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Abstract—Analysis on topological characteristics of the 
network, such as the vertex degree distribution, centrality 
and community structure, provides valuable insight into the 
structure and function of the interacting data entities. 
Community detection is one of the key problems in the field 
of social network analysis. In the paper, we mainly focus on 
the two-part division problem for network, i.e., community 
(or graph) partitioning. Based on the in-depth analysis on 
the community features of some known partitioning results, 
a three-stage heuristic algorithm named 3SHP is proposed. 
At first, two pseudo-centers are identified according to the 
clue of the diameter path in a network. Then, two heuristic 
strategies, i.e. the shortest path cutting (SPC) and two-point 
diffusing (TPD), are introduced to divide the whole network 
into three parts: two rudimental communities and a set of 
undecided nodes. Subsequently, an experience rule is used 
to classify such undecided nodes to produce two final 
communities. The experiment results show that the 3SHP 
algorithm is effective, able to yield the best partitioning 
results in most instances.  
 
Index Terms—heuristic method, graph algorithm, algorithm 
design and analysis, social networks 
 

I.  INTRODUCTION 

Data-intensive applications have been widely used in 
the era of information explosion. The rational way to 
model and analyze the massive data sets with complex 
interactions is network representation. The resulting 
graph-based structures are usually quite complex. 
Consequently, it is necessary to analyze the network 
structure and reveal the potential laws in the social 
relationships, as these laws are not usually readily 
discernible. That is the so-called social network analysis 
[1,2], which has emerged as a key technique in modern 
sociology. 

In a social network, the nodes are not uniformly 
distributed but clustering together into some small groups. 
Therefore, the network not only consists of a mass of 
nodes but also has some subgroup structure. Research on 
partitioning a network into different subgroups called the 
community structures has become one of the major 
concerns of social network analysis. Accordingly, the 
process of identifying the clustering structures is called 
network community detection [2,3] The identification of 
community structure is beneficial to network reduction, 
scientific management, precise classification and so forth. 

As a consequence, community detection (or partitioning) 
has become an important research direction in the fields 
of system science and social science [4]. 

Community detection is essentially a NP-hard problem 
[5,6]. Therefore, nearly all existing algorithms are 
approximate, and failing to settle the problem 
fundamentally at all. Some algorithms such as K-L [7] 
can’t achieve good partitioning result despite the short 
computing time. On the other hand, the algorithms such 
as GN [9] and L-Shell [11] need lots of time to produce 
high-quality division. In the paper, we mainly focus on 
the two-part division problem for social networks, and 
present a three-stage heuristic partitioning algorithm 
named 3SHP to solve it. In addition, we also performed 
some experimental investigations on three real-world 
networks to validate the effectiveness and efficiency of 
the proposed algorithm. 

The remainder of this paper is organized as follows. 
The problem of detecting bipartite community is 
described in section 2. In section 3, the overall algorithm 
framework is addressed. Detailed implementation steps of 
the proposed algorithm are discussed in section 4, and its 
computational complexity is analyzed in section 5. In 
section 6, three real-world networks are used to validate 
the efficiency of our algorithm. Some existing work 
closely related to our method is addressed in section 7. 
Finally, we conclude the work in section 8. 

II.  PROBLEM DESCRIPTION 

The interaction data set is expressed using a graph 
abstraction ( ,  )G V E , where V  is the set of vertices 
representing unique interacting entities, and E  is the set 
of edges representing the interactions. The number of 
vertices and edges are denoted by n  and m  respectively 
[2]. The graph may be directed or undirected, but we only 
consider the latter in this paper. 

Given a network (referring to a connected and 
undirected graph here) ( , )G V  E= , 1 2( ,  ,  ,  )sC C C C= …  
denote a partition of V  such that iC ≠ ∅ , i jC C = ∅∩  
and 1 ( )s

ii C V G= =∪ . We call ( )iG C  a community of G , 
which is identified with the induced sub-graph 

[ ] ( ,  ( ))i i iG C C E C= , where ( ) { , | , ;  iE C u v u v E= < >< >∈  

, }iu v C∈ . Then 1( ) ( )s
iiE C E C==∪  is the set of intra-
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community edges and  ( ) ( )E C E E C= −�  is the set of 
inter-community edges. For example, a figurative 
drawing of a network with community structure is shown 
in Figure 1. 

