
An Efficient Method for QoS-aware Service
Discovery and Composition

Ying ZHANG

Institute of Command Automation, PLA University of Science & Technology, Nanjing, China
Email: zhywl66@163.com

Xiaoming LIU, Zhixue WANG, Li CHEN

Institute of Command Automation, PLA University of Science & Technology, Nanjing, China

Abstract—Recently, more and more enterprises are
embracing SOA paradigm to integrate and implement
interoperable, robust and platform-independent distributed
applications. Therefore, service discovery and composition
become two main tasks which have gained great momentum.
In order to improve the efficiency of service discovery and
composition, a method is proposed in this paper. Firstly,
some concepts and operations are defined. Then a
composition algorithm is introduced in detail after
definition. In addition, a QoS-aware evaluation method
based on maximizing deviation calculation is proposed to
resolve the problem of service selection. An instance and
some simulation experiments are illustrated at last. The
result shows it is an efficient and effective method for
service discovery and composition.

Index Terms—service discovery, service composition,
Quality of Service

I. INTRODUCTION

Nowadays, Service-Oriented Computing (SOC)[1-2],
which is based on Service-Oriented Architecture
(SOA)[3-4], becomes one of the hottest paradigm for
integrating and developing applications both in academia
and industry. There are more and more enterprises
embracing SOC to integrate and implement interoperable,
robust and platform-independent distributed applications.
Services (or Web Services) are considered as self-
contained, self-describing, and modular applications that
can be published, located, and invoked across the Web[5].
Service discovery and composition are important aspects
in SOC because the increasing quantity of services over
the web and the complex of service-oriented application
make it is unrealistic to fulfill the user needs with a single
service.

Service discovery and composition are complex
processes and have gained great momentum by lots of
researchers, such as Reference [6-28]. Bellwood[7]
discovered services based on matchmaking of key words,
but the accuracy of services which are found would be
low. Lee[8] implemented service composition by using
data mining techniques for ubiquitous computing
environments. Liang[9] proposed a design with object
approach for Web services composition. Some researches
completed service composition by workflow
technology[10-16]. Benatallah et al.[10] proposed a

framework to describe Web services composition by
UML state diagram. Maamar et al.[11] presented a web
services composition approach based on software agents
and context. Chun et al.[12] proposed a policy-based web
services composition by knowledge etc. Shi et al.[17] and
Ma et al.[18] proposed matchmaking and discovery
services based on description logic. AI techniques such as
HTN[19-20], Petri Net[21-22], Genetic algorithm[23] are
also widely used for service matchmaking, discovery and
composition. Still some researches implemented service
discovery and composition by graph-based or tree-based
methods, such as Reference [24-28].

Based on their researches, we propose an efficient and
effective service composition strategies based on FAS
(Feature Association Set) in this paper. First of all, we
define the FAS and some operations on it. After definition,
we introduce our service composition algorithm based on
FAS in detail, which has three main differences with
other methods, as follows:

(1) When FAS is defined, the semantic similarity is
considered in order to increase the recall rate and
accuracy.

(2) An index table, which is building based on FAS, is
created to reduce the searching spaces of candidate
services. Therefore the searching efficiency will be
increased obviously.

(3) Because services may provide similar function with
different quality, the optimal service composition is
chosen by Quality of Service (QoS), which is usually
ignored by some service composition methods.

The remainder content is organized as follows: the
FAS and its operations are defined in section II. The
service composition algorithm is presented in detail in
section III, while an instance for illustrating the algorithm
is proposed in section IV. Some experiments and result
analysis is given in section V. Section VI draw some
conclusions and future works at last.

II. PRELIMINARIES

A. Service definition
When we mentioned service in repository, we refer to

the atomic service rather than composite service[29]. This
means we focus on the composition of atomic services,
and the composite service is the result of service

102 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.102-109

composition which could be integrated to more complex
service.

A service can be formally defined as follows:
Definition 1: service definition.

