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Abstract—As the combination of topology-preserving 
dimensionality reduction and vector quantization, Self-
Organizing Map (SOM) is suitable for visualizing the 
structure of high-dimensional mass data, which can be used 
to select more suitable algorithms for subsequent data 
analysis/processing. However, due to the fixed regular 
lattice of neurons, SOM has to require some color-coding 
scheme such as U-matrix to imprint the inter-neuron 
distance information on the lattice for the aim of 
visualization. Even so, the structure of the data may often 
appear in a distorted and unnatural form. In order for the 
map to visualize the structure of the data faithfully and 
naturally, the similarity/dissimilarity information should be 
preserved on the map directly. To do this, a novel variant of 
SOM, i.e. Distance-Preserving SOM (DPSOM), was 
presented in this paper. DPSOM can adjust the positions of 
neurons on the map according to the corresponding 
distances in the data space, and thus preserve the distance 
information on the map directly, as Multidimensional 
Scaling (MDS) does. What’s the most important, DPSOM 
can automatically avoid the excessive contraction of neurons 
to one point without any additional parameter, which makes 
it advantageous over those existing position-adjustable 
SOMs. Finally, DPSOM can be verified by experimental 
results well. 
 
Index Terms—data visualization, Self-Organizing Map 
(SOM), Himberg’s contraction model, Multi-Dimensional 
Scaling (MDS), the gradient descent 
 

I.  INTRODUCTION 

Nowadays, the explosive growth in the amount of data 
and their dimensionality makes data visualization more 
and more important in data mining process. For high-
dimensional mass data, the useful structure information, 
which can be used to select more suitable algorithms for 
subsequent data analysis/processing, cannot be seen by 
eyes directly, but can be obtained by data visualization 
approaches easily.  

During the last hundreds of years, lots of approaches to 
visualize high-dimensional mass data have been emerged, 
most of which fall into the following five categories: 

1) Several sub-windows are used to visualize the data 
in different subsets of dimensions respectively, such as 
scatterplot matrices[1] and pixel-oriented techniques[2]; 

2) The dimension axes are rearranged in the low-
dimensional space, such as parallel coordinates[3] and 
star coordinates[4]; 

3) The dimensions of the data are embedded to 
partition the low-dimensional space hierarchically, such 
as dimensional stacking[5] and treemap[6]; 

4) Certain objects with several visual features are used 
to represent the high dimensional data, in which each 
visual feature stands for one dimension of the data, such 
as Chernoff-faces[7] and stick figures[8]; 

5) The dimensionality of the data is reduced to two or 
three by dimensionality reduction techniques, such as 
PCA (Principal Component Analysis)[9], MDS 
(Multidimensional Scaling)[10], SOM (Self-Organizing 
Map)[11], ISOMAP (Isometric Mapping)[12], LLE 
(Locally Linear Embedding)[13] and Laplacian 
Eigenmap[14], etc. 

Unlike the other approaches, dimensionality reduction 
techniques try to preserve the high-dimensional 
relationship between the data in the low-dimensional 
space directly, which can represent visually the structure 
of the data well. In addition, dimensionality reduction 
techniques can be used to avoid “the curse of 
dimensionality” and improve the efficiency and 
performance of the subsequent data analysis/processing 
algorithms. 

As a non-linear dimensionality reduction technique, 
SOM is a singular-layer neural network model based on 
competitive learning. As the combination of topology-
preserving dimensionality reduction and vector 
quantization[15], SOM can map the high-dimensional 
mass data onto a low-dimensional regular lattice, i.e. a 
fixed grid of neurons, while preserving the topological 
relationship between the data as faithfully as possible, 
which makes it a popular clustering, visualization and 
abstraction tool. 

However, due to the fixed regular lattice of neurons, 
the inter-neuron distances has to be expressed indirectly 
on the lattice by some color-coding scheme such as U-
matrix[15] for visualizing the structure of the data. Even 
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so, the structure of the data may often appear in a 
distorted and unnatural form[16]. 