 
Figure 1.  A small network with community structure of the type 
considered in this paper. In this case there are three communities, 
denoted by the circles, which have dense internal links but between 
which there is only a lower density of external links [12]. 

If the community number 2s = , graph G  will be 
divided into two sub-graphs (a.k.a. communities): 1G  and 

2G . Each node in 1G  or 2G  must belong to the node set 
of G , i.e. ( )V G . Meanwhile, 1 2( ) ( ) ( )V G V G V G=∪ , 
which can also be expressed as 1 2 ( )C C V G=∪ . If there 
is an edge ije  between the node iv  and jv , which are all 
in one sub-graph 1G  or 2G , this edge should be classified 
into that sub-graph. On the contrary, if the two nodes iv  
and jv  of edge ije  belong to two different sub-graphs, for 
example, 1iv C∈  and 2jv C∈ , the edge can’t be classified 
into any community. Obviously, 1{ , |ij i j iE e v v v C= =< > ∈�  

2}jv C∧ ∈ . Thus, 1 2( ) ( ) ( )E G E G E E G=�∪ ∪ . In this 
paper, we mainly consider the bipartite partitioning 
problem. The partitioning refers to two-part division in 
the rest of paper unless otherwise specified. 

For a given network, there maybe exist several 
partitioning results. How to judge which one is the best 
partitioning is also an interesting problem. It’s not hard to 
find that, the goal of partitioning a network into groups of 
nodes is to ensure that the connections within groups are 
dense and the connections between the groups are sparse. 
Among all proposed methods of evaluating the 
partitioning results, Newman and Girvan’s method [13,14] 
is the most popular. They defined a measure of 
modularity, denoted by Q , which uses the denseness and 
sparsity of the groups’ intra and interconnections to 
quantify community structure strength. 

Given the symmetric matrix e  whose element (1ije ≤   
, | |)i j C≤  is the fraction of all edges in the network that 

link vertices in community i  to vertices in community j , 
the row sums i ijja e= ∑  represent the fraction of edges 
that connection to vertices in community i . The 
modularity measurement can be defined via the following 
formula: 

2
2( )

2
i i

ii i
i i

m dQ e a
m m

⎡ ⎤⎛ ⎞= − = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑                            (1) 

Where m  is the number of all edges in network, im  is 
the number of edges in community i , and id  represents 
the sum of degree of each node in community i . 

III.  ALGORITHM FRAMEWORK 

As implied by the algorithm’s name, our 3SHP 
algorithm can be divided into three stages: starting-point 
identification, preliminary partitioning and the final 
adjustment. The whole process of 3SHP algorithm can be 
illustrated in Figure 2. 

 
Figure 2.  Overall framework of the three-stage heuristic partitioning 

algorithm. 

At first, the algorithm selects two “core” points as the 
starting centers according to the feature information of 
network, such as degree distribution and diameter path 
(i.e., the longest one among all shortest paths). Secondly, 
two optional heuristic strategies are introduced to perform 
preliminary partitioning on network. SPC strategy 
removes the nodes along the shortest paths of these two 
pseudo-centers to get two basic isolated parts. In TPD 
strategy, algorithm can generate a series of node sets for 
each pseudo-center node through the k-step diffusing 
operation. Then, several possible divisions can be 
achieved by combining such diffusing node sets. For both 
strategies, the preliminary partition includes three parts: 
two embryonic communities and one undecided node set. 
Finally, an experience rule is used to classify the 
undecided nodes. Of course, the TPD strategy also needs 
to pick out the best result from the above several 
combinations. 

IV.  KEY STEPS OF ALGORITHM 3SHP 

A.  Pseudo-center Identification 
In most partitioning results of networks, it is not hard 

to find that each community has at least one core node, 
which has high degree in general. Therefore, we can 
partition network in line with this intuitive clue: select 
two nodes with higher degree as the “centers” of two 
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communities, and then construct the community structure 
from each “core” node. In order to facilitate the 
expression described herein below, we introduce a 
concept of distance between two nodes in network here. 

Definition 1  (distance) The distance between two 
nodes in network is the length (i.e. edge number) of the 
shortest path from one node to another node. 

