to the rival.

(2) Moves to Grid treatment
In order to force the rival first own the edge in Dead

Tree, each side in the play will usually take the strategy of
Moves to Grid. Dead Tree can be formed from Long Chain
or Cycle, and to those two kinds of Dead Trees, the player
can take different treatment.

A. To Dead Tree from Long Chain

When there only left two adjacent dead boxes not been
captured, in which one is open, the other is closed and of
C-shape, the Our side will take the open side of the open
box, thus to form a 2C-shape, that is to remise two boxes
to the rival.

B. To Dead Tree from Cycle

To Dead Tree from Cycle, the strategy of Moves to Grid
must be adapted carefully. If adapting the strategy of
Moves to Grid will depends on one precondition, that is
when Boxes+2Doublecrosses≤12, adapt a Moves to Grid
strategy, otherwise adapt an Ate Grid strategy(in each
move catch one C-type box), thus finally catch all the dead
box. In the above judge expression, Boxes is the number
of boxes captured by the rival, Doublecrosses is the
number of 2C-shape formation at the end of the play,
which can be calculated by

Doublecrosses=Chains−1+2× Cycles
Where Chains donates the number of Chains formed

during the whole play, and Cycles is the number of Cycles
at the end of the play. For example, when only four boxes
left, in which two C-shape are closed, and the other two
are open and not be captured, then one side of the
gambling will take the public edge between two open
boxes, thus to form 2 2C-shape formations and remise 4
boxes to the rival.

V. THE DESIGN AND IMPLEMENTATION OF DOTS
CHESSBOARD BASED ON THE GAME OF

STRINGS-AND-COINS

Based on the analysis of Strings-and-Coins, we can play
Dots-and-Boxes in a general graph, and in section 3 and 4
we have provided the simply design of the description of
chessboard, and in this section we will provide a simply
implementation of the program playing the game
Dots-and-Boxes. Firstly we will outline how to implement
the suggested theory in a game playing system.

 Game rule implementation
We should make sure that both player obey the rules

and make their moves when they are supposed to, like that
you can choose if you make move first or make the
computer move first, and when the player get boxes(coins)
he/she should make another move until no boxes can be
obtain in this turn.

So we should record all the moves in program made on
the board to check for illegal moves, and record the score
of both players. This is enough to play a complete game of
Dots-and-Boxes or Strings-and-Coins, obeying the rules
as described in sections above. Besides these, we also need
to record some other features of the game in order to
implement a game playing device. The structures that arise
during the game must be represented after each move.
During the game, just like an human player there is not
anything that needs to be updated just before the
computer's next turn, but whenever a move is made, the
rivals will thinks all the time, not only at it's one's turn.

 Game representation
By the function DoMove, during the game we will

record whose turn it is and what is the score. We can set
who moves first at the beginning, if the human player first
or the computer first. At the beginning of the game it prints
an empty board. After the first move, it assigns the turn to
another player and wait for the move, after which it
switches turns again. All the moves will be recorded in a
log file. After each move it will checks whether the turns
should be switched to the other player, and assign the
player to move next. For both players the same protocol is
used every turn. First the current playing field is printed
then the move is made, and after a move is made it is added
to the move list, and is updated in the playing field, after
which the structure list is updated by adjusting all
structures to the new situation.

Figure 9． Simple flow of Dots-and-Boxes playing system

 Chessboard representation
The playing board consists of n*m boxes. The playing

field is stored in three arrays: Square array, Horizontal
edge array and Vertical edge array. In the square array, we
will store the information of all the coins in the

Initialize chessboard

Player1 takes move

Check if can take
another move

Switch turns

Player2 takes move

Update game structures

End of game

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 259

© 2012 ACADEMY PUBLISHER

chessboard, including their locations, and the counts of
edges connected to the coins. The Square array is a
2-dimensional array, it stores the ground node existed in
the Strings-and-Coins. Not like the nodes in the center
area, the degree of each ground node is 1, which means at
most only one edge connected to it. But each of other coins
will has four edges connected to it, and it will have the
degree of 4. When a node is formed, this also means the 4
edges are all removed from it, its property of degree will
be zero, and this coin will be caught by one player.

The type of the elements in Square array is Node, the
detailed definition of class Node is represented by Fig.10.
In this class the pointer array edge [4] is used for storing
the four strings connected to each coin, and the property
degree represents the count of strings connected to one
coin.

Figure 10. Definition of class Node
We will store all the horizontal edges in the Horizontal

edge array, to each edge store the information of its two
nodes, and it is similarly to vertical edges. Each edge will
have the property of removed, when it is removed from
one connected coin, the value of this property will be one.
Each array element in the horizontal array impliedly
indicates the location of one horizontal string and also the
information about the start node and end node of this edge.
For example, horizontal[1][0] represents that this string is
an horizontal string and it is connected by two nodes:
square[0][1] and square[1][1]. Similarly, in the vertical
edge array, element vertical[6][6] indicates that this string
is a vertical string and it is connected by node square[1][0]
and node square[1][1]. Fig.11 shows the detailed
definition of Edge class.

