
The Impact of Process Effectiveness on User
Interest in Contributing to the Open Source

Software Projects

Amir Hossein Ghapanchi
Griffith University/School of Information and Communication Technology, Queensland, Australia

Email: amir.ghapanchi@gmail.com

Aybuke Aurum
The University of New South Wales/Australian School of Business, Sydney, Australia

Email: Aybuke@unsw.edu.au

Farhad Daneshgar
The University of New South Wales/Australian School of Business, Sydney, Australia
Visiting Fellow, Institute for Knowledge and Innovation/Bangkok University, Thailand

Email: f.daneshgar@unsw.edu.au

Abstract—Unlike closed source software development, open
source software (OSS) projects are not commonly driven by
direct profit and do not offer developers monetary
incentives. Instead, OSS development relies on volunteer
developers and voluntary contributions from the user
community. Thus, attracting voluntary user contributions to
OSS projects is a challenging task. Defect fixing is one
important area of OSS development that requires user
contributions. Postulating upon the theory of competency
rallying, this research examines the impact of the defect-
fixing effectiveness on user interest in contributing to OSS
projects. Analysis of data collected from 1481 OSS projects
confirms that the effectiveness of the defect fixing process
till any period of time has a positive significant effect on the
user contribution in terms of defect submission as well as
defect resolution in the following time period. The results of
this study have several implications for OSS projects’
managers as well as corporations interested in adopting
OSS software.

Index Terms—Open source software success, competency
rallying, defect-fixing process, user contribution.

I. INTRODUCTION

In spite of increasing adoption of open source
software, many OSS projects still fail in their early stages
of development [1] [2]. According to Krishnamurthy [3],
63% of OSS projects on Sourceforge.net, the world’s
largest OSS host, experience failure. The reason for this
failure is that a large majority of OSS projects cannot
attract voluntary contributions from user community to
further their development activities [4].

Having effective and healthy development processes
(e.g. defect fixing process) has also been reported as a
critical antecedent to the project success [5]. Defect-
fixing is one of the key processes that characterize OSS

development [6]. Our study focuses on defect-fixing
process for three main reasons. First, an effective defect-
fixing process is tied to users’ perception of the project
quality, activity and value [7] that in turn will affect
project success [8]. Second, prior research on OSS
projects has implied the importance of effective defect-
fixing in impacting OSS projects positive outcomes, but
has not empirically tested this relationship [6] [9] [10].
Third, defect-fixing process is within the control of OSS
project team so understanding its impact on project
success might be significant for OSS practitioners. If an
effective defect resolution process leads to higher user
interest in contributing to the project, then we would need
to ask a practically and academically significant question
which forms the main research question underlying this
study: “Does the effectiveness of the defect-fixing
process impact user interest in contributing to OSS
projects?”

The consequence of poor responsiveness to customer
needs in terms of defect-fixing ranges from user
dissatisfaction, to unsafe software [11]. High
responsiveness to defects has the potential to result not
only in higher quality software, but also higher user
contribution to the project. Although procedures have
been proposed to increase user participation in software
quality management, the relationship between
responsiveness to user needs and user contributions has
not been investigated [11]. Thus the objective of this
study is to examine the relationship between defect-fixing
effectiveness and user interest in contributing to the
project.

Answering our research question is of critical
importance because unlike commercial proprietary
software development, OSS projects are not always
driven by direct profits and do not offer developers
monetary incentives [12], instead relying on input from

212 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.212-219

volunteer developers/users to further their development
[1]. Moreover, user community can be viewed as a source
of innovative ideas for further development of the current
software [12] [13]. Therefore attracting contributions
from user community is a critical issue for every OSS
project.

The remainder of this paper is structured as follows.
The next section provides background for the research
and presents the research model. The research design is
presented in Section 3. Data analysis and results are
presented in Section 4. Discussion of the results is
presented in Section 5. Section 6 shows the limitations of
the study followed by concluding remarks in Section 7.