, , ,Service SN SD SF SA=

where:
SN is the name of a service.
SD is the descriptions of a service that are usually

using natural languages.
SF is service features including inputs, outputs,

preconditions and results of a service.
SA is the attributes of a service, especially the QoS

attributes.
In theory, all these four aspects should be considered

during service composition. However, with the limited
length of one paper, we predigest the service definition to
a 4-tuple:

, , ,Service SN I O A=
where:

SN is the name of a service.
I represents the input-set of a service.
O represents the output-set of the service.
A is the QoS attributes of a service, we consider 4 QoS

attributes[30-31] in this paper, as follows:
• service cost Qc(S): the service cost is used to describe

the amount of money that the service consumer must pay
for using the service.

• response time Qt(S): the response time refers to the
time duration from a request being sent to the results are
received. It includes the total time for service
performance and round-trip communication delay.

• network delay Qd(S): the network delay is the
network transmission time required to receive the service.
It is especially important for multimedia services.

• service availability Qa(S): the probability of the
service is available.

Definition 2: service request definition.
, ,SR I O T=

where:
I represents the input-set of a service request.
O represents the output-set of the service request.
T is the time limit of request time.

B. FAS definition

Definition 3: the feature association set.

{ }1 2() , ,..., nFAS C SN SN SN=

where ()FAS C is a set represented all registered services
which can provide the output concept C in service
repository. iSN , 1,...,i n= represents the service name.

It is worth to notice that both input concepts I and
output concepts O have semantic support by a domain
ontology in this paper. Semantic similarity computing is a
hot topic in service matchmaking. However, we do not
discuss the elaborative method here. We use the method

mentioned in [32], but it is not the only resolution. The
reason we introduce the semantic similarity is
consideration of the fact that if one concept could output
by a service, its semantic similarity concepts maybe also
output by the same service. For example, if 1SN could
output the concept 1C , 2SN could output the concept 2C ,

3SN could output the concept 3C . The semantic
similarity between 1C and 2C is 1 2(,) 0.75Sim C C = , and

1 3(,) 0.9Sim C C = , 2 3(,) 0.85Sim C C = . If the threshold of
semantic similarity is 0.8θ = . Then we can obtain

{ }1 1 3() ,FAS C SN SN= , { }2 2 3() ,FAS C SN SN= and

{ }3 3 1 2() , ,FAS C SN SN SN= .
We build a FAS index table for service repository and

update the list periodically. If there is a new service
registered successfully, its related information will be
added to the FAS index table accordingly. Therefore, once
we get the FAS index table of all the registered services,
we could improve the efficiency by searching the table
instead of the whole service repository.

Definition 4: the overlap of FAS.

{ }
1 2

1 2

() ()
| () ()

FAS C FAS C
SN SN FAS C SN FAS C

∗

= ∈ ∧ ∈
 (1)

where the symbol ∗ represent the overlap operation of
FAS, aiming at finding the services which could provide
concept 1C as well as 2C . For instance, if

{ }1() 1, 2FAS C S S= , { }2() 1, 3, 4FAS C S S S= ,

then { }1 2() () 1FAS C FAS C S∗ = , that means 1S could
provide concepts both 1C and 2C .

Definition 5: The conjunction of FAS.

1

1

() ... ()
| : ... (),

1,...,

n

i in

FAS C FAS C
SN SN SN SN SN FAS C
i n

∧ ∈⎧ ⎫
= ⎨ ⎬=⎩ ⎭

 (2)

where the symbol represent the conjunction operation
of FAS, which means executing services from 1SN to

nSN in sequence one by one to provide concepts 1... nC C .
1nSN − is the predecessor service of nSN , while nSN is

the subsequence service of 1nSN − . That is to say, the
order is important in conjunction operation. For instance,
if there is { }(1) 1FAS C S= and { }2() 2FAS C S= , then

{ }1 2() () 1 2FAS C FAS C S S= . Correspondently, we

also could obtain { }2 1() () 2 1FAS C FAS C S S= . In this
paper, when we mention conjunction operation of two
services, such as 1 2S S , we mean 2S takes all (or part
of) outputs of 2S as inputs, i.e. the all (or part of) outputs
of 1S are all (or part of) inputs of 2S , thus the
predecessor service 1S must be performed before the
subsequence service 2S will be invoked. Therefore, in
general, 1 2 2 1() () () ()FAS C FAS C FAS C FAS C≠ .

Definition 6: The union of FAS.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 103

© 2012 ACADEMY PUBLISHER

1

1

() ... ()
| : ...