In order for the map to visualize the structure of the 
data faithfully and naturally, the similarity/dissimilarity 
information should be preserved on the map directly[16]. 
To do this, the positions of neurons on the map should be 
adjusted according to the corresponding similarities/ 
dissimilarities during or after the learning process. Taking 
the concision of the model and the amount of computing 
time into consideration, we prefer adjusting the positions 
of neurons synchronously during the learning process. 
We name such variants of SOM as position-adjustable 
SOMs[17], such as the Grouping Neuron SOM (GNSOM) 
algorithm[18], the Adaptive Coordinate SOM (ACSOM) 
algorithm[19], the Double SOM (DSOM) algorithm[20], 
and the Position-Adjustable SOM (PASOM) 
algorithm[17]. Being add-ins to the standard Kohonen’s 
SOM, the robustness of these methods can be assured[19]. 
In addition, the adjustment rule is relatively simple. 
However, all these methods fall into the category of 
Himberg’s contraction model, which is inevitably 
confronted with the problem of the excessive contraction 
to one point[17]. To avoid this problem, these methods 
have to use some quite complex initialization procedure 
or additional parameters which are difficult to control in 
reality. In this paper, we present a novel variant of SOM, 
i.e. Distance-Preserving SOM (DPSOM), which can 
adaptively adjust the positions of neurons on the map 
according to the corresponding distances in the data space, 
as MDS does. Unlike those existing position-adjustable 
SOMs, DPSOM can automatically avoid the excessive 
contraction of neurons to one point without any 
additional parameter. 

This paper is organized as follows: In Section II, we 
recall those existing position-adjustable SOMs and MDS 
briefly. In Section III, we describe and analyze the 
DPSOM algorithm in detail. Finally, experimental results 
and conclusions are given in Section IV and V 
respectively. 

II.  POSITION-ADJUSTABLE SOMS AND MDS 

A.  The Standard Kohonen’s SOM 
The standard Kohonen’s SOM consists of a singular-

layer of neurons located on a low-dimensional regular 
lattice, usually 1-D or 2-D for the aim of visualization. In 
addition to the fixed position vector on the lattice, each 
neuron k is also represented by an n-dimensional weight 
vector  in the data space, where n is the 
dimensionality of the data. SOM adopts neighborhood 
learning to update the weight vectors of neurons fixed on 
the lattice, which makes all the neurons representatives of 
the data and arranged by topological order in the data 
space finally. 

},,{ 1 knkk www L=

In each learning step, a data sample x is randomly 
selected at first, and then the best-matching neuron (BMU) 
v is found according to the following rule: 

.minarg xwv k
k

−=                            (1) 

After that, SOM adopts neighborhood learning to 
update the weight vectors of the neurons belonging to a 
given neighborhood of the BMU v on the lattice 
according to the following learning rule: 

)).()(()()()1( twxthttwtw kvkkk −+=+ α        (2) 

Where )(tα  is the learning rate at the t-th iteration, and 

 is the neighborhood kernel at the t-th iteration, 
which is defined on the lattice and usually takes the 
following form:  
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Where kv −  represents the distance between the BMU 

v and neuron k on the lattice, and )(tσ  represents the 
neighborhood radius at the t-th iteration. To assure the 
convergence of the learning process, both the learning 
rate )(tα  and the neighborhood radius )(tσ  decrease 
monotonically with time. 

Because not only the BMU but also its neighbors on 
the lattice are updated in the same direction, the weight 
vectors of neighboring neurons resemble each other[2]. 
Consequently, the BMUs of similar data samples are 
close to each other on the lattice, which is so-called 
SOM’s topological ordering or topological preserving. 
For the sake of visual comparison and easy 
implementation, the neurons are fixed onto a regular 
lattice, usually rectangular or hexagonal. However, the 
inter-neuron distances are indirectly visible, and thus the 
structure of the data may often be distorted and unnatural. 

B.  Position-Adjustable SOMs 
In order for the map to visualize the structure of the 

data faithfully and naturally, several variants of SOM 
were presented, such as GNSOM, ACSOM, DSOM and 
PASOM. The same of them is that they can adjust the 
positions of neurons on the map (concretely speaking, 
contract the neurons) according to the corresponding 
similarities, and thus the similarity information can be 
preserved on the map directly, which makes these 
variants of SOM obtain better visualization than the 
standard Kohonen’s SOM, so we name them position-
adjustable SOMs. 