At first, it is necessary to count the degree information 
of each node. Based on the above results, all nodes in 
network can be sorted into descending order of degree. 
Then, the former k  nodes can be picked out, denoted as 

- 1 2{ ,  ,  ...,  }top k kS n n n= . It should be noted that the k  can 
be a specific number or a percentage of node number in 
whole network. According to the power-law character in 
complex network, the proportion of nodes with high 
degree is very low in general. Thence, the value of k  
usually is not so high. On the other hand, from a series of 
experiments, we find that 8k =  is suitable for a network 
with 100 nodes or less, while for a network with more 
than 100 nodes, [5%,  10%]k ∈  will work better. 

The next question is how to find out two nodes from 
the set -top kS . A basic hint is that these two nodes should 
not be so near that they will be classified into one sub-
group. That is to say, the distance between two “core” 
nodes should be as far as possible in network. Here, we 
adopt the following heuristic rule: find the diameter path 
(i.e., the longest one among all shortest paths) from a 
given network, any of which is optional if several shortest 
paths are all the longest. Suppose the two end-points of 
this path are IN  and IIN  respectively. For the node IN , 
we can calculate all distances from it to nodes in -top kS , 
and find the node which is nearest to IN  from the set 

-top kS  as a “core” node, denoted as IC . Similarly, node 
IIC  can also be picked out with respect to node IIN . It is 

noticeable that the above two nodes are not the indeed 
centers or cores in the final two communities, so they are 
viewed as pseudo-centers. 

B.  Strategy 1: SPC 
Assume IC  and IIC  are two “core” nodes for two parts 

respectively, then the shortest path cutting strategy can be 
used to calculate the preliminary partitions. At first, it is 
necessary to identify the shortest path from IC  to IIC  in 
network G . Then, the nodes in the shortest path except 

IC  and IIC  are removed as equivocal nodes (as shown in 
Figure 3). Meanwhile, a new graph G'  can be achieved 
by removing the equivocal nodes from G . If graph G'  is 
a disconnected graph, the algorithm stops and two 
preliminary partitions are yielded. Otherwise, we 
continue to compute the shortest path from IC  to IIC  in 
network G' , and then remove the nodes in such path 
until a disconnected graph can be yielded. Finally, all 
removed nodes are put into the set of undecided nodes. 

 
Figure 3.  The illustration for removing the equivocal nodes along the 

shortest path between two “core” nodes. 

Further, the partitioning strategy can be described in 
the pseudo-code form as follows. 
Strategy SPC 
Input:  A network G . 
Output: Two embryonic communities (i.e. IEC and 

IIEC ) and an undecided node set unV . 
1: { 
2:    select two “core” nodes from the network according 

to the pseudo-center identification rule, denoted as 
IC  and IIC ; 

3:   cutV = ∅ ; 
4:   unV = ∅ ; 
5:    while ( IC  and IIC  are connected) 
6:    { 
7:        Find the shortest path p  from IC  to IIC  in G , 

whose node set is denoted as ( )V p ; 
8:       I II( ) { ,  }cutV V p C C= − ; 
9:       un un cutV V V= ∪ ; 
10:     cutG G V′ = − ; /* the associated edges in ( )E G are 

also removed */ 
11:     G G′= ; 
12:    } 
13: view the connected sub-graph around IC  as IEC , 

and the connected sub-graph around IIC  as IIEC . 
14: return ( ,  ,  )I II unEC EC V  
15: } 

C. Strategy 2: TPD 
The other strategy, called two-point diffusing (TPD), is 

similar to the spreading operation in L-Shell algorithm. It 
starts with these two points to perform expanding (also 
called diffusing) operation to get two embryonic 
communities and a set of undecided nodes. This strategy 
will produce several kinds of preliminary partitions. We 
use the modularity as the criterion to select the best one 
as the final output. In order to facilitate the expression, a 
concept about k-step diffusing is defined below. 

Definition 2  (k-step diffusing) The k-step diffusing 
operation of a node is an action that walks from the given 
node to the farthest node, and the distance between them 
is exactly k steps. The k-step diffusing set of a node 
includes all nodes that are k steps away from the given 
node. 