(), 1,...,

n

n

i i

FAS C FAS C
SN SN SN SN
SN FAS C i n

+ +

+ + ∧⎧ ⎫
= ⎨ ⎬∈ =⎩ ⎭

 （3）

where the symbol + represent the union operation of
FAS, which means service 1... nSN SN are indispensable to
provide concepts 1... nC C . However, unlike the
conjunction operation, the union operation of FAS has no
order limits. For instance, if { }1() 1FAS C S= ,

{ }2() 2, 3FAS C S S= , then

{ }
{ }

1 2

2 1

() () 1 2, 1 3

2 1, 3 1
() ()

FAS C FAS C S S S S

S S S S
FAS C FAS C

+ = + +

= + +

= +

Definition 7: Some axioms.

1 2
1

() () () ... ()
n

j n
j

FAS C FAS C FAS C FAS C
=

= ∗ ∗ ∗∏ (4)

1 2
1

() () () ... ()
n

j n
j

FAS C FAS C FAS C FAS C
=

= + + +∑ (5)

() () ()FAS C FAS C FAS C∗ = (6)

()FAS C∅ =∅ (7)

() () ()FAS C FAS C FAS C= (8)

()FAS C∅+ = ∅ (9)

() () ()FAS C FAS C FAS C+ = (10)

III. SERVICE COMPOSITION AND SELECTION

A. Service Composition Algorithm
The SCFAS (Service Composition based on FAS)

algorithm is a recursive process with two parts: service
discovery and service composition. Service matchmaking
is the main task in service discovery, including inputs
matchmaking and outputs matchmaking. And service
composition mainly in two ways: conjunction and union,
as defined in section II. We define two functions
InputsProcess and OutputsProcess for SCFAS
algorithm.

The main principle of SCFAS is: in according with the
inputs and outputs provided by service request, searching
the FAS index table that build in advance to obtain the
candidate services set. If there is no single service in
service repository could meet the service request, service
composition will go to work. The algorithm is shown as
follows.

SCFAS ALGORITHM
INPUTS: service request , , outq qSRq I O T=
OUTPUTS: the matched service set

MatchedServiceSet
STEPS:

obtain the output-set { }1 2, , ,q nO O O O O= = and
input-set { }1 2, , ,q mI I I II = = from service request;

while time < outT
{

MatchedServiceSet NULL= ;
1()ServiceSet FAS O= ;

OutputsProcess (ServiceSet , O);
return MatchedServiceSet ;

}
Figure 1. The SCFAS algorithm

OutputsProcess (ServiceSet , O)
{

i=1;
n O= ;
if n is an odd number
then (1) / 2m n= + ;
else / 2m n= ;
while i n<= and ServiceSet ≠ ∅
{

get ()iFAS O from FAS index table;
()iServiceSet ServiceSet FAS O= ∗ ;

i= i+1;
};
if ServiceSet ≠ ∅
then
{

for each element in ServiceSet do
{

tempSet = .ServiceSet element ;
tempSet =InputsProcess (tempSet);
if tempSet ≠ ∅
then add tempSet to MatchedServiceSet ;

}
}
else
{

k=1;
while k m<= and MatchedServiceSet NULL=
{

for i =1 to n
{

if ((
1

()
k

i
i

FAS O
=

≠ ∅∑)

&& (
,

1

()
n k j i

j
j

FAS O
− ≠

=

≠ ∅∏))

then
{

,

1 1

() ()
n k j ik

i j
i j

ServiceSet FAS O FAS O
− ≠

= =

= +∑ ∏ ;

for each element in ServiceSet do
{

tempSet = .ServiceSet element ;
tempSet =InputsProcess (tempSet);

104 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

if tempSet ≠ ∅
then add tempSet to MatchedServiceSet ;

}
}

} // end for i
k=k+1;

} // end while
} // end else
return MatchedServiceSet

}
Figure 2. The OutputsProcess function for SCFAS

InputsProcess (tempSet)
{

obtain input-set of tempSet by searching the
service repository as serI

new serI I I−= ;
if newI =∅
then return tempSet ;
else
{

new newIO = ;
tempSet =OutputsProcess (,)newtempSet tempSetO ;
return tempSet
}

}
Figure 3. The InputsProcess function for SCFAS

Let us understand the algorithm in detail. In the
initialization, we get the output set O and input set I
from service request. And then invoke OutputsProcess.
In OutputsProcess, searching ()iFAS O in the FAS
index paper to find all services which can output concept

iO firstly. If there is any ()iFAS O = ∅ , it means no
service in service repository can produce the concept iO
currently, the match failed. Otherwise, the next step is
computing the overlap set S of all iO , i.e

