
A Heuristic Algorithm for Bipartite Community
Detection in Social Networks

Chengying Mao

School of Software and Communication Engineering,
Jiangxi University of Finance and Economics, 330013 Nanchang, China

Email: maochy@yeah.net

Abstract—Analysis on topological characteristics of the
network, such as the vertex degree distribution, centrality
and community structure, provides valuable insight into the
structure and function of the interacting data entities.
Community detection is one of the key problems in the field
of social network analysis. In the paper, we mainly focus on
the two-part division problem for network, i.e., community
(or graph) partitioning. Based on the in-depth analysis on
the community features of some known partitioning results,
a three-stage heuristic algorithm named 3SHP is proposed.
At first, two pseudo-centers are identified according to the
clue of the diameter path in a network. Then, two heuristic
strategies, i.e. the shortest path cutting (SPC) and two-point
diffusing (TPD), are introduced to divide the whole network
into three parts: two rudimental communities and a set of
undecided nodes. Subsequently, an experience rule is used
to classify such undecided nodes to produce two final
communities. The experiment results show that the 3SHP
algorithm is effective, able to yield the best partitioning
results in most instances.

Index Terms—heuristic method, graph algorithm, algorithm
design and analysis, social networks

I. INTRODUCTION

Data-intensive applications have been widely used in
the era of information explosion. The rational way to
model and analyze the massive data sets with complex
interactions is network representation. The resulting
graph-based structures are usually quite complex.
Consequently, it is necessary to analyze the network
structure and reveal the potential laws in the social
relationships, as these laws are not usually readily
discernible. That is the so-called social network analysis
[1,2], which has emerged as a key technique in modern
sociology.

In a social network, the nodes are not uniformly
distributed but clustering together into some small groups.
Therefore, the network not only consists of a mass of
nodes but also has some subgroup structure. Research on
partitioning a network into different subgroups called the
community structures has become one of the major
concerns of social network analysis. Accordingly, the
process of identifying the clustering structures is called
network community detection [2,3] The identification of
community structure is beneficial to network reduction,
scientific management, precise classification and so forth.

As a consequence, community detection (or partitioning)
has become an important research direction in the fields
of system science and social science [4].

Community detection is essentially a NP-hard problem
[5,6]. Therefore, nearly all existing algorithms are
approximate, and failing to settle the problem
fundamentally at all. Some algorithms such as K-L [7]
can’t achieve good partitioning result despite the short
computing time. On the other hand, the algorithms such
as GN [9] and L-Shell [11] need lots of time to produce
high-quality division. In the paper, we mainly focus on
the two-part division problem for social networks, and
present a three-stage heuristic partitioning algorithm
named 3SHP to solve it. In addition, we also performed
some experimental investigations on three real-world
networks to validate the effectiveness and efficiency of
the proposed algorithm.

The remainder of this paper is organized as follows.
The problem of detecting bipartite community is
described in section 2. In section 3, the overall algorithm
framework is addressed. Detailed implementation steps of
the proposed algorithm are discussed in section 4, and its
computational complexity is analyzed in section 5. In
section 6, three real-world networks are used to validate
the efficiency of our algorithm. Some existing work
closely related to our method is addressed in section 7.
Finally, we conclude the work in section 8.

II. PROBLEM DESCRIPTION

The interaction data set is expressed using a graph
abstraction (,)G V E , where V is the set of vertices
representing unique interacting entities, and E is the set
of edges representing the interactions. The number of
vertices and edges are denoted by n and m respectively
[2]. The graph may be directed or undirected, but we only
consider the latter in this paper.

Given a network (referring to a connected and
undirected graph here) (,)G V E= , 1 2(, , ,)sC C C C= …
denote a partition of V such that iC ≠ ∅ , i jC C = ∅∩
and 1 ()s

ii C V G= =∪ . We call ()iG C a community of G ,
which is identified with the induced sub-graph

[] (, ())i i iG C C E C= , where () { , | , ; iE C u v u v E= < >< >∈

, }iu v C∈ . Then 1() ()s
iiE C E C==∪ is the set of intra-

204 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.204-211

community edges and () ()E C E E C= −� is the set of
inter-community edges. For example, a figurative
drawing of a network with community structure is shown
in Figure 1.