It’s not hard to find that, the 0-step diffusing set is the 
given node itself, and the largest diffusing set includes all 
nodes of network. Since the networks in real world 
possess the feature of small world [15], the k value in 
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diffusing operation is not too large, and usually is a 
constant in the magnitude of 101. Here, we suppose that 
the largest diffusing steps of the “core” node IC  and IIC  
are l  and w  respectively. Then, the collection of 
diffusing sets of node IC  can be denoted as 

I I I I I

0 1 2I( ) { ,  ,  ,  ...,  ,  ...,  }i lDS C V V V V V= . Similarly, II( )DS C  
II II II II II

0 1 2{ ,  ,  ,  ...,  ,  ...,  }j wV V V V V=   for node IIC . Here, I

iV  
is the i-step diffusing set for the “core” node IC ,  II

jV  is 
the j-step diffusing set for the “core” node IIC . Obviously, 

I

0 I{ }V C= , II

0 II{ }V C=  and I II ( )l wV V V G= = . Subsequently, 
the diffusing sets of two “core” nodes should be 
combined to generate two embryonic communities. As 
shown in Figure 4, -pairl w×  combinations can be 
obtained for I( )DS C  and II( )DS C . As mentioned above, 
the largest k is a constant value in general due to the 
small world character in complex network. Therefore, the 
value of l w×  is not so great. 

I

0V I

1V I

iV I

lV

II

0V II

1V II

jV II

wV
 

Figure 4.  The illustration for combinations of k-step diffusing sets. 

In order to generate the embryonic community 
structure, the diffusing sets from two “core” nodes at 
different steps should be combined together for further 
consideration. Here, the i-step ( 0 i l≤ ≤ ) diffusing sub-
graph for the “core” node IC  is denoted as ig , and the j-
step ( 0 j w≤ ≤ ) diffusing sub-graph for the “core” node 

IIC  is denoted as jg . The whole network can be 
partitioned according to the following strategy, which is 
written in pseudo-code as follows. It is worth noting that, 
in the bottom loop-body the preliminary partition 
includes three parts: two embryonic communities and an 
undecided node set. Since the max-diffusing steps of IC  
and IIC  are l  and w  respectively, the final output are the 
sets of two embryonic communities and collection of 
undecided node set, and the supremum of cardinalities of 
these three sets are identical, i.e. l w× . 
Strategy TPD 
Input:  A network G . 
Output: The collection of two embryonic communities 

and collection of undecided node set, i.e., 
I I I I

0 1 2( ) { , , ,  ..., }l wIS EC EC EC EC EC ×= , 
II II II II

0 1 2II( ) { , , ,  ..., }l wS EC EC EC EC EC ×=  and 

0 1 2( ) { , , ,  ..., }un un un un

l wunS V V V V V ×= . 
1: { 
2:    identify two “core” nodes from the network, denoted 

as IC  and IIC ; 
3:    for 1 to max-diffusing steps of IC     //from 1 to l  

4:      for 1 to max-diffusing steps of IIC  // from 1 to w
5:      { 
6:         denote i-step diffusing sub-graph of IC  as ig ; 
7:         denote j-step diffusing sub-graph of IIC  as jg ; 
8:         if ( i jg g = ∅∩ ) 
9:            continue; 
10:       else 
11:       { 
12:           treat ( )i i jg g g− ∩  as the embryonic 

community of IC , denoted as I

i jEC × ; 
13:           treat ( )j i jg g g− ∩  as the embryonic 

community of IIC , denoted as II

i jEC × ; 
14:           view ( )i j i jg g G g g+ − −∩  as the undecided 

node set, i.e. un

i jV × ; 
15:          } 
16:     } 
17:   return I II({ },  { },{ })un

i j i j i jEC EC V× × ×  
18: } 

 In general, ig  and jg  will not have the intersection for 
some cases, so the number of the real combinations is 
greatly less than the upper bound l w× . After yielding 
the set I( )S EC , II( )S EC  and ( )unS V , an experience rule 
will be used to assign undecided nodes in un

i jV ×  to the 
embryonic community I

i jEC ×  and II

i jEC × . Obviously, the 
assignment action will be executed for l w×  times. 
Finally, the partition with max modularity can be picked 
out as the final resolution. 

D.  Classification for Undecided Nodes 
After the undecided nodes are collected, how to 

classify them into a proper part is also a crucial task. The 
instinct experience tells us that the node in the candidate 
set should be classified into the closely-related partition. 
Therefore, we adopt the following strategy to handle the 
undecided nodes. 