1

()
n

j
j

S FAS O
=

=∏ as the candidate services set, the object

of this step is searching for the single services which
matched all outputs with service request. Thus there are
mutually exclusive two results:
Case Opt.1: S ≠ ∅ : this means at least one of the
services in service repository can produce all outputs
which described by O , then turn to inputs matchmaking,
i.e. invoking the InputsProcess. For each service in S ,
searching its input-set serI in service repository, then
compute the difference set newI of serI and I , i.e.

new serI I I−= , now there will be three cases of newI :
Case Ipt.1: newI = ∅ , it means current inputs
provided by I are sufficient to produce all needed
inputs, matchmaking successfully.
Case Ipt.2: newI ≠ ∅ , this means there is some inputs
needed by S have not been provide by I , i.e. it is
needed to find the predecessor services of current

service. Let new newO I= , invoking OutputsProcess
with the new output-set compute newO . Now it is
beginning the recursive matchmaking process until
the matchmaking process is finished successfully or
time is out.

Case Opt.2: S = ∅ : this means there is no single service
can be matched out-put set O directly, thus the next
stage is performing service composition. From 1O to nO ,
selecting each element in O , computing

1,

1

() ()
n j i

i j
j

S FAS O FAS O
− ≠

=

= + ∏ , which is case of

,

1 1

() ()
n k j ik

i j
i j

ServiceSet FAS O FAS O
− ≠

= =

= +∑ ∏ with 1k = . If

S ≠ ∅ and ()iS FAS O≠ , it means the candidate service
set is formed by composition of two groups of service,
the one produce concept iO , the other provide the remain
concepts. Then invoking InputsProcess function and
beginning recursive matchmaking and composition
process until the composition is finished successfully or
time is out. However, if composition of two groups of
services still cannot satisfy all the outputs of O , as

,

1 1

() ()
n k j ik

i j
i j

ServiceSet FAS O FAS O
− ≠

= =

= +∑ ∏ with 1k k= + ,

composition of three groups of services will go to work in
the same way, then four groups, five groups, and so on.

B. Service Selection
If the SCFAS algorithm returns a null set, it means that

the matching is fail. Otherwise, if the algorithm executes
successfully with only one service set, it is just the
matched service(s) we need. Or, if there are more than
one service sets, it means there are several optional
solutions for performing the service request. Although
these services may provide same or similar function, the
QoS attributes of them are different generally. How to
choose the optimal composite service is important but
usually ignored by many service composition methods.

Different QoS attributes have different measurements.
For example, the the unit of service cost Qc(S) uses the
unit of money while unit of response time Qt(S) uses the
unit of time. Therefore, we classified service selection as
Multiple Attributes Decision Making (MADM) problem,
and resolved the problem by maximizing deviation
method[33]. The steps are as follows.

Step 1. Compute the QoS integrated values for each
composite service according to Table 1.

TABLE 1 QOS INTEGRATED VALUES FOR COMPOSITE SERVICE

QoS attribute
(conjunction)

+
(union)

service cost
Qc(S) 1

()
n

c i
i

Q S
=
∑

1

()
n

c i
i

Q S
=
∑

response time
Qt(S) 1

()
n

t i
i

Q S
=
∑ 1max{ (),..., ()}t t nQ S Q S

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 105

© 2012 ACADEMY PUBLISHER

QoS attribute
(conjunction)

+
(union)

network delay
Qd(S) 1

()
n

d i
i

Q S
=
∑ 1max{ (),..., ()}d d nQ S Q S

availability
Qa(S) 1

()
n

a i
i

Q S
=
∏

1

()
n

a i
i

Q S
=
∏

Step 2. Normalize the QoS attributes. There are two
types of attributes in this paper: the efficiency attribute
and the cost-based attribute. The former features its value
is the bigger the better, such as the the service availability
Qa(S). The latter features its value is the smaller the better,
such as the Qc(S), Qt(S) and Qd(S).