Figure 11． Definition of class Edge

The two edge arrays are important because they provide
the full information of edges in this board, and we will use
this information to form the game structures like chains or
cycles.

In the above description of chessboard, we store the
coins and edges separately because it is efficient and
simply for program to manage.

 Game structure representation
In Dots-and-Boxes game, count of chain is key to the

player for win a Dots game, and Chain Rule tells how
many chains one player should make to force his(or her)
opponent to open the first long chain or cycle, that is:

If it is an odd number of dots, then the first player
should make an odd number of chains and the second
player should make an even number of chains. If it is an
even number of total dots, then the first player should
make an even number of chains and the second player
should make an odd number of chains.

For a board sizes of 6*6 dots (5*5 boxes), since the first
player should make an even number of chains, and the
second player should make an odd number of chains, so
the chain is an important aspect of wining the Dots game.
In our board description, it is important for the player or
program that how to inspect if the chain is formed after
one move and get the count of chains.

All structures that are discovered during the game will
be stored in a corresponding list. Each structure will have
its own list, that is, the chain will be stored in the chain list,
and cycle will be stored in the cycle list. Chains or cycles
will be stored in the array of Chains[] or Cycles[], so we
can easily get the chain and the count of chains or cycles
which will be used in other methods. Each new structure
discovered during the game will be stored and the full
structure of the game will also be changed.

Keys of these lists are the different kinds of structures
we distinguished. We record the total number of current
and past structures. We keep a list of the following
different structures: chains of all lengths, loops of all
lengths, joints, handouts. The values that these keys
correspond with are arrays containing the boxes forming
that particular structure. In case of joint, the array contains
the joint box and the structure names connected to that
joint.

Because structures of particular lengths and shapes have
important properties, which have influence on the
strategies we need to follow, so we make a small
refinement if we want to check for these strategies. The
type of 1-chains and 2-chains are special because they can
be offered as a hard-hearted handout, so these types of
chains are stored in separate arrays. The third refinement is
the structure refers to a possible loop. This is a chain from
which the first and last box connected to the same joint.
This means that such structures are most likely to be
played as a loop, so it is useful to count possible loops as
loops and not as chains. For each type of chain, we keep a
list, which records the chain number of each chain type.
By our proposed chessboard representation, the core code
used to judge Chain and Cycle is listed below Fig.12.

class Edge
{

public:
int length;
Node* node[2];
Edge* next;
Edge* prev;
int removed;

}

class Node
{

public:
Edge* NextEdge(Edge* Next);
Node* NextNode(Edge* Next);

int x,y; //the location of this coin
Edge* edge[4]; //the four edges connected to this

coin

int degree; //the count of edges connected to it
int owner; //the player got this coin
int ground; //is it a ground node

}

260 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

 Figure 12． the core code used to judge Chain and Cycle

 where k donates the number of boxes along a Chain or in a
Cycle. Since the number of boxes incluced in Chain or
Cylce is at least 3, thus in the code firstly there is a check
of k, that is if k>=3, then judge the end nodes node[0] and
node[1]of the long edge. If node[0]=node[1], that shows
the long edge is one Cycle, otherwise if node[0] and
node[1] are peripheral nodes , then this long edge is one
Chain, and otherwise, this long edge is only one common
long edge in the board.

 Searching Algorithms
In computer gambling of this paper, we use an

Alpha-Beta pruning algorithm of negative max form to
find out the most favorable move. The algorithm is that:
the value of father node is the opposite number of the max
of all child nodes, lest that odd level get the minimal and
even level get the maximum, thus F(v) will be

1 2() max{ (), (), , ()}nF v F v F v F v= − − − ⋅ ⋅ ⋅ −
 Where)(⋅F is the estimated value of one node, and

nvvv ,,, 21 ⋅⋅⋅ are the child node of node v . Here we integrate
the Alpha pruning and Beta pruning to a same
pruning-Beta pruning, whose algorithm is described in Fig.
13.

 Isomorphism
Since the representation result of Dots-and-Boxes

chessboard is a matrix of size n*m, thus Dots-and-Boxes
games have an important advantage; of isomorphism.
From the new board description in section 3 we can see
this, because of the symmetry in the field, to a certain box
position there exist corresponding position in the board.
Boxes at corresponding positions are actually similar as its
equivalent, and can be treated by the same way in
estimation or calculation. In Fig. 14 we have described all
the isomorphic positions of the chessboard, and we can
deduce three simple rules stated below.

As to a grid matrix of n*m (n and m are not equal), three
positions, that are 2~4 in Fig. 14, are the equivalent to the
original position 1 in Fig. 14, these equivalent positions
can be obtained by rule 1 and rule 2.

 Figure 13． Alpha-Beta searching algorithm of negative max

form

Figure 14． Representation of symmetry in the Dots-and-Boxes grid.

Rule1: Symmetric about X-axis
If two boxes positions are symmetric about X-axis then

they are the equivalent.
Rule 2: Symmetric about Y-axis
If two boxes positions are symmetric about Y-axis then

they are the equivalent.
And as to chessboard of n*n grids, we need to use a

third rule to describe the equivalent positions.
Rule3: Symmetric about line x=y
If two boxes positions are symmetric about the line of

x=y then they are the equivalent.
As we see in Fig. 14 the four new positions, that are 5-8,

are the same as the four we already obtained for the n*m
grid but mirrored in the x=y axis.