Suppose two embryonic partitions corresponding to the 
core IC  and IIC  are IEC  and IIEC  respectively, and the 
candidate set of undecided nodes is unV . Given a node 

unv V∈ , which has 1n  edges connecting to IEC  and 2n  
edges to IIEC  in the original graph G . Then, two ratios 
can be calculated as below: 

1 2
I II100%,        100%

( ) ( )
n nr r

d v d v
= × = ×                     (2) 

Where ( )d v  represents the degree of node v  in original 
network. If I  II> r r , the node v  should be added to the 
part IEC . Otherwise, it will be classified into the second 
part. For the special case, i.e. I  II= r r , the distances from 
node v  to two “core” nodes can be viewed as the 
candidate criterion. If the distance from v  to IC  is 
shorter than that from v  to IIC , then v  should be 
classified into IEC , otherwise not. After each node and 
its corresponding edges are classified into some 
preliminary partition, we should update the partitions. 
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Subsequently, two new parts IEC '  and IIEC '  can be 
achieved. 

Similarly, the second node in the candidate set should 
be taken into account in the next iteration until all nodes 
in that set are completely handled. As a consequence, the 
final complete partitions can be yielded with the direction 
of the above rule. 

V.  ALGORITHM COMPLEXITY ANALYSIS 

In this section, the complexity of each strategy in our 
algorithm is separately analyzed. Since the first step and 
the third step are the commons in two strategies, we 
analyze them at first. 

To identify two pseudo-centers, it is necessary to 
compute the statistical information about node degree. 
The time complexity for counting degree information is 

( )O m , and the complexity of selecting Top-k node set is 
( )O k n⋅ . For the k candidate nodes, the time complexity 

of determining the pseudo-centers is k-fold of that for 
generating the shortest path in network. In an unweighted 
graph, the shortest path can be obtained by breadth first 
search (BFS) algorithm, so the corresponding time 
complexity is ( )O n m+ . Therefore, the complexity of the 
first step is ( ( )) ( ( ))O m k n k n m O k n m+ ⋅ + ⋅ + = ⋅ + , here 
n  and m  denote the number of vertices and edges 
respectively (as addressed in Section 2), k is a small 
proportion of n (i.e., k n� ). 

For classifying the undecided nodes, suppose the 
cardinality of the undecided node set is u , then the 
complexity of this step can be expressed as ( )O un . In 
general, u n� , the complexity in the third step can also 
be denoted as 2( )O n . 

In SPC strategy, the max step-number for breaking the 
connection between the “core” node IC  and IIC  is n . In 
the while loop, the main task is to compute the shortest 
path from IC  to IIC . As mentioned above, the time 
complexity of generating the shortest path is ( )O n m+ . 
Therefore, if our algorithm adopts SPC strategy to 
partition network, the overall complexity (i.e., the 
complexity including step1, 2.1 and 3) is 

2( ( ) ( ) )O k n m n n m n⋅ + + ⋅ + + . For k n� , thus 
2( ( ) ( ) )O k n m n n m n⋅ + + ⋅ + +  is equal to ( ( ))O n n m⋅ + . 

In brief, the complexity of the SPC strategy in 3SHP 
algorithm (i.e., 3SHP-SPC) is ( ( ))O n n m⋅ + . 

In TPD strategy, the outer loop will be executed for 
l w×  times. In the execution body, it needs computation 
with 2( )O n  to form the embryonic communities. Finally, 
l w×  kinds of combinations of two embryonic 
communities and an undecided node set can be yielded. 
For each combination, it needs the computation with 
complexity 2( )O n  to classify the undecided nodes. 
Therefore, the time complexity of TPD strategy in 3SHP 
algorithm (i.e., 3SHP-TPD which includes step 1, 2.2 and 
3) is ( ( )O k n m⋅ + +  2 2( ))l w n n× ⋅ + . Simply, it is 

2( )O l w n× × . As mentioned in section 4.3, the value of 
l  or w  is not too large, usually in the magnitude of 101. 

It should be noted that, our algorithm is heuristic rule-
based method, so the real computing time can be much 
shorter than the theory value, which will be approved in 
the following empirical analysis. 

VI.  EMPIRICAL ANALYSIS 

In order to validate the effectiveness and efficiency of 
our algorithm, a comparison experiment has been 
performed on three real-world social networks. As for the 
network details, please refer to Table 1. The experiment 
is employed in the environment of Eclipse 3.2 and runs 
on Pentium 4 with 1.8GHz and 1 GB memory. The tool 
runs on Windows XP SP2, and the Java runtime 
environment is JRE1.6.0_05. In order to obtain the 
comparison data, we also implemented other two 
representative algorithms (i.e. L-Shell and GN) in our 
experiment. 