The efficiency attribute is normalized as:

ij
ij

j

x
r

x+= (11)

where
1
max() ,j i ji n

x x i N+

≤ ≤
= ∈ .

The cost-base attribute is normalized as:

j
ij

ij

x
r

x

−

= (12)

where
1
min() ,j i ji n

x x i N−

≤ ≤
= ∈ .

Step 3. Compute the optimal weight w as follows.

1 1

1 1

,

n n

ij kj
i k

j m n n

ij kj
j i k

r r
w j M

r r
= =

= = =

−∑ ∑
= ∈

−∑∑ ∑
 (13)

Step 4. Calculate the comprehensive value for each
composite service:

1

m

i ij j
j

z r w
=

= ∑ (14)

Step 5. Sort the composite services based on the
comprehensive value zi. The one has the biggest value is
the optimal one.

IV. CASE STUDY

In this section, we give an example for comprehending
the SCFAS algorithm better. There are six registered
services in the service repository. Concept G is similar to
concept H and (,) 0.95sim G H = , 0.8θ = . The service
repository and its FAS index table as shown in table 1.
We suppose that the service request provides input
concepts { }, ,I A B C= and wants to get output concepts

{ }, ,O D E F= .

TABLE 2 THE SERVICE REPOSITORY AND ITS FAS INDEX TABLE

Service Repository FAS index table

A
SN I O

Qc(S)
($)

Qt(S)
(sec)

Qd(S)
(sec)

Qa(S)
[0,1]

S1 {B} {E,F} 1.2 2.8 0.5 0.88

S2 {C,G} {D} 2.0 1.0 0.6 0.90

S3 {K} {E} 0.8 3.5 0.8 0.85

S4 {A,B} {G} 1.5 2.6 0.5 0.75

S5 {C} {H} 1.8 2.2 0.3 0.72

S6 {A,K} {B} 2.5 3.0 0.7 0.76

{ }
{ }
{ }
{ }
{ }

() { 6}
() 2

() 1, 3

() 1

() 4, 5

() 5, 4

FAS B S
FAS D S

FAS E S S

FAS F S

FAS G S S

FAS H S S

=

=

=

=

=

=

The SCFAS algorithm executes as follows:
(1) According to the out-put set of service request O ,

invoke OutputsProcees.
(2) For the sake of the initial candidate service set is

() () ()S FAS D FAS E FAS F= ∗ ∗ = ∅ , which belonged to
case Opt.2 in section 3. The next step is computing

1,

1

() ()
n j i

i j
j

S FAS O FAS O
− ≠

=

= + ∏ .

Because () (() ())FAS F FAS D FAS E+ ∗ = ∅ , and
() (()* ())FAS E FAS D FAS F+ = ∅ , thus the current

candidate services set is

{ } { }
{ }

() (() ()) 2 1

2 1

S FAS D FAS E FAS F S S

S S

= + ∗ = +

= + ≠ ∅
,

thus turn to matchmaking inputs, i.e. invoke
InputsProcess.

(3) Obtain the input-set of { }2 1S S S= + by searching

service repository, that is { }, ,serI C G B= . Thus we get

the different set { }new serI I I G= − = . Because G is not
included by I , this is belonged to case Ipt.2, so invoke
OutputsProcess again with the new output-set G .

106 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

(4) Now, the candidate service set
{ }() 4, 5S FAS G S S= =∏ is belonged to case Opt. 1,

invoke InputsProcess again.
(5) For each element in S , searching the service

repository and getting the inputs of 4S are { },A B which
has been provided in I , this is the case Ipt.1, thus
service composition finished successfully. Moreover, the
input of 5S is { }C which also has been included in I .
Therefore, there are two matched service composition:
the one is 5 (2 1)S S S+ , and the other is 4 (2 1)S S S+ .

Now, it is need to make a decision between composite
services 1 = 5 (2 1)CS S S S+ and 2 4 (2 1)CS S S S= + .
According to the method proposed in Section III, the
steps are as follows.

(1) According to Table 1, the QoS integrated values for
CS1 and CS2, and the results are shown in Table 3.