Figure 1. A small network with community structure of the type
considered in this paper. In this case there are three communities,
denoted by the circles, which have dense internal links but between
which there is only a lower density of external links [12].

If the community number 2s = , graph G will be
divided into two sub-graphs (a.k.a. communities): 1G and

2G . Each node in 1G or 2G must belong to the node set
of G , i.e. ()V G . Meanwhile, 1 2() () ()V G V G V G=∪ ,
which can also be expressed as 1 2 ()C C V G=∪ . If there
is an edge ije between the node iv and jv , which are all
in one sub-graph 1G or 2G , this edge should be classified
into that sub-graph. On the contrary, if the two nodes iv
and jv of edge ije belong to two different sub-graphs, for
example, 1iv C∈ and 2jv C∈ , the edge can’t be classified
into any community. Obviously, 1{ , |ij i j iE e v v v C= =< > ∈�

2}jv C∧ ∈ . Thus, 1 2() () ()E G E G E E G=�∪ ∪ . In this
paper, we mainly consider the bipartite partitioning
problem. The partitioning refers to two-part division in
the rest of paper unless otherwise specified.

For a given network, there maybe exist several
partitioning results. How to judge which one is the best
partitioning is also an interesting problem. It’s not hard to
find that, the goal of partitioning a network into groups of
nodes is to ensure that the connections within groups are
dense and the connections between the groups are sparse.
Among all proposed methods of evaluating the
partitioning results, Newman and Girvan’s method [13,14]
is the most popular. They defined a measure of
modularity, denoted by Q , which uses the denseness and
sparsity of the groups’ intra and interconnections to
quantify community structure strength.

Given the symmetric matrix e whose element (1ije ≤
, | |)i j C≤ is the fraction of all edges in the network that

link vertices in community i to vertices in community j ,
the row sums i ijja e= ∑ represent the fraction of edges
that connection to vertices in community i . The
modularity measurement can be defined via the following
formula:

2
2()

2
i i

ii i
i i

m dQ e a
m m

⎡ ⎤⎛ ⎞= − = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ (1)

Where m is the number of all edges in network, im is
the number of edges in community i , and id represents
the sum of degree of each node in community i .

III. ALGORITHM FRAMEWORK

As implied by the algorithm’s name, our 3SHP
algorithm can be divided into three stages: starting-point
identification, preliminary partitioning and the final
adjustment. The whole process of 3SHP algorithm can be
illustrated in Figure 2.

Figure 2. Overall framework of the three-stage heuristic partitioning

algorithm.

At first, the algorithm selects two “core” points as the
starting centers according to the feature information of
network, such as degree distribution and diameter path
(i.e., the longest one among all shortest paths). Secondly,
two optional heuristic strategies are introduced to perform
preliminary partitioning on network. SPC strategy
removes the nodes along the shortest paths of these two
pseudo-centers to get two basic isolated parts. In TPD
strategy, algorithm can generate a series of node sets for
each pseudo-center node through the k-step diffusing
operation. Then, several possible divisions can be
achieved by combining such diffusing node sets. For both
strategies, the preliminary partition includes three parts:
two embryonic communities and one undecided node set.
Finally, an experience rule is used to classify the
undecided nodes. Of course, the TPD strategy also needs
to pick out the best result from the above several
combinations.

IV. KEY STEPS OF ALGORITHM 3SHP

A. Pseudo-center Identification
In most partitioning results of networks, it is not hard

to find that each community has at least one core node,
which has high degree in general. Therefore, we can
partition network in line with this intuitive clue: select
two nodes with higher degree as the “centers” of two

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 205

© 2012 ACADEMY PUBLISHER

communities, and then construct the community structure
from each “core” node. In order to facilitate the
expression described herein below, we introduce a
concept of distance between two nodes in network here.

Definition 1 (distance) The distance between two
nodes in network is the length (i.e. edge number) of the
shortest path from one node to another node.