TABLE  I.    BASIC CHARACTERS OF THE REAL-WORLD NETWORKS 
USED IN OUR EXPERIMENT 

ID. #Node #Edge Description 

G1 34 76 The well-known “karate club” study 
of Zachary [7,11,13]. 

G2 62 159 

An undirected social network of 
frequent associations between 62 
dolphins in a community living in 
Doubtful Sound, New Zealand [16].

G3 105 441 

A network of books about US 
politics published around the time of 
the 2004 presidential election and 
sold by the online bookseller 
Amazon.com. Edges between books 
represent frequent co-purchasing of 
books by the same buyers. The 
network is compiled by V. Krebs 
and is unpublished, but can found on 
Krebs’ web site [17]. 

The network of Karate Club is a classical instance to 
verify the correctness and efficiency of some specific 
algorithm. For this instance, our algorithm (both SPC and 
TPD strategy) can achieve the best result (Q-
value=0.36842) as shown in Figure 5. For the L-Shell and 
GN algorithm, the Q-values are 0.30748 and 0.35596 
respectively. The reason for getting the optimal result lies 
in the placement of node 3 and 10. In the results of 
algorithm L-Shell and GN, the two nodes are all 
classified into same community as node 34. However, our 
TPD algorithm assigns it to the community with node 1, 
so our algorithm can achieve the highest Q-value. More 
importantly, our algorithm is advantageous in the escaped 
time, only 15 and 16 milliseconds for SPC and TPD 
strategy respectively. 
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Figure 5.  The partitioning result by our algorithm (both SPC and TPD 

strategy) for the Zachary’s network. 

 
Figure 6.  Results of the second network by SPC strategy. 

The second example is a non-human social network, 
i.e. a network of dolphins. The two strategies in our 
algorithm can generate two different results as shown in 
Figure 6 and 7 respectively. While adopting SPC strategy 
to partition network, the final two communities are 
pictorially represented in Figure 6. The corresponding Q-
value and computing time are 0.3787 and 31 ms, 
respectively. Figure 7 is the result of TPD strategy, its Q-
value is 0.38986 and the computing time is also 31 ms. 
By contrast, GN algorithm works as well as SPC strategy 
but worse than TPD strategy. It consumes 110 ms to 
generate a partition with Q-value 0.3787. However, L-
Shell algorithm is worse than both strategies due to its Q-
value 0.36612 and escaped time 328 ms. 

 

 
Figure 7.  Results of the second network by TPD strategy. 

 
Figure 8.  Results of the third network by SPC strategy. 

 
For the third network, strategy SPC and TPD also 

produce different results. As shown in Figure 8 and 9, the 
second strategy can yield much more precise partition 
than the first. It computes the result with highest 
modularity Q=0.45655 in 78 ms. Unfortunately, the 
strategy SPC can merely compute a partition with Q-
value=0.43920. In this case, algorithm L-Shell and GN 
produce very closed results, and their Q-values are 
0.44397 and 0.44241 respectively. However, their 
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computing time is much longer than ours, exceeding 1500 
ms. 

 
Figure 9.  Results of the third network by TPD strategy. 

The details about partitioning results of three networks 
are listed in Table 2 for comparison. Moreover, the Q-
value comparison is also visualized in Figure 10. Based 
on the comparison analysis, we can draw a conclusion 
that our algorithm proves to be competitive in terms of 
the optimization ability and computational efficiency. For 
all three cases, strategy TPD in 3SHP algorithm can 
generate the highest partitioning quality for them. 
Meanwhile, the computing time of this strategy is shorter 
than algorithm L-Shell and GN. For the other strategy, i.e. 
SPC, it can also generate much better results. The 
corresponding Q-value is the highest for some cases or 
much closed to the best one. On the other hand, the 
computing time is as short as strategy TPD. It is worth 
noting that, the computing time of our algorithm doesn’t 
have great fluctuation with the rise of network size. In 
other words, our algorithm has favourable scalability, i.e. 
the processing time doesn’t fast grow with the size of 
network. On the contrary, the computing time of other 
two algorithms increase rapidly with the node number. 
TABLE  II.    RESULT COMPARISON BETWEEN THREE ALGORITHMS FOR 

THE REAL-WORLD NETWORKS 

Network Algorithm 

Node 
number of 

the 1st 
community

Node 
number of 

the 2nd 
community 

Q-value Time 
(ms)