TABLE 3 QOS INTEGRATED VALUES FOR CS1 AND CS2

Composite
service Qc(S) Qt(S) Qd(S) Qa(S)

CS1 4.7 5.4 1.1 0.5940

CS2 5.0 5.0 0.9 0.5702

(2) Based on formula (11) and (12), the normalized
QoS attributes of CS1 and CS2 are shown as Table 4.

TABLE 4 THE NORMALIZED QOS VALUES OF CS1 AND CS2

Composite
service Qc(S) Qt(S) Qd(S) Qa(S)

CS1 1.0000 0.9259 0.8182 1.0000

CS2 0.9400 1.0000 1.0000 0.9600

(3) Compute the optimal weight w according to
formula (13).

1 1
1 1

1

1 1

0.2538

n n

i k
i k

m n n

ij kj
j i k

r r
w

r r
= =

= = =

−∑ ∑
= =

−∑∑ ∑
,

2 2
1 1

2

1 1

0.2519

n n

i k
i k
m n n

ij kj
j i k

r r
w

r r
= =

= = =

−∑ ∑
= =

−∑∑ ∑
,

3 3
1 1

3

1 1

0.2379

n n

i k
i k
m n n

ij kj
j i k

r r
w

r r
= =

= = =

−∑ ∑
= =

−∑∑ ∑
,

4 4
1 1

4

1 1

0.2564

n n

i k
i k
m n n

ij kj
j i k

r r
w

r r
= =

= = =

−∑ ∑
= =

−∑∑ ∑
.

(4) Calculate the comprehensive value for each
composite service:

4

1 1
1

() 0.9381j j
j

z CS r w
=

= =∑

4

2 2
1

() 0.9745j j
j

z CS r w
=

= =∑

(5) Because 2 1() ()z CS z CS , the optimal composite
service is 2 4 (2 1)CS S S S= + .

V EXPERIMENT RESULTS AND ANALYSIS

In order to evaluate the efficiency and effectiveness of
SCFAS, we take emulation experiments on a Intel Core2
Duo 1.99GHz with 1GB RAM.

We compare two algorithms with SCFAS. The one is
Front-to-Back algorithm, which is matchmaking inputs of
service request and service at first. If one service needs
inputs less than service request provided, then checking
its outputs could provide all outputs needed by service
request or not. If it could, it will be the matched service.
The other is Back-to-Front algorithm, which
matchmaking outputs firstly. If a service in the service
repository provide all outputs described by service
request, then matchmaking its inputs and service request.
If the inputs are included by inputs of service request, the
service is the matched service. Fig. 4 and Fig. 5 show
some of the results.

In Fig. 4, we simulate 50 groups of service requests in
different service repository, each group has 10 service
requests, and the scale of service repository are 100, 200,
500, 1000, 2000 and 5000. We observe the average
processing time of three algorithms. From this picture, we
can see that with the increase of services, the average
processing time of Front-to-Back algorithm and the Back-
to-Front algorithm are increasing obviously while the
SCFAS algorithm is increasing smoothly.

In Fig. 5, we try to observe the average processing
time of different service requests in same quantity of
services. The service repository has 500 services, and the
numbers of service requests are 5, 10, 15, 20 and 50.
From this picture, we can see that with the increase of
service requests, the three algorithms are all increased,
and the Front-to-Back method has the longest time cost.

From the experiments, we could conclude that both the
scale of service repository and numbers of service request
are the factors influencing the processing time of service
composition. When the differences of these two factors
are not huge, the differences of responding time among
the three algorithms are inconspicuous. However, with
the increasing of service requests or the extending of the
service repository, the SCFAS tend to have obvious
advantage in time consuming because it is using the FAS
index table. The front-to-back algorithm for service
discovery and composition is easy to understand but has

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 107

© 2012 ACADEMY PUBLISHER

less efficiency. The back-to-front algorithm is differing
from the front-to-back algorithm, it is goal-driven. This
means the back-to-front algorithm can avoid some
meaningless searching of finding matched service inputs.

However, these two ways both need to match the service
request and all registered service in service repository one
by one. They are time costly and not suitable especially
the size of service repository is going larger and larger.