At first, it is necessary to count the degree information
of each node. Based on the above results, all nodes in
network can be sorted into descending order of degree.
Then, the former k nodes can be picked out, denoted as

- 1 2{ , , ..., }top k kS n n n= . It should be noted that the k can
be a specific number or a percentage of node number in
whole network. According to the power-law character in
complex network, the proportion of nodes with high
degree is very low in general. Thence, the value of k
usually is not so high. On the other hand, from a series of
experiments, we find that 8k = is suitable for a network
with 100 nodes or less, while for a network with more
than 100 nodes, [5%, 10%]k ∈ will work better.

The next question is how to find out two nodes from
the set -top kS . A basic hint is that these two nodes should
not be so near that they will be classified into one sub-
group. That is to say, the distance between two “core”
nodes should be as far as possible in network. Here, we
adopt the following heuristic rule: find the diameter path
(i.e., the longest one among all shortest paths) from a
given network, any of which is optional if several shortest
paths are all the longest. Suppose the two end-points of
this path are IN and IIN respectively. For the node IN ,
we can calculate all distances from it to nodes in -top kS ,
and find the node which is nearest to IN from the set

-top kS as a “core” node, denoted as IC . Similarly, node
IIC can also be picked out with respect to node IIN . It is

noticeable that the above two nodes are not the indeed
centers or cores in the final two communities, so they are
viewed as pseudo-centers.

B. Strategy 1: SPC
Assume IC and IIC are two “core” nodes for two parts

respectively, then the shortest path cutting strategy can be
used to calculate the preliminary partitions. At first, it is
necessary to identify the shortest path from IC to IIC in
network G . Then, the nodes in the shortest path except

IC and IIC are removed as equivocal nodes (as shown in
Figure 3). Meanwhile, a new graph G' can be achieved
by removing the equivocal nodes from G . If graph G' is
a disconnected graph, the algorithm stops and two
preliminary partitions are yielded. Otherwise, we
continue to compute the shortest path from IC to IIC in
network G' , and then remove the nodes in such path
until a disconnected graph can be yielded. Finally, all
removed nodes are put into the set of undecided nodes.

Figure 3. The illustration for removing the equivocal nodes along the

shortest path between two “core” nodes.

Further, the partitioning strategy can be described in
the pseudo-code form as follows.
Strategy SPC
Input: A network G .
Output: Two embryonic communities (i.e. IEC and

IIEC) and an undecided node set unV .
1: {
2: select two “core” nodes from the network according

to the pseudo-center identification rule, denoted as
IC and IIC ;

3: cutV = ∅ ;
4: unV = ∅ ;
5: while (IC and IIC are connected)
6: {
7: Find the shortest path p from IC to IIC in G ,

whose node set is denoted as ()V p ;
8: I II() { , }cutV V p C C= − ;
9: un un cutV V V= ∪ ;
10: cutG G V′ = − ; /* the associated edges in ()E G are

also removed */
11: G G′= ;
12: }
13: view the connected sub-graph around IC as IEC ,

and the connected sub-graph around IIC as IIEC .
14: return (, ,)I II unEC EC V
15: }

C. Strategy 2: TPD
The other strategy, called two-point diffusing (TPD), is

similar to the spreading operation in L-Shell algorithm. It
starts with these two points to perform expanding (also
called diffusing) operation to get two embryonic
communities and a set of undecided nodes. This strategy
will produce several kinds of preliminary partitions. We
use the modularity as the criterion to select the best one
as the final output. In order to facilitate the expression, a
concept about k-step diffusing is defined below.

Definition 2 (k-step diffusing) The k-step diffusing
operation of a node is an action that walks from the given
node to the farthest node, and the distance between them
is exactly k steps. The k-step diffusing set of a node
includes all nodes that are k steps away from the given
node.