Let m be the dimensionality of the low-dimensional 
regular lattice or the map, and  be the 
position vector of neuron k on the map, then the 
adjustment rules of these position-adjustable SOMs can 
be described as follows respectively: 
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DSOM:         (6) 
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PASOM:  (7) 
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Obviously,  in (4) and  in (6) can be 
thought as the similarity between the BMU v and neuron 
k in the data space, because both of them decrease as the 
distance between these two neurons in the data space 
increases; 

)(tbvk )(' th
vk

)(tvkη  in (6) can be thought as the similarity 
between the BMU v and neuron k on the map, because it 
decreases as the distance between these two neurons on 
the map increases. 

Theorem 1.  in (5) can be thought as the 
similarity between the BMU v and neuron k on the map. 

)1( +Δ tDistk

Proof.  means the relative change of the 
distances between neuron k and the randomly selected 
data sample x before and after the t-th iteration, that is, 
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So,  can be thought as the similarity 
between the BMU v and neuron k on the map like the 
neighborhood kernel . 

)1( +Δ tDistk
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Due to SOM’s topological ordering or topological 
preserving, these similarity measures are similar on the  
final map. So we can say that all the former three 
methods contract the neurons on the map according to the 
corresponding similarities because all these similarity 
measures are always positive like , which is so-
called Himberg’s contraction model[17][21], and its 
online learning version can be expressed as in (7), where 

 is the generalized similarity between the BMU v 
and neuron k, which can be any one of the above 
similarity measures or their combinations, and where the 
contraction factor cf and the beginning iteration of  
adjustment threshold are two additional parameters to 
avoid the excessive contraction of neurons to one point. 

)(thvk
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With no additional parameter, Himberg’s contraction 
model is inevitably confronted with the problem of the 
excessive contraction to one point, because the similarity 
measure used in Himberg’s contraction model are always 
positive. To avoid this problem, these position-adjustable 

SOMs have to use some quite complex initialization 
procedure or additional parameters, such as the 
contraction rate  in (4), cf and threshold in (7), and 
those implied in the above similarity measures, which are 
difficult to control in reality. 

)(ta

C.  MDS 
As a traditional method related to dimensionality 

reduction and data visualization, MDS tries to project 
data samples into a low-dimensional (usually 2-D) space 
by preserving the inter-sample distances (usually 
Euclidean distances) as closely as possible. So the 
objective function or the so-called stress function of MDS 
usually takes the following form: 
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Where ijδ  is the distance (usually Euclidean distance) 
between the i-th and j–th data samples in the data space, 
and  is the corresponding Euclidean distance (for the 
aim of visualization) in the low-dimensional space. If we 
still use 

ijd

},,{ 1 knkk www L=  and  to 
represent the k-th data sample in the data space and its 
mapping in the low-dimensional space respectively, 
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By minimizing the stress function in (9), MDS can 
realize a point-to-point dimensionality reduction mapping, 
which preserves the inter-sample distances in the low-
dimensional space directly, and thus can visualize the 
structure of the data more faithfully and naturally than 
those SOMs. 

There are many optimization techniques to minimize 
the stress function in (9), such as the gradient descent 
method described in (11). 
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However, these optimization techniques require all the 
data to obtain the gradient, i.e. ∑

≠

−
⋅−

ij ij

jkik
ijij d

pp
d )( δ , 

used in each learning step, and thus cannot be suitable for 
online learning tasks. 

Similar to SOM, in each learning step, the mappings of 
the other data samples can be adjusted only based on that 
of one selected data sample (similar to the BMU v in 
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SOM, e.g. the j-th data sample), where the stress function 
to be minimized can be simplified to its part associated 
with the selected data sample (e.g. 

∑∑
≠≠
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ijj dSS 2)(
2
1 δ ), and then the corresponding 

gradient can be easily obtained only with one pair of data 
samples. 

According to this strategy, the gradient descent method 
to minimize the stress function of MDS can be described 
as follows: 
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III.  DPSOM AND ITS ANALYSIS 

A.  DPSOM 
Unlike the above four position-adjustable SOMs, 

DPSOM adjusts the positions of neurons on the map not 
based on Himberg’s contraction model, but based on the 
consistency between the corresponding distances of 
neurons in the data space and on the map, the goal of 
which is to express the distance information of neurons 
(and then the data) in the data space by their positions on 
the map directly, and then visualize the structure of the 
data faithfully and naturally. 