Of course this can be possible only if the n and m
dimension are the same, or the grid cannot be mirrored in
the x and y axis.

Based on the above analysis, we can take the advantage
of isomorphic propriety to cut off leaves and branches
from search trees which are equivalent to the already
found positions, thus to reduce unnecessary searching and
computation and improve the efficiency of the system.

int nega_alpha_bata(int alpha,int beta,int depth)
int val;
// processing recursive export

……
GenaAllmove();
while (m=GetnextMove())
{
 MakeMove(m);
 Val=-nega_alpha_beta(-beta,-alpha,depth-1);

UnmakeMove(m);
if (alpha<val){
 alpha=val;
 if (bete<=val)
 return val;

}
 }//end_while
 Return alpha;
}

1

3

5

7

2

4

6

8

 k=newedge->length-1;
 if(k<3)
 {
 INSERT(newedge, &moves[k]);
 }
 else
 {
 Edge *rgedge;
 if (newedge->node[0]= =newedge->node[1])
 rgedge=loops;
 else if(newedge->node[0]->ground &&
newedge->node[1]->ground)
 rgedge=chains;
 else
 rgedge=strings;
 }

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 261

© 2012 ACADEMY PUBLISHER

VI. CONCLUSIONS

This paper has studied the game rules, victory or defeat
rules, and the key techniques of Dots-and-Boxes, and
based on Strings and Coins representation has designed
and realized one 6 × 6 Dots-and-Boxes computer
gambling system, which includes modules of chessboard
representation, rule description, and searching algorithms.
Since chessboard representation will directly influence the
function and efficiency of the left two modules, so this
paper focused on chessboard representation, and proposed
a new chessboard representation method referring a
Dots-and-Boxes board to a Strings-and-Coin board, which
is more intuition and convenient. Because compared with
common board representation, the proposed method can
reduce the representation data size largely, it is more
convenient for judging the formation of Long Chain, Short
Chain and Cycle, and can improve the system efficiency
remarkably. Although the system realized by the proposed
method got the second best in the 4th computer gambling
tournament took in 2010, there need further studies on and
improvement of the set of start library and evaluation of
chess game.

 ACKNOWLEDGMENTS

This research is sponsored by the Funding Project for
Academic Human Resources Development in Institutions
of Higher Learning under the Jurisdiction of Beijing
Municipality (PHR201007131), by the Funding Project
for Graduate Quality Courses Construction of Beijing
Information & Science Technology University, and by the
Funding Project for Graduate Science and Technology
Innovation Projects of Beijing Information & Science
Technology University.

REFERENCES

[1] Xu Xinhe, Deng Zhili, Wang Jiao. Challenging issues
facing computer game research. Caai Transactions on
Intelligent Systems, 2008, (4): 288−293.

[2] Lian Lian, Xu Xinhe, Zhang Xuefeng, Yan Ning. Key
Technologies Analysis of Dots and Boxes Game
System.Progress of Artificial Intelligence in China, 2009:
19-724.

[3] Calabro C. Analysis of dead boxes in dots-n-boxes. Current
available online via http: //cseweb.ucsd.edu/ccalabro/.

[4] Ilan Vardi. The mathematical theory of dots. Current
available online via http://cf.geocities.com.

[5] Chrisc Berlekamp E R. The dots-and-boxes game [M].
Massachusetts: A K Peters Ltd ,2000.

[6] Gerben M. Blom. An artificial intelligence approach to
Dots-and-Boxes. Multi-Agent systems, 2007

[7] Wikipedia，http://en.wikipedia.org/wiki/Dots-and-Boxes
[8] Lex Weaver, Terry Bossomaier, Evolution of Neural

Networks to Play the Game of Dots-and-Boxes, In Artificial
Life V: Poster Presentations, May 16-18 1996, pages 43-50.

Shuqin Li received a B.S. degree in
computer Science from the University
of ShanXi in 1985, and the M.S. and
Ph.D. degrees in Computer application
from the Nanjing University of Science
and Technology in 1988 and 2006. She
has been with the Department of
computer science at Beijing
Information& Science Technology

University, where she is a Professor. She is also a Technical
Committee of China Computer Games Commission and a
member of China Association for Artificial Intelligence (CAAI).
Her major study is machine study and artificial intelligence.

Dongming Li received a B.S. degree in
computer Science from Beijing
Information& Science Technology
University. Now he is a Master student at
Beijing Information& Science
Technology University. His research
interest is machine study and computer
game.

Xiaohua Yuan received the B.S. degree
from the South-East Normal University,
Chongqing, in 1991, the M.S. degree
from the Chinese Academy of Sciences,
Beijing, in 1999, and the Ph.D. degree
from Nanjing University of Science and
Technology, Nanjing, in 2006. She is
currently an associate professor in the
Department of Information, Shanghai

Ocean University. Her research interests include Image
Processing and Artificial Intelligence.

262 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