It’s not hard to find that, the 0-step diffusing set is the
given node itself, and the largest diffusing set includes all
nodes of network. Since the networks in real world
possess the feature of small world [15], the k value in

206 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

diffusing operation is not too large, and usually is a
constant in the magnitude of 101. Here, we suppose that
the largest diffusing steps of the “core” node IC and IIC
are l and w respectively. Then, the collection of
diffusing sets of node IC can be denoted as

I I I I I

0 1 2I() { , , , ..., , ..., }i lDS C V V V V V= . Similarly, II()DS C
II II II II II

0 1 2{ , , , ..., , ..., }j wV V V V V= for node IIC . Here, I

iV
is the i-step diffusing set for the “core” node IC , II

jV is
the j-step diffusing set for the “core” node IIC . Obviously,

I

0 I{ }V C= , II

0 II{ }V C= and I II ()l wV V V G= = . Subsequently,
the diffusing sets of two “core” nodes should be
combined to generate two embryonic communities. As
shown in Figure 4, -pairl w× combinations can be
obtained for I()DS C and II()DS C . As mentioned above,
the largest k is a constant value in general due to the
small world character in complex network. Therefore, the
value of l w× is not so great.

I

0V I

1V I

iV I

lV

II

0V II

1V II

jV II

wV

Figure 4. The illustration for combinations of k-step diffusing sets.

In order to generate the embryonic community
structure, the diffusing sets from two “core” nodes at
different steps should be combined together for further
consideration. Here, the i-step (0 i l≤ ≤) diffusing sub-
graph for the “core” node IC is denoted as ig , and the j-
step (0 j w≤ ≤) diffusing sub-graph for the “core” node

IIC is denoted as jg . The whole network can be
partitioned according to the following strategy, which is
written in pseudo-code as follows. It is worth noting that,
in the bottom loop-body the preliminary partition
includes three parts: two embryonic communities and an
undecided node set. Since the max-diffusing steps of IC
and IIC are l and w respectively, the final output are the
sets of two embryonic communities and collection of
undecided node set, and the supremum of cardinalities of
these three sets are identical, i.e. l w× .
Strategy TPD
Input: A network G .
Output: The collection of two embryonic communities

and collection of undecided node set, i.e.,
I I I I

0 1 2() { , , , ..., }l wIS EC EC EC EC EC ×= ,
II II II II

0 1 2II() { , , , ..., }l wS EC EC EC EC EC ×= and

0 1 2() { , , , ..., }un un un un

l wunS V V V V V ×= .
1: {
2: identify two “core” nodes from the network, denoted

as IC and IIC ;
3: for 1 to max-diffusing steps of IC //from 1 to l

4: for 1 to max-diffusing steps of IIC // from 1 to w
5: {
6: denote i-step diffusing sub-graph of IC as ig ;
7: denote j-step diffusing sub-graph of IIC as jg ;
8: if (i jg g = ∅∩)
9: continue;
10: else
11: {
12: treat ()i i jg g g− ∩ as the embryonic

community of IC , denoted as I

i jEC × ;
13: treat ()j i jg g g− ∩ as the embryonic

community of IIC , denoted as II

i jEC × ;
14: view ()i j i jg g G g g+ − −∩ as the undecided

node set, i.e. un

i jV × ;
15: }
16: }
17: return I II({ }, { },{ })un

i j i j i jEC EC V× × ×
18: }

 In general, ig and jg will not have the intersection for
some cases, so the number of the real combinations is
greatly less than the upper bound l w× . After yielding
the set I()S EC , II()S EC and ()unS V , an experience rule
will be used to assign undecided nodes in un

i jV × to the
embryonic community I

i jEC × and II

i jEC × . Obviously, the
assignment action will be executed for l w× times.
Finally, the partition with max modularity can be picked
out as the final resolution.

D. Classification for Undecided Nodes
After the undecided nodes are collected, how to

classify them into a proper part is also a crucial task. The
instinct experience tells us that the node in the candidate
set should be classified into the closely-related partition.
Therefore, we adopt the following strategy to handle the
undecided nodes.