II. BACKGROUND AND RESEARCH MODEL

This section consists of four sub-sections. Firstly,
literature on user interest in OSS projects is introduced.
Subsequently, the defect-fixing process of OSS projects
is reviewed. Finally the theory of competency rallying is
introduced, resulting in a research model.

A. User Interest
User interest has been a key topic in information

system (IS) research [14]. ‘User interest’ is the ability of
an OSS project to attract the interest of community users
to the project software [15] [16]. The extent to which an
OSS project is able to attract community interest in using
and contributing to the project is a key success factor for
OSS projects [16].

Prior research on antecedents of user interest has
resulted in interesting findings. Stewart et al. [15] showed
that license restrictiveness is negatively associated with
user interest, while having a sponsor has a positive
impact. Subramaniam et al. [16] showed that developer
interest, user interest and project activity are correlated.
Additionally, they concluded that project activity,
developer interest, project license and development status
impact user interest. Moreover, Colazo [17] surveyed 121
open source projects and found that product popularity
impacts on user contribution. Long [18] discovered that
contributions from community impact the success or
failure of OSS projects.

A review of prior studies has identified that there is a
lack of literature exploring the software development
process considerations that predict OSS project success
[19]. Furthermore, the current literature lacks studies that
examine the impact of the defect-fixing process on user
contribution. As a result, the current study seeks to
explore the influence of the effectiveness of the defect-
fixing process on user interest in contributing to OSS
projects.

‘User contribution’ is the contribution that the
community makes to an OSS project, like reporting or
fixing a defect. User contribution is the ideal state of
‘user interest’ because a given user doesn’t contribute to
an OSS project unless s/he has already adopted and used
that particular project. Therefore, the current research
suggests user contribution to an OSS project as a post-hoc
usage behavior which shows user interest in that
particular project.

B. Defect-Fixing Process
One of the most important areas of study in

information system development is software quality. A
significant dimension of software quality is
responsiveness to user/customer needs [11]. According to
Hsu et al. [11], responsiveness to customer needs is
considered as an external quality dimension, identified by
individual or organizational users.

The defect-fixing process is a process in which bugs
and defects observed in the software are handled and
resolved to improve the quality of the software. In OSS
projects, this process is normally handled through a
defect tracking system.

The defect-fixing process has been studied by few OSS
researchers. Herbsleb and Mockus [20] found that the
progress in fixing defects reported influences the positive
outcomes in OSS projects. Stewart and Gosain [4] used
the percentage of defect reports completed as an indicator
of OSS project effectiveness and found that
communication quality and team effort impact the
quantity of defect reports completed. They suggest that
OSS project success comprises the extent to which a
project receives input from the community, and the extent
to which it creates an observable output such as a defect
fixed. Stewart and Gosain [21] also proved that the
percentage of defect reports completed impacts perceived
effectiveness of OSS projects defined by how well an
OSS project succeeds to accomplish its goals.

The setting chosen for this research is the largest OSS
repository, Sourceforge.net. Sourceforge.net doesn’t
clearly specify the process of defect fixing through its
defect tracking system, defect pre-defines statuses for a
defect. “Open” status is used when a defect is first
reported. Subsequently, someone (e.g. a project
administrator) either assigns it to a developer to be fixed,
or rejects if it is a duplicate, out of date or not legitimate
etc; the “Pending” status is also used when the defect is
legitimate but it is better to be fixed at a point of time in
future. Finally, when the defect report is completed, the
status is changed to “closed”. As the name proposes, the
status “fixed” also used when a defect is resolved.