Formally, in each learning step, the positions of 
neurons on the map are adjusted according to the 
following adjustment rule: 
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Where )(' tα  is the adjustment rate at the t-th iteration, 
which can be equal to the learning rate )(tα  in (2) simply, 

vkδ  and  are the Euclidean distances between the 
BMU v and neuron k in the data space and on the map 
respectively, which are defined as follows: 
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The adjustment rule in (13) adjusts the position of 
neuron k on the map, i.e. , based on that of the 

BMU v, i.e. , to minimize the difference between 
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vkδ  and , the goal of which is to express or preserve vkd
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similar to the above similarity measures, but the 

difference is that )1(
vk

vk

d
δ

−  is not always positive, 

sometimes negative, which means that the neurons are 
not always contracted to each other, so DPSOM is not a 
contraction model. In addition, the adjustment of the 
positions of neurons on the map is based on the 
corresponding distances in the data space (i.e. vkδ ), so 
any two neurons cannot be excessively contracted to one 
point unless the distance between them in the data space 
is zero. 

Consequently, DPSOM can be described briefly as 
follows: 

1) Specify the lattice structure of neurons, usually 
rectangular or hexagonal; 

2) Initialize the position vectors of all the neurons 
identical to their positions on the lattice; 

3) Initialize the weight vectors of all the neurons 
randomly; 

4) t=0; 
5) Specify )0(α  and )0(σ ; 
6) While the stop condition is not met 
     a) Initialize D as a set of all the data samples; 
     b) While D is not an empty set 
          i) Select a data sample x from D randomly; 
          ii) D=D-{x}; 
          iii) Find the BMU v according to (1); 

iv) Update the weight vectors of the BMU v and 
its neighbors according to (2); 

v) Adjust the position vectors of all the neurons 
but the BMU v according to (13); 

     c) End 
     d) t=t+1; 
     e) Decrease )(tα  and )(tσ ; 
7) End 
As described above, DPSOM is also a type of position-

adjustable SOMs, so it has the advantages of other 
position-adjustable SOMs too, such as the robustness and 
simplicity[17]. 

B. Theoretical Analysis 
DPSOM can preserve the distance information of 

neruons (and then the data) on the map directly as MDS 
does, because the adjustment rule of DPSOM in (13) can 
be thought as the gradient descent method to minimize 
the stress function of MDS in (9). 

Theorem 2. the adjustment rule of DPSOM can be 
thought as the gradient descent method to minimize the 
stress function of MDS. 

Proof. According to the adjustment rule of DPSOM in 
(13), the positions of the other neurons, i.e. , are 

adjusted only based on that of the BMU v, i.e. ,  
)(tpk

)(tpv
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where the related part of the stress function of MDS is 
only ∑∑

≠≠
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1 δ , the gradient of which 

is described as follows: 
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So, the adjustment rule of DPSOM in (13) can be 
described as follows: 
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According to (16), we can say that the adjustment rule 
of DPSOM in (13) can be thought as the gradient descent 
method to minimize the stress function of MDS. 
Consequently, DPSOM can be thought as the 
combination of SOM and MDS to a certain extent. 

IV.  EXPERIMENTAL RESULTS 

In this section, we will apply the standard Kohonen’s 
SOM, PASOM (the additional parameters, cf and 
threshold, of PASOM are easier to control than those of 
the other existing position-adjustable SOMs such as 
GNSOM, ACSOM and DSOM[17]) and DPSOM on the 
following three datasets respectively: 

1) The butterfly dataset: a two-dimensional dataset 
with 53 data points (seen in Fig. 1). 

2) The IRIS dataset: a well-known four-dimensional 
dataset with 150 data points, which is divided into three 
groups equally and two of them are overlapping. 