Suppose two embryonic partitions corresponding to the
core IC and IIC are IEC and IIEC respectively, and the
candidate set of undecided nodes is unV . Given a node

unv V∈ , which has 1n edges connecting to IEC and 2n
edges to IIEC in the original graph G . Then, two ratios
can be calculated as below:

1 2
I II100%, 100%

() ()
n nr r

d v d v
= × = × (2)

Where ()d v represents the degree of node v in original
network. If I II> r r , the node v should be added to the
part IEC . Otherwise, it will be classified into the second
part. For the special case, i.e. I II= r r , the distances from
node v to two “core” nodes can be viewed as the
candidate criterion. If the distance from v to IC is
shorter than that from v to IIC , then v should be
classified into IEC , otherwise not. After each node and
its corresponding edges are classified into some
preliminary partition, we should update the partitions.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 207

© 2012 ACADEMY PUBLISHER

Subsequently, two new parts IEC ' and IIEC ' can be
achieved.

Similarly, the second node in the candidate set should
be taken into account in the next iteration until all nodes
in that set are completely handled. As a consequence, the
final complete partitions can be yielded with the direction
of the above rule.

V. ALGORITHM COMPLEXITY ANALYSIS

In this section, the complexity of each strategy in our
algorithm is separately analyzed. Since the first step and
the third step are the commons in two strategies, we
analyze them at first.

To identify two pseudo-centers, it is necessary to
compute the statistical information about node degree.
The time complexity for counting degree information is

()O m , and the complexity of selecting Top-k node set is
()O k n⋅ . For the k candidate nodes, the time complexity

of determining the pseudo-centers is k-fold of that for
generating the shortest path in network. In an unweighted
graph, the shortest path can be obtained by breadth first
search (BFS) algorithm, so the corresponding time
complexity is ()O n m+ . Therefore, the complexity of the
first step is (()) (())O m k n k n m O k n m+ ⋅ + ⋅ + = ⋅ + , here
n and m denote the number of vertices and edges
respectively (as addressed in Section 2), k is a small
proportion of n (i.e., k n�).

For classifying the undecided nodes, suppose the
cardinality of the undecided node set is u , then the
complexity of this step can be expressed as ()O un . In
general, u n� , the complexity in the third step can also
be denoted as 2()O n .

In SPC strategy, the max step-number for breaking the
connection between the “core” node IC and IIC is n . In
the while loop, the main task is to compute the shortest
path from IC to IIC . As mentioned above, the time
complexity of generating the shortest path is ()O n m+ .
Therefore, if our algorithm adopts SPC strategy to
partition network, the overall complexity (i.e., the
complexity including step1, 2.1 and 3) is

2(() ())O k n m n n m n⋅ + + ⋅ + + . For k n� , thus
2(() ())O k n m n n m n⋅ + + ⋅ + + is equal to (())O n n m⋅ + .

In brief, the complexity of the SPC strategy in 3SHP
algorithm (i.e., 3SHP-SPC) is (())O n n m⋅ + .

In TPD strategy, the outer loop will be executed for
l w× times. In the execution body, it needs computation
with 2()O n to form the embryonic communities. Finally,
l w× kinds of combinations of two embryonic
communities and an undecided node set can be yielded.
For each combination, it needs the computation with
complexity 2()O n to classify the undecided nodes.
Therefore, the time complexity of TPD strategy in 3SHP
algorithm (i.e., 3SHP-TPD which includes step 1, 2.2 and
3) is (()O k n m⋅ + + 2 2())l w n n× ⋅ + . Simply, it is

2()O l w n× × . As mentioned in section 4.3, the value of
l or w is not too large, usually in the magnitude of 101.

It should be noted that, our algorithm is heuristic rule-
based method, so the real computing time can be much
shorter than the theory value, which will be approved in
the following empirical analysis.

VI. EMPIRICAL ANALYSIS

In order to validate the effectiveness and efficiency of
our algorithm, a comparison experiment has been
performed on three real-world social networks. As for the
network details, please refer to Table 1. The experiment
is employed in the environment of Eclipse 3.2 and runs
on Pentium 4 with 1.8GHz and 1 GB memory. The tool
runs on Windows XP SP2, and the Java runtime
environment is JRE1.6.0_05. In order to obtain the
comparison data, we also implemented other two
representative algorithms (i.e. L-Shell and GN) in our
experiment.