C. Theory of Competency Rallying
Theory of competency rallying (TCR) was first

introduced by Katzy and Crowston [22]. Crowston and
Scozzi [23] and Katzy and Crowston [24] then applied
the TCR in two different contexts to demonstrate its rigor
in explaining project success in the context of virtual
organizations. The TCR introduces four sets of
antecedents for project success including: (1)
identification of market needs; (2) management of a
short-term co-operative effort; (3) marshalling of
competencies; and (4) identification and development of
competencies. These four capabilities (See Figure 1) are
all necessary for the success of a project undertaken in a
virtual organization.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 213

© 2012 ACADEMY PUBLISHER

Figure 1. TCR’s capabilities and outcome

In this research, we will employ the TCR to explain

how competency rallying for the defect-fixing process
might leads to project success in terms of procuring
contributions from community users. Current paper
applies the TCR at a process level meaning that
capabilities in the TCR are related to the capabilities
required for the defect-fixing process and the outcome of
the TCR (i.e. success) is related to the project success in
attaining community contributions to this process. In the
following sections, we will explain the four sets of
capabilities proposed by the TCR and demonstrate how
each competency corresponds to various tasks of the
defect-fixing process.

The first capability in the TCR refers to the ability of
identifying a market need that could be fulfilled by the
virtual organisation. There are four tasks involved in the
defect-fixing process of an OSS project: reporting a
defect, assigning the defect, fixing the defect, and
managing and closing the defect. A defect reported by a
user obviously shows some quality needs holding by the
software community. Thus, we relate the first task
involving in the defect-fixing process, reporting defects
to the first competency in the TCR, identification of
needs.

The second capability in the TCR refers to the ability
of the virtual organization to recognize and bring together
actors with the competencies required to meet an
identified market need. If a reported defect is decided to
be resolved, the defect is assigned to a developer to
resolve. This needs comprehension of the assigner on
who possess the expertise required to fix a defect.
Therefore, similar to the first competency, we relate the
second task involving defect-fixing process, assigning
defects, to the second competency in the TCR,
marshalling of competencies.

The third capability in the TCR shows the ability of the
virtual organization for ongoing development and
refinement of competencies. Competencies can be viewed
as residing in the skills and expertise of individuals and
groups within the organisation. By fixing more and more
defects, a given developer can develop his/her

competencies in the course of real-practice, “… [Project
developers] autonomously [can] develop their
competencies in the course of their on-going ‘real world’
activities and sharpen them in the course of an OSS
project [p. 5]” [23]. Accordingly, we relate the third task
involving in the defect-fixing process, fixing defects, to
the third competency in the TCR, development of
competencies.

The fourth capability in the TCR is the ability of a
virtual organization to manage short-term co-operative
work. Each defect reported on the defect tracking system
of a particular OSS project can be attributed to short-term
cooperative work because different people (e.g.
submitter, assigner, fixer, and etc.) are involved in it. A
defect lives from the moment the submitter reports it until
the moment that it gets terminated (i.e. defect’s status is
set to “closed”). Accordingly, we relate the fourth task of
the defect-fixing process, closing and managing defect, to
the fourth competency in the TCR, managing short-term
cooperative work.

D. Research Model
Given the justification presented in previous section,

we developed a model of relationships (See Figure 2) to
be tested through empirical data. The dependent variables
of the model include user contribution to defect
submission and defect resolution. There is one
independent variable: the effectiveness of the defect-
fixing process. There are also four variables in the
conceptual model that, according to prior research, can
impact our dependent variable including: project size,
development status, project age, and project audience.
However, as we were not interested in their impact, we
controlled for them in the study.

As mentioned earlier, this research applies the TCR at
a process level. In this context, capability means
capabilities used in the course of the defect-fixing
process. Inspired by the TCR, we argue that rallying
competencies for the defect-fixing process might result in
project success in terms of procuring user contributions to
this process (See hypotheses 1 and 2). One key point here
is that there is a lagging time between independent
variable and dependent variables in this study.
Subramaniam et al. [16] also mentioned this fact. Thus,
we measure defect-fixing effectiveness till a point of time
(from start of project till t1), and measure user
contribution in the following time period (i.e. 8 months
after t1).

H1. The effectiveness of the defect-fixing process till
any period of time has a positive impact on user
contribution to defect submission in the following time
period.

H2. The effectiveness of the defect-fixing process till
any period of time has a positive impact on user interest
in contributing to defect resolution in the following
period.