3) The Gaussian5d dataset: a five-dimensional dataset 
with 180 data points, which is divided into six groups 
equally and each of them follows the five-dimensional 
normal distribution with the covariance matrix of I (I is a 

 identity matrix). These normal distributions are 
independent of one another and the means are specified 
as (0,0,0,0,0), (10,0,0,0,0), (0,10,0,0,0), (0,0,10,0,0), 
(0,0,0,10,0) and (0,0,0,0,10) respectively. 

55×

 
In the experiments, we specify that the lattice structure 

is rectangular and the neighborhood kernel  is a 

Gaussian function whose form is given in (3), and the 
parameters used in SOM are defined as follows: the 
number of neurons

)(thvk

colsrowsN ×= , where rows and 
cols represent the number of rows and columns of 
neurons respectively and are specified in the brackets of 
the captions of the corresponding result figures 

respectively; )9.0,001.0max()( 100
t

et
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⋅=α , 

)),max(,0333.0max()( 100
t

ecolsrowst
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⋅=σ , where 
 is the larger one between x and y; the learning 

process stops when the number of iterations reaches 2000 
or the square sum of the differences of all the weight 
vectors between two successive steps is smaller than a 
threshold 

),max( yx

0001.0=ε  and the BMU of each data point is 
stable. In addition, there are another two parameters in 
PASOM, i.e. cf and threshold to avoid the excessive 
contraction of neurons, which are also specified in the 
brackets of the captions of the corresponding result 
figures. 

The results of these three algorithms on the butterfly 
dataset are given in Fig. 2-5, the results of these three 
algorithms on the IRIS dataset are given in Fig. 6-9, and 
the results of these three algorithms on the Gaussian5d 
dataset are given in Fig. 10-13. In these Figures, the 
neurons onto which there is no data sample mapped is 
invisible on the map. 
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Figure 2.  Result of the standard Kohonen’s SOM on the butterfly data 

set (5x5). 
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Figure 3.  Result of PASOM on the butterfly data set (5x5, cf=0.25, 

threshold=150). 

4 6 8 10 12 14 16 18
7

8

9

10

11

12

13

14

15

 
Figure 1.  The butterfly dataset. 
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From Fig. 2, we can see that the standard Kohonen’s 

SOM can keep the shape of the butterfly data set (seen in 
Fig. 1) to a certain extent, but the shape is visualized 
distortedly because the neurons are fixed onto the regular 
lattice. Compared with the standard Kohonen’s SOM, 
PASOM with the proper additional parameters (e.g. 
cf=0.25 and threshold=150 in Fig. 3) and DPSOM (seen 
in Fig. 5) can keep the shape of the butterfly dataset more 
faithfully and naturally, because the positions of all the 
neurons on the map are adjusted according to the 
corresponding similarities. However, the neurons can be 
contracted excessively in PASOM with the improper 
additional parameters (e.g. cf=0.25 and threshold=50 in 
Fig. 4). 

 

 

 

 
From Fig. 6, we can see that the standard Kohonen’s 

SOM can map the data samples in the same group onto 
neighboring neurons and thus visualize the cluster 
structure of the IRIS dataset to a certain extent (different 
kinds of markers mean different groups of the data), but 
the structure is visualized distortedly so that the 
boundaries of these three groups are blurring, because the 
neurons are fixed onto the regular lattice. Compared with 
the standard Kohonen’s SOM, PASOM with the proper 
additional parameters (e.g. cf=0.25 and threshold=500 in 
Fig. 7) and DPSOM (seen in Fig. 9) can visualize the 
cluster structure of the IRIS dataset more faithfully and 
naturally so that the boundaries of these three groups are 
relatively clear (the boundary of two groups is still 
blurring because these two groups are overlapping), 
because the positions of all the neurons on the map are 
adjusted according to the corresponding similarities. 
However, the neurons can be contracted excessively in 
PASOM with the improper additional parameters (e.g. 
cf=0.25 and threshold=50 in Fig. 8). 
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Figure 4.  Result of PASOM on the butterfly data set (5x5, cf=0.25, 

threshold=50). 
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Figure 7.  Result of PASOM on the IRIS data set (7x7, cf=0.25, 

threshold=500). 
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Figure 5.  Result of DPSOM on the butterfly data set (5x5). 
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Figure 8.  Result of PASOM on the IRIS data set (7x7, cf=0.25, 

threshold=50). 
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Figure 9.  Result of DPSOM on the IRIS data set (7x7). 
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Figure 6.  Result of the standard Kohonen’s SOM on the IRIS data set 