TABLE I. BASIC CHARACTERS OF THE REAL-WORLD NETWORKS
USED IN OUR EXPERIMENT

ID. #Node #Edge Description

G1 34 76 The well-known “karate club” study
of Zachary [7,11,13].

G2 62 159

An undirected social network of
frequent associations between 62
dolphins in a community living in
Doubtful Sound, New Zealand [16].

G3 105 441

A network of books about US
politics published around the time of
the 2004 presidential election and
sold by the online bookseller
Amazon.com. Edges between books
represent frequent co-purchasing of
books by the same buyers. The
network is compiled by V. Krebs
and is unpublished, but can found on
Krebs’ web site [17].

The network of Karate Club is a classical instance to
verify the correctness and efficiency of some specific
algorithm. For this instance, our algorithm (both SPC and
TPD strategy) can achieve the best result (Q-
value=0.36842) as shown in Figure 5. For the L-Shell and
GN algorithm, the Q-values are 0.30748 and 0.35596
respectively. The reason for getting the optimal result lies
in the placement of node 3 and 10. In the results of
algorithm L-Shell and GN, the two nodes are all
classified into same community as node 34. However, our
TPD algorithm assigns it to the community with node 1,
so our algorithm can achieve the highest Q-value. More
importantly, our algorithm is advantageous in the escaped
time, only 15 and 16 milliseconds for SPC and TPD
strategy respectively.

208 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Figure 5. The partitioning result by our algorithm (both SPC and TPD

strategy) for the Zachary’s network.

Figure 6. Results of the second network by SPC strategy.

The second example is a non-human social network,
i.e. a network of dolphins. The two strategies in our
algorithm can generate two different results as shown in
Figure 6 and 7 respectively. While adopting SPC strategy
to partition network, the final two communities are
pictorially represented in Figure 6. The corresponding Q-
value and computing time are 0.3787 and 31 ms,
respectively. Figure 7 is the result of TPD strategy, its Q-
value is 0.38986 and the computing time is also 31 ms.
By contrast, GN algorithm works as well as SPC strategy
but worse than TPD strategy. It consumes 110 ms to
generate a partition with Q-value 0.3787. However, L-
Shell algorithm is worse than both strategies due to its Q-
value 0.36612 and escaped time 328 ms.

Figure 7. Results of the second network by TPD strategy.

Figure 8. Results of the third network by SPC strategy.

For the third network, strategy SPC and TPD also

produce different results. As shown in Figure 8 and 9, the
second strategy can yield much more precise partition
than the first. It computes the result with highest
modularity Q=0.45655 in 78 ms. Unfortunately, the
strategy SPC can merely compute a partition with Q-
value=0.43920. In this case, algorithm L-Shell and GN
produce very closed results, and their Q-values are
0.44397 and 0.44241 respectively. However, their

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 209

© 2012 ACADEMY PUBLISHER

computing time is much longer than ours, exceeding 1500
ms.

Figure 9. Results of the third network by TPD strategy.

The details about partitioning results of three networks
are listed in Table 2 for comparison. Moreover, the Q-
value comparison is also visualized in Figure 10. Based
on the comparison analysis, we can draw a conclusion
that our algorithm proves to be competitive in terms of
the optimization ability and computational efficiency. For
all three cases, strategy TPD in 3SHP algorithm can
generate the highest partitioning quality for them.
Meanwhile, the computing time of this strategy is shorter
than algorithm L-Shell and GN. For the other strategy, i.e.
SPC, it can also generate much better results. The
corresponding Q-value is the highest for some cases or
much closed to the best one. On the other hand, the
computing time is as short as strategy TPD. It is worth
noting that, the computing time of our algorithm doesn’t
have great fluctuation with the rise of network size. In
other words, our algorithm has favourable scalability, i.e.
the processing time doesn’t fast grow with the size of
network. On the contrary, the computing time of other
two algorithms increase rapidly with the node number.
TABLE II. RESULT COMPARISON BETWEEN THREE ALGORITHMS FOR