214 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Figure 2. Research model

III. RESEARCH DESIGN

A. Sampling
Sourceforge.net divides OSS projects into various

categories including: communication, database, desktop,
education, formats and protocols, games and
entertainments, Internet, multimedia, office/business,
religion and philosophy, scientific/engineering, security,
social science, software development, system, terminal,
and text editor. In order to increase generalizability of the
results, we decided to take sample from various
categories. Thus, we chose to focus on five categories
namely: communication, security, software development,
scientific/engineering, and game and entertainment. In
order to narrow down our sample, we then imposed a
number restrictions such as:

• exclude projects that have not had any release
within last 2 years (to discard inactive
projects);

• exclude projects whose development status is
planning, pre-alpha, or alpha (because they
normally don’t have any software release);

• exclude projects whose development status is
mature (because they normally don’t have
much activity and are already mature in terms
of defects and less activity is done on them
for these purposes);

• focus on those projects that have had at least 5
records in their defect-tracking system.

The total number of projects in these 5 categories that
satisfied our sampling criteria was 1481. We collected
data on all of the 1481 projects. Table 1 shows the
distribution of the projects based on the number of times
each project had been downloaded.

TABLE I.
DISTRIBUTION OF THE PROJECTS IN TERMS OF NUMBER OF DOWNLOADS

Number of downloads Frequency Percentage

50-1000 78 5%
1000-20,000 601 41%
20,000-100,000 415 28%
>100,000 387 26%
Total 1481 100%

B. Operationalization of the Constructs and Data
Collection

In order to operationalize the effectiveness of the
defect-fixing process, we use the measures introduced by
Ghapanchi and Aurum [25] namely: the number of
defects submitted by team members; total number of
defects assigned to team members; number of defects
fixed by team members, and number of defects closed by
team members. Applying a rigorous scale development
methodology, Ghapanchi and Aurum [25] reported a high
validity and reliability for the measures discussed. This
operationalization is in line with the correspondence
between the TCR capabilities and tasks underlying the
defect-fixing process (See Section II, B).

We will operationalize our dependent variable by user
contribution to the project in terms of submitting and
resolving defects. User contribution to defect submission
will be measured by the number of defects submitted by
users. User contribution to defect resolution will also be
measured by the number of defects closed by users.

There are four control variables in this study: project
size, development status, project audience, and project
age. Project size will be measured by the number of
project team members. Project audience is a dummy
variable that is set to 1 if the project is developer targeted
and is set to zero otherwise. Project age is measured by
the number of months a project has existed. With respect
to development status, development status of the project
on Sourceforge (e.g. beta, stable and etc) will be used.
Data on control variables (project age, development
status, project audience, and team size) were directly
collected from the projects’ profiles page on Sourceforge.

As mentioned before, we collected data in 2 snap
shots. Data on the measures of the effectiveness of the
defect-fixing process were collected at a point of time
(t1), while data on user contribution to defect-fixing
process were collected once at t1 and again at t2 which
was 8 months after t1. We then subtracted the value of
the measure at t2 from that of t1.

Data on the measures of the effectiveness of the defect-
fixing process as well as data on user interest in
contributing to defect submission and resolution were
extracted using Sourceforge advanced search on the
projects’ defect-tracking systems. For example, for
‘defects submitted by team’, we selected ‘Bug’ as
‘tracker’ and we highlighted all team members for
‘submitted by’, then the advanced search retrieves the
defect reports which have been submitted by team
members. As another example, for ‘defects submitted by
users’, we subtracted the number of ‘defects submitted by
team’ from the total number of defects submitted. Figure

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 215

© 2012 ACADEMY PUBLISHER

3 shows a snapshot of a defect tracking system on
Sourceforge.