(7x7). 
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From Fig. 10, we can see that the standard Kohonen’s 

SOM can map the data samples in the same group onto 
neighboring neurons and thus visualize the cluster 
structure of the Gaussian5d dataset to a certain extent 
(different kinds of markers mean different groups of the 
data), but the structure is visualized distortedly so that the 

boundaries of these six groups are blurring, because the 
neurons are fixed onto the regular lattice. Compared with 
the standard Kohonen’s SOM, PASOM with the proper 
additional parameters (e.g. cf=0.25 and threshold=200 in 
Fig. 11) and DPSOM (seen in Fig. 13) can visualize the 
structure of the Gaussian5d dataset more faithfully and 
naturally so that the boundaries of these six groups are 
relatively clear, because the positions of all the neurons 
on the map are adjusted according to the corresponding 
similarities. However, DPSOM can visualize the normal 
distribution of each group more precisely than PASOM. 
In addition, the neurons can be contracted excessively in 
PASOM with the improper additional parameters (e.g. 
cf=0.25 and threshold=50 in Fig. 12). 

Unlike PASOM which requires proper additional 
parameters cf and threshold to obtain relatively good 
results (seen in Fig. 3 on the butterfly dataset, Fig. 7 on 
the IRIS dataset and Fig. 11 on the Gaussian5d dataset), 
DPSOM can visualize the structure of the data very well 
without any additional parameters (seen in Fig. 5 on the 
butterfly dataset, Fig. 9 on the IRIS dataset and Fig. 13 on 
the Gaussian5d dataset). The reason is that DPSOM 
adjusts the positions of neurons on the map precisely 
according to the corresponding distances in the data space 
in the way similar to MDS; however, PASOM uses 
Himberg’s contraction model which contracts the neurons 
to one point gradually, and thus requires proper additional 
parameters to avoid the excessive contraction of neurons 
to one point, and these additional parameters influence 
the quality of the result maps greatly. Therefore, DPSOM 
has better controllability than PASOM. In addition, for 
the same reason, the results of DPSOM are more precise 
than those of PASOM. 

As a variant of SOM, DPSOM can represent the data 
more concisely than MDS due to SOM’s vector 
quantitation, for example, the number of neurons used in 
DPSOM can be much less than that of the data samples 
(also seen in Fig. 14). 

 

V.  CONCLUSIONS 

In this paper, we presented a novel variant of SOM, i.e. 
Distance-Preserving SOM (DPSOM), which can 
adaptively adjust the positions of neurons on the map 
according to the corresponding distances in the data space 
in the way similar to MDS, the distance information can 
be preserved on the map relatively precisely, and thus the 
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Figure 12.  Result of PASOM on the Gaussian5d data set (10x10, 

cf=0.25, threshold=50). 
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Figure 14.  Result of DPSOM on the Gaussian5d data set (7x7). 
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Figure 13.  Result of DPSOM on the Gaussian5d data set (10x10). 
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Figure 10.  Result of the standard Kohonen’s SOM on the Gaussian5d 

data set (10x10). 
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Figure 11.  Result of PASOM on the Gaussian5d data set (10x10, 

cf=0.25, threshold=200). 
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structure of the data can be visualized faithfully and 
naturally. 

In addition, as a type of position-adjustable SOMs, 
DPSOM has the advantages of other position-adjustable 
SOMs too, such as the robustness and simplicity. What’s 
the most important, DPSOM can automatically avoid the 
problem of the excessive contraction of neurons to one 
point without any additional parameter that other 
position-adjustable SOMs need, which makes DPSOM 
more advantageous over other position-adjustable SOMs, 
that is, DPSOM has better controllability than other 
position-adjustable SOMs. As the combination of SOM 
and MDS, DPSOM can obtain natural and concise 
visualization results. 

However, due to its intrinsic similarity to MDS, like 
other position-adjustable SOMs, DPSOM does not work 
very well on such datasets as Swiss-roll and S-curve, 
which need the manifold learning methods such as 
ISOMAP and LLE. 
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