THE REAL-WORLD NETWORKS

Network Algorithm

Node
number of

the 1st
community

Node
number of

the 2nd
community

Q-value Time
(ms)

L-Shell 13 21 0.30748 46
GN 15 19 0.35596 47

3SHP-
SPC 17 17 0.36842 15 G1

3SHP-
TPD 17 17 0.36842 16

L-Shell 24 38 0.36612 328
GN 21 41 0.37870 110

G2

3SHP-
SPC 21 41 0.37870 31

3SHP-
TPD 23 39 0.38986 31

L-Shell 49 56 0.44397 2203
GN 64 41 0.44241 1594

3SHP-
SPC 62 43 0.43920 78 G3

3SHP-
TPD 51 54 0.45655 78

Of course, the proposed algorithm is validated only by
networks with the magnitude of 102 at present. But these
three cases are well-known and have been used to check
the effectiveness of algorithm in many literatures. Our
algorithm generates the best result for all of them, which
surely proves its scalability. Although our algorithm
mainly deals with the two-part division problem, it’s
obvious that it can also be used for k-partitioning (2k >)
of a network through appropriate transformation.

Figure 10. Q-value comparison of four algorithms for three real-world

networks.

VII. RELATED WORK

In recent years, complex network analysis has attracted
research interests, and community detection (also called
graph clustering) became a hot topic in this field. Until
today, quite a few methods have been proposed to solve
this problem. Recently, reference [10] and [18] reviewed
the existing work systemically. Here, we only present
researches comparable with our algorithm.

The first one is the well-known Kernighan-Lin
algorithm [7], which is based on greedy optimization for
the cost function. Its basic idea is to introduce a gain
function into the network partitioning problem. It reaches
the best solution through inter-changing the nodes in the
former designated partitions. However, it requires
assigning the node number of each community before
partitioning, which is hard to determine only based on
people’s priori knowledge [8].

Girvan and Newman proposed an approach based on
link removal to detect an unknown number of
communities [9]. They focused on those edges which are
the most “between” communities. This algorithm can
provide better partitioning result, but doesn’t have
advantage in computing time. In addition, it will produce
so declining partitions for some specific networks (e.g.
random networks) [10]. In contrast, the computing
efficiency of our algorithm shows a great improvement
from GN algorithm.

210 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

L-Shell algorithm proposed by Bagrow and Bollt [11]
is an agglomerative clustering-based method, actually a
diffusing method. It starts with a specific node until the
ratio of the emerging degree, i.e. l

jkΔ , at step l to that at
step 1l − is lower than a cut-off value α . The main
difference between that algorithm and ours lies in our
TPD strategy spreads the community structure from two
pseudo-core nodes. In addition, L-Shell algorithm has
two fatal weaknesses: (1) It needs a search procedure to
find the best starting-point. (2) An iterative loop is also
needed to determine the optimal threshold value, i.e. α .
Fortunately, our proposed method can avoid the above
time-consuming process, so it has a great advantage in
computing time.

In addition, some traditional meta-search algorithms
such as evolutionary algorithm are also adopted to settle
this problem [19]. However, this type of algorithm
usually has no advantage in computing time due to the
slow convergence speed.

VIII. CONCLUDING REMARKS

Community partitioning is a key but difficult problem
in social network analysis. Based on the in-depth analysis
on the partitioning results, some heuristic strategies are
proposed to solve the two-part division problem. At first,
two nodes are treated as pseudo-centers based on the
clues of the diameter path and degree information. Based
on these two “core” nodes, two strategies, i.e. the shortest
path cutting (SPC) and two-point diffusing (TPD), are
adopted to generate two embryonic communities.
Subsequently, an experience rule is used to adjust the
undecided nodes. A comparison experiment is performed
to validate the effectiveness and efficiency of our
algorithm. The results show that our algorithm can yield
excellent community partition results with very short
computing time.