Figure 3. Defect tracking system on Sourceforge.net

IV. DATA ANALYSIS AND RESULT

A. Validity and Reliability
PLS-Graph was used to undertake a regression

analyses and also to examine reliability, convergent
validity, and discriminant validity. The convergent
validity tests how closely the items are associated with
their underlying constructs [26]. According to Hair et al.
[27] in order to have convergent validity all path loadings
from construct to measures should be 0.5 or higher,
ideally 0.6, or 0.7. As Table 2 shows, all factor loadings
were higher than 0.7, and they are all significant since
their t-value is higher than 1.96 (α=0.05). Another way to
test convergent validity is to examine the average
variance extracted (AVE) of constructs. AVE shows that
the variance explained by the extracted factor is higher
than the errors remained in the underlying indicators. As
a rule of thumb, the value of AVE should be greater than
0.5 for each construct [27]. In this research AVE was
0.8872 which is much higher than 0.5.

TABLE II.
ITEM LOADINGS FOR MEASURES OF DEFECT-FIXING EFFECTIVENESS

Item Loading Sample
Mean

Standard
Deviation

T-Statistics

Sbmt 0.8292 0.8141 0.1323 6.2679
Asgn 0.9791 0.9708 0.029 33.7788
Fix 0.9696 0.961 0.0263 36.9248
Cmpl 0.981 0.9728 0.0283 34.6105

Discriminant validity tests whether the items that
represent a latent construct differ from those that are not
believed to constitute the latent construct. According to
Gefen and Straub [28], in order to evaluate the presence
of the discriminant validity, two conditions should be
satisfied: firstly, each indicator should highly load on its
associated construct. As Table 2 shows, this condition is
met since all the loadings are higher than 0.7. Secondly,
the square root of the AVE of each factor should be
higher than any correlation amongst any pairs of
constructs. This criterion was also met since the square
root of the AVE, 0.941, is much higher than maximum
correlation amongst any pairs of constructs. Table 3
exhibits the loading and cross-loading of all indicators of
the model. As Table 3 shows item loadings in their
corresponding columns are all higher than the loadings of
the measures used to calculate the other variables.

Reliability is defined as the extent to which indicators
of a latent construct correlate or move together [26].
There are different techniques to calculate the reliability,
however the composite reliability is one of the most
popular ones. Composite reliability has been employed in
this research and is measured using PLS-Graph.
Composite reliability is recommended to be higher than
0.7 to show a high level of reliability [27]. Composite
reliability of 0.9691 advises that reliability is achieved in
our research.

TABLE III. CROSS LOADINGS

Item Defects
resolved by
users

Defects
submitted by
users

Effectiveness
of defect-fixing
process

Sbmt 0.3159 0.1716 0.8292
Asgn 0.5406 0.3547 0.9791
Fix 0.5450 0.3764 0.9696
Cmpl 0.5077 0.3508 0.9810
UserDefSub 0.2786 1.0000 0.3474
UserDefRes 1.0000 0.2786 0.5221

B. Analysis and Results
The data analysis for this research was carried out

through partial least squares (PLS). The PLS method has
been employed by researchers in recent years because of
its ability to model latent variables under conditions of
non-normality [29]. PLS allows the researchers to
examine the relationships among the conceptual
variables. It also allows the researcher to analyze how
well the measures relate to the associated variable. PLS-
Graph version 3.00 [30] and Smart PLS were used for
data analysis of this research. Bootstrap re-sampling
procedure with 200 samples was also employed to test the
significance of all paths. Figure 4 shows the results of

216 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

testing the research model. The model explains %38.6 of
the variance in user contribution to defect-resolution
(R2=0.386), and %23.5 of the variance in user
contribution to defect submission (R2=0.235).

Figure 4. The results of base-line model

As indicated in Table 4, both hypotheses 1 and 2 were
supported. A significant (at α=0.05) and positive direct
effect (coefficient = 0.48) was found between the
effectiveness of the defect-fixing process and user
contribution to submit defects (H1). It demonstrates that
OSS projects that are more committed and responsive to
defect resolution process are more likely to receive user
contribution in terms of reporting software defects. As
predicted in Hypothesis 2, defect-fixing effectiveness was
positively and significantly (at α=0.05) related to user
contribution to resolving defects (coefficient = 0.62)
indicating that the more responsive a project acts with
respect to the defect fixing process, the more contribution
the project can receive from the users in terms of
completing the defects. These agree with expectations
from theory of competency rallying.