L-Shell 13 21 0.30748 46 
GN 15 19 0.35596 47 

3SHP-
SPC 17 17 0.36842 15 G1 

3SHP-
TPD 17 17 0.36842 16 

L-Shell 24 38 0.36612 328
GN 21 41 0.37870 110

G2 

3SHP-
SPC 21 41 0.37870 31 

3SHP-
TPD 23 39 0.38986 31 

L-Shell 49 56 0.44397 2203
GN 64 41 0.44241 1594

3SHP-
SPC 62 43 0.43920 78 G3 

3SHP-
TPD 51 54 0.45655 78 

Of course, the proposed algorithm is validated only by 
networks with the magnitude of 102 at present. But these 
three cases are well-known and have been used to check 
the effectiveness of algorithm in many literatures. Our 
algorithm generates the best result for all of them, which 
surely proves its scalability. Although our algorithm 
mainly deals with the two-part division problem, it’s 
obvious that it can also be used for k-partitioning ( 2k > ) 
of a network through appropriate transformation. 

 
Figure 10.  Q-value comparison of four algorithms for three real-world 

networks. 

VII.  RELATED WORK 

In recent years, complex network analysis has attracted 
research interests, and community detection (also called 
graph clustering) became a hot topic in this field. Until 
today, quite a few methods have been proposed to solve 
this problem. Recently, reference [10] and [18] reviewed 
the existing work systemically. Here, we only present 
researches comparable with our algorithm. 

The first one is the well-known Kernighan-Lin 
algorithm [7], which is based on greedy optimization for 
the cost function. Its basic idea is to introduce a gain 
function into the network partitioning problem. It reaches 
the best solution through inter-changing the nodes in the 
former designated partitions. However, it requires 
assigning the node number of each community before 
partitioning, which is hard to determine only based on 
people’s priori knowledge [8]. 

Girvan and Newman proposed an approach based on 
link removal to detect an unknown number of 
communities [9]. They focused on those edges which are 
the most “between” communities. This algorithm can 
provide better partitioning result, but doesn’t have 
advantage in computing time. In addition, it will produce 
so declining partitions for some specific networks (e.g. 
random networks) [10]. In contrast, the computing 
efficiency of our algorithm shows a great improvement 
from GN algorithm. 
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L-Shell algorithm proposed by Bagrow and Bollt [11] 
is an agglomerative clustering-based method, actually a 
diffusing method. It starts with a specific node until the 
ratio of the emerging degree, i.e. l

jkΔ , at step l  to that at 
step 1l −  is lower than a cut-off value α . The main 
difference between that algorithm and ours lies in our 
TPD strategy spreads the community structure from two 
pseudo-core nodes. In addition, L-Shell algorithm has 
two fatal weaknesses: (1) It needs a search procedure to 
find the best starting-point. (2) An iterative loop is also 
needed to determine the optimal threshold value, i.e. α . 
Fortunately, our proposed method can avoid the above 
time-consuming process, so it has a great advantage in 
computing time. 

In addition, some traditional meta-search algorithms 
such as evolutionary algorithm are also adopted to settle 
this problem [19]. However, this type of algorithm 
usually has no advantage in computing time due to the 
slow convergence speed. 

VIII.  CONCLUDING REMARKS 

Community partitioning is a key but difficult problem 
in social network analysis. Based on the in-depth analysis 
on the partitioning results, some heuristic strategies are 
proposed to solve the two-part division problem. At first, 
two nodes are treated as pseudo-centers based on the 
clues of the diameter path and degree information. Based 
on these two “core” nodes, two strategies, i.e. the shortest 
path cutting (SPC) and two-point diffusing (TPD), are 
adopted to generate two embryonic communities. 
Subsequently, an experience rule is used to adjust the 
undecided nodes. A comparison experiment is performed 
to validate the effectiveness and efficiency of our 
algorithm. The results show that our algorithm can yield 
excellent community partition results with very short 
computing time. 

The result of our algorithm is promising, but there are 
a couple of open issues to be answered in the future work. 
Here, the networks in experiment are not so large, so we 
need collect much larger network to perform comparison 
analysis. On the other hand, we are currently working on 
modify this algorithm to handle multi-part division 
problem. Furthermore, using this algorithm to treat the 
weighted network partitioning problem also needs to be 
explored. 
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