The result of our algorithm is promising, but there are
a couple of open issues to be answered in the future work.
Here, the networks in experiment are not so large, so we
need collect much larger network to perform comparison
analysis. On the other hand, we are currently working on
modify this algorithm to handle multi-part division
problem. Furthermore, using this algorithm to treat the
weighted network partitioning problem also needs to be
explored.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China (NSFC) under
Grant No. 60803046 and 61063013, Natural Science
Foundation of Jiangxi Province under Grant No.
2010GZS0044, the Science Foundation of Jiangxi
Educational Committee under Grant No. GJJ10433, the
State Key Laboratory of Software Engineering under
Grant No. SKLSE2010-08-23, and the Youth Foundation
of Jiangxi University of Finance and Economics. The

author is grateful to Zhenmei Zhu, Man Luo and Qiong
Zhang for their help and enlightening discussions.

REFERENCES
[1] S. Wasserman and K. Faust, Social Network Analysis:

Methods and Applications, Cambridge University Press,
London, UK, 1994.

[2] J. Scott, Social Network Analysis: A Handbook (2nd ed.),
Sage Publication, London, 2002.

[3] N. Gulbahce and S. Lehmann, “The art of community
detection,” BioEssays, Vol.30, 2008, pp.934-938.

[4] N. Du, B. Wang, and B. Wu, “Community detection in
complex networks,” Journal of Computer Science and
Technology, Vol. 23, 2008, pp. 672-683.

[5] J. Duch and A. Arenas, “Community detection in complex
networks using extremal optimization,” Physical Review E,
Vol.72, 2005, 027104.

[6] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Höfer,
Z. Nikoloski, and D. Wagner, “On Finding Graph
Clusterings with Maximum Modularity”, Proc. of the 33rd
Intl. Workshop on Graph-Theoretic Concepts in CS
(WG’07), Dornburg, Germany, June 2007.

[7] B. W. Kernighan and S. Lin, “An effective heuristic
procedure for partitioning graphs,” Bell System Technical
Journal, Vol. 49, 1970, pp. 291-307.

[8] X. Wang, X. Li, and G. Chen, Complex Network Theory
and Its Applications. Tsinghua University Press, Beijing,
China, 2006, pp.164-165. (in Chinese)

[9] M. Girvan and M. Newman, “Community structure in
social and biological networks,” Proc Natl Acad Sci U S A,
Vol. 99, 2002, pp. 7821-7826.

[10] B. Yang, D.-Y. Liu, J. Liu, D. Jin, and H.-B.Ma, “Complex
network clustering algorithms,” Journal of Software,
Vol.20, 2009, pp.54-66. (in Chinese)

[11] J. P. Bagrow and E. M. Bollt, “Local method for detecting
communities,” Physical Review E, Vol.72, 2005, 046108.

[12] M. Newman, “Detecting community structure in
networks,” The European Physical Journal B - Condensed
Matter, Vol.38, 2004, pp. 321-330.

[13] M. Newman and M. Girvan, “Finding and evaluating
community structure in networks”, Physical Review E, Vol.
69, 2004, 026113.

[14] M . Newman, “Modularity and community structure in
networks,” Proc Natl Acad Sci U S A, Vol. 103, 2006,
pp.8577-8582.

[15] R. Albert and A.-L. Barabási, “Statistical mechanics of
complex networks,” Reviews of Modern Physics, Vol. 74,
2002, pp.47-97.

[16] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E.
Slooten, and S. M. Dawson, “The bottlenose dolphin
community of doubtful sound features a large proportion of
long-lasting associations,” Behavioral Ecology and Socio-
biology, Vol. 54, 2003, pp. 396-405.

[17] V. Krebs, Dataset: PolBooks – Krebs’ Amazon Books,
http://www.orgnet.com, data can be downloaded from
Website: http://vlado.fmf.uni-lj.si/pub/networks/data/mix/
mixed.htm

[18] S. E. Schaeffer, “Graph clustering,” Computer Science
Review, 2007, pp.27-64.

[19] A. Gog, D. Dumitrescu and B. Hirsbrunner, “Community
detection in complex networks using collaborative
evolutionary algorithms,” Proc. of ECAL’07, LNAI 4648,
2007, pp. 886-894.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 211

© 2012 ACADEMY PUBLISHER