To test the impacts of the control variables: project
size, development status, project audience, and project
age, a latent construct was made with all four control
variables as its formative measures. The relationship
between that latent variable and the dependent variable
was insignificant at a 0.05 level meaning that they don’t
significantly influence user interest in contributing to the
project.

TABLE IV.
PATH COEFFICIENTS FOR BASELINE MODEL

Relationship Path
coefficient

Sample
Mean

Standard
Deviation

Effectiveness of defect-
fixing ->
Defects submitted by users

0.4851 0.7362 0.1405

Effectiveness of defect-
fixing ->
Defects resolved by users

0.6214 0.4178 0.2469

V. DISCUSSIONS

In light of the insights from this study, we would like
to pose two important implications for OSS scholars.

First, prior research into OSS success has considered
various success measures for OSS projects including the
number of times an OSS project has been downloaded,
the number of developers registered on the project
website, and the amount of development activity
undertaken in the project [15] [16] [23]. However, this
paper introduced user interest in contributing to the
project and process effectiveness (e.g. defect-fixing
effectiveness) as other potential indicators of success in
an OSS environment. This opens new avenues for future
research to examine more innovative success measures
for OSS projects. Second, our paper contributes to the
OSS literature by augmenting our understanding of the
implications of defect-fixing effectiveness to OSS
success in terms of user interest in contributing to this
process. Prior research on OSS projects has implied the
significant role of effective defect-fixing in impacting
OSS projects positive outcomes, but has not empirically
investigated this relationship [6] [9] [10].

In addition to the research implications, our study has
several implications for OSS projects’ managers as well
as corporations interested in adopting open source
development style or adopting OSS software. Firstly,
structural equation modeling of this research showed that
OSS projects that operate their defect resolution process
more responsibly and effectively till any period of time
are more likely to receive defect reports from the
community in the subsequent period. Such projects are
also more likely to have a higher user participation in
their defect-fixing process. Such contributions could
result in higher product quality. This is of value for OSS
project managers as well as for organizations attempting
to adopt an OSS development style because it shows that
OSS projects interacting with the community have a
higher chance of receiving contributions from the
community if they are perceived as being responsive and
sympathetic to the user community’s needs.

Secondly, project managers should be aware of the fact
that simply attracting a high number of developers or
download rate, or having a high level of development
activity might not guarantee that their project will be
successful in other respects. Process effectiveness (e.g.
defect-fixing effectiveness) and user contribution (i.e. to
the defect-fixing process) are two other dimensions
introduced in this paper as indicators of success in an
OSS environment.

Thirdly, defect-fixing effectiveness is an indicator that
corresponds nicely to practitioners’ concerns regarding
open source software in that responsiveness to customer
needs is one of the two most frequently cited concerns of
IT practitioners adopting OSS [31]. By scale
development for the construct of defect-fixing
effectiveness based on the theory of competency rallying,
this paper enables organizational users to assess a
particular OSS with respect to defect removal and quality
assurance. Moreover according to our study, another way
for organizational users to evaluate a particular OSS
would be measuring the amount of contribution that users
make to a certain OSS (e.g. contributing to the defect-
fixing process).

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 217

© 2012 ACADEMY PUBLISHER

VI. LIMITATIONS

One limitation of this research is the generalizability of
the results. First, we limited our sample to five project
categories, potentially limiting the generalizability of the
results across all project categories. Although we don’t
see any reason that the findings cannot be generalized
across all project topics, this issue remains an empirical
question. Another limitation arises from the fact that we
selected the sample from projects registered on
Sourceforge. Since these projects might differ from those
OSS projects that have not been registered on
Sourceforge, this could also limit the generalizability of
the results.

VII. CONCLUSIONS

Since OSS development relies on volunteer developers
and voluntary contributions from the user community,
this paper studied the success of OSS projects in
attracting user contributions. The focus of our study was
to examine the relationship between the effectiveness of
the defect-fixing process and user interest in contributing
to this process in an OSS environment. The data collected
from 1481 OSS projects hosted on Sourceforge
confirmed that a more effective defect fixing process
results in a higher user contribution to defect submission
and defect resolution.

REFERENCES

[1] J. Colazo and Y. Fang. “The impact of license choice on
open source software development activities,” Journal of
the American Society for Information Science and
Technology, Vol. 60, No. 5, pp. 997-1011, 2009.

[2] S. Chengalur-Smith and A. Sidorova. “Survival of open-
source projects: A population ecology perspective,” In
Proceedings of 24th International Conference of
Information Systems, Atlanta, GA, 2003.

[3] S. Krishnamurthy. “Cave or community? An empirical
examination of 100 mature open source projects,” Working
Paper, University of Washington, Bothell, Bothell, WA,
2002.

[4] K. J. Stewart and S. Gosain. “The impact of ideology on
effectiveness in open source software development teams,”
MIS Quarterly, Vol. 30, No. 2, pp. 291-314, 2006a.

[5] Y. Fang and D. J. Neufeld. “Understanding sustained
participation in open source software projects,” Journal of
Management Information Systems, Vol. 25, No. 4, pp. 9-
50, 2009.

[6] K. Crowston. J. Howison and H. Annabi. “Information
systems success in free and open source software
development: Theory and measures,” Software Process:
Improvement and Practice, Vol. 11, No. 2, pp. 123-148,
2006.

[7] A. Mockus and D. Weiss. “Interval quality: Relating
customer-perceived quality to process quality,” In
Proceedings of International Conference on Software
Engineering, Leipzig, ACM Press, pp. 733–740, 2008.

[8] V. Venkatesh, M. G. Morris, G. B. Davis and F. Davis.
“User acceptance of information technology: Toward a
unified view,” MIS Quarterly, Vol. 27, No. 3, pp. 425-478,
2003.

[9] K. Crowston. H. Annabi and J. Howison. “Defining open
source software project success,” In Proceedings of the
24th International Conference on Information Systems,
Seattle, WA, 2003.

[10] V. Garousi. “Evidence-Based Insights about Issue
Management Processes: An Exploratory Study,” In
Proceedings of the International Conference on Software
Process, Vancouver, Canada, 2009.

[11] J. S. C. Hsu. C. L. Chan. J. Y. C. Liu and H. G. Chen.
“The impact of user review on software responsiveness:
Modeling requirements uncertainty,” Information &
Management, Vol. 45, No. 4, pp. 203-210, 2008.

[12] J. Bragge and H. Merisalo-Rantanen. “Engineering E-
Collaboration Processes to Obtain Innovative End-User
Feedback on Advanced Web-Based Information Systems,”
Journal of the Association for Information Systems, Vol.
10, Special Issue, pp. 196-220, 2009.

[13] J. Feller. P. Finnegan. J. Hayes and P. O’Reilly.
“Institutionalising information asymmetry: governance
structures for open innovation,” Information Technology &
People, Vol. 22, No. 4, pp. 297-316, 2009.

[14] N. Livari. “Constructing the users” in open source software
development: An interpretive case study of user
Participation,” Information Technology & People, Vol. 22,
No. 2, pp. 132-156, 2009.

[15] K. J. Stewart, A. P. Ammeter and L. M. Maruping. “Impact
of license choice and organizational sponsorship on
success in open source software development projects,”
Information System Research, Vol. 17, No. 2, pp. 126-144,
2006.

[16] C. Subramaniam, R. Sen and M. L. Nelson. “Determinants
of open source software project success: A longitudinal
study”, Decision Support Systems, Vol. 46, No. 2, pp. 576-
585, 2009.

[17] J. Colazo. Innovation success: an empirical study of
software development projects in the context of the open
source paradigm, PhD dissertation, University of Western
Ontario, 2007.

[18] J. Long. Understanding the Creation and Adoption of
Information Technology Innovations: the Case of Open
Source Software Development and the Diffusion of Mobile
Commerce, PhD dissertation, The University of Texas at
Austin, 2004.

[19] C. A. Conley. Design for quality: the case of open source
software development, PhD dissertation, New York
University, 2008.

[20] J. D. Herbsleb and A. Mockus. “An Empirical Study of
Speed and Communication in Globally Distributed
Software Development,” IEEE Transactions on Software
Engineering, Vol. 29, No. 3, pp. 1-14, 2003.

[21] K. J. Stewart and S. Gosain. “The Moderating Role of
Development Stage in Free/Open Source Software Project
Performance,” Software process improvement and
practice, Vol. 11, pp. 177-191, 2006b.

[22] B. Katzy and K. Crowston. “A process theory of
competency rallying in engineering projects. Centre for
Technology and Innovation Management,” working paper,
Munich, Germany, available:
http://cyowston.syr.edu/papers, 2000.

[23] K. Crowston and B. Scozzi. “Open source software
projects as virtual organizations: Competency rallying for
software development,” IEE Proceedings on Software,
Vol. 149, No. 1, pp. 3–17, 2002.

[24] B. R. Katzy and K. Crowston. “Competency rallying for
technical innovation - the case of the Virtuelle Fabrik,”
Technovation, Vol. 28, pp. 679-692, 2008.

218 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

[25] A. H. Ghapanchi and A. Aurum. “Measuring the
Effectiveness of the Defect-Fixing Process in Open Source
Software Projects,” In The 44th Hawaii International
Conference on System Sciences. Hawaii, 2011.

[26] D. Straub, M. C. Boudreau and D. Gefen. “Validation
Guidlines For IS Positivist Research,” Communications of
the Association for Information Systems, Vol. 13, pp. 380-
427, 2004.

[27] J. F. Hair, W. C. Black, B. Babin, R. E. Anderson and R.
Tatham. Multivariate Data Analysis, New Jersey, Pearson
Education Inc, 2006.

[28] D. Gefen and D. Straub. “A Practical Guide To Factorial
Validity Using PLS Graph: Tutorial And Annotated
Example,” Communications of the Association for
Information Systems, Vol. 6, pp. 91-109, 2005.

[29] W. W. Chin. The Partial Least Squares Approach for
Structurational Equation Modeling, in Modern Methods
for Business Research, G. A. Marcoulides (ed.), Mahwah,
NJ: Lawrence Erlbaum Associates, pp. 295-336, 1998.

[30] W. W. Chin. PLS-Graph Manual Version 3, 2001.
[31] B. Golden. Succeeding with Open Source, Addison-

Wesley, Boston, 2004.

Amir Hossein Ghapanchi is a lecturer at the School of
Information and Communication Technology, Griffith
University, Australia. Amir has served in several national
information system projects. His main research interests include
open source software project management, IT human resource
management, e-government planning and implementation, and
multi-criteria decision making (MCDM). Amir has published in

several prestigious management and information system
journals such as Journal of Systems and Software, International
Journal of Information Management, and International Journal
of Project Management.

Aybuke Aurum is an associate professor at the School of
Information Systems, Technology and Management, University
of New South Wales, Australia. She received her Ph.D. in
computer science. She has over 80 publications including three
edited books, namely “Managing Software Engineering
Knowledge”, “Engineering and Managing Software
Requirements”, and “Value-Based Software Engineering”. Her
research interests include value-based approach in software
development, management of software development process
and requirements engineering. She is on the editorial boards of
Requirements Engineering Journal and Information and
Software Technology Journal.

 Farhad Daneshgar is a Senior Lecturer at the School of
Information Systems, Technology and Management, University
of New South Wales, Australia. Farhad is a member of the
editorial board in three IS/KM Journals, and the leader of
Knowledge Management Research Group at SISTM. He is the
creator of the awareness net modeling language and his research
interests include e-collaboration, analysis and design of
collaboration-support systems, collaborative learning, and mass
customisation and has published extensively in these areas.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 219

© 2012 ACADEMY PUBLISHER