0

20

40

60

80

100

120

140

160

180

100 200 500 1000 2000 5000

Numbers of Services

A
v
e
r
a
g
e

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
s
)

Front-to-Back

Back-to-Front

SCFAS

Figure 4. The average processing time in different service repository

0

20

40

60

80

100

120

140

5 10 15 20 50

Numbers of Service Requests

A
v
e
r
a
g
e

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
s
)

Front-to-Back

Back-to-Front

SCFAS

Figure 5. The average processing time with different service requests

VI CONCLUSIONS

In this paper, we propose an efficient and effective
service composition method based on FAS. Firstly, we
defined the FAS and some operations on it, such as the
overlap, conjunction and union operations. Based on FAS,
we introduce the SCFAS algorithm in detail. Considering
the ignorance of service selection in some service
composition algorithm, we used a QoS-aware method
based on maximizing deviation calculation to resolve the
problem. Additionally, we gave an instance and some
simulation experiment to illustrate our method. The
SCFAS algorithm reduces the searching spaces by
retrieving in FAS index table instead of the whole service
repository. Therefore, although building and maintenance
FAS index table will cost some time, the SCFAS
algorithm still is an efficient an effective method for
automatic service composition.

The future work mainly includes two aspects. On the
one hand, we will research how to implement the
composition of services based on fuzzy information. On
the other hand, we only discuss the QoS attributes with

the data type of real number in this paper, however, the
type of QoS attributes are various in reality. Therefore,
we will also study the service selection method with
fuzzy and uncertain QoS information, and so on.

REFERENCES

[1] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar,
et al. “Service-Oriented Computing: State of the Art and
Research Challenges”, Computer, 2007.

[2] Michael P. Papazoglou, Joachim W. Schmidt, John
Mylopoulos, Service-Oriented Computing, The MIT Press
Cambridge, Massachusetts London, England, 2009.

[3] Newcomer E, Lomow G, Understanding SOA with Web
Services, Pearson Education, Inc, 2005.

[4] Erl T, SOA design Patterns, Prentice Hall, 2008.
[5] J Rao, X Su, “A Survey of Automated Web Service

Composition Methods”, Proc. of First International
Workshop on Semantic Web Services and Web Process
Composition, 2004.

[6] Adam Barker, Christopher D. Walton, David Robertson,
“Choreographing Web Services”, IEEE Transactions on
services computing, 2(2), pp. 152-166, 2009.

[7] Bellwood T, Capell S, Clement L, Colgrave J, Dovey MJ,
Feygin D, et al. UDDI version 3.0, 2002.

108 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

[8] S. Y. Lee, J. Y. Lee, B. I. Lee, “Service composition
techniques using data mining for ubiquitous computing
environments”, International Journal of Computer Science
and Network Security, 6(9), pp. 110-117, 2006.

[9] Wen-Yau Liang, Chun-Che Huang, Horng-Fu Chuang,
“The design with object (DwO) approach to Web services
composition”, Computer Standards & Interfaces, 29, pp.
54 – 68, 2007.

[10] B. Benatallah, M. Dumas, Q. Sheng, A. Ngu, “Declarative
composition and peer-to-peer provisioning of dynamic web
services”, Proc. of the 18th International Conference on
Data Engineering (ICDE’02)’, California, USA, 2002, pp.
297– 308.

[11] Z. Maamar, K.M. Soraya, Y. Hamdi, “A web services
composition approach based on software agents and
context”, Proc. of SAC’04, Nicosia, Cyprus, 2002, pp.
1619–1623.

[12] S.A. Chun, V. Atluri, N.R. Adam, “Policy-based web
services composition”, Proc. of the 14th International
Workshop on Research issues on Data Engineering: Web
Services for E-Commerce and E-Government Applications,
2004, pp. 85–92.

[13] A. Mingkhwan, P. Fergus, O. Abuelma'Atti, et al.
“Dynamic service composition in home appliance
networks”, Multimedia Tools and Applications, 29(3):257-
284, 2006.

[14] H. Pourreza, P. Graham, “On the fly service composition
for local interaction environments”, Proc. of IEEE
International Conference on Pervasive Computing and
Communications Workshops, 2006.

[15] Mirko Viroli, Enrico Denti, Alessandro Ricci,
“Engineering a BPEL orchestration engine as a multi-agent
system”, Science of computer programming, vol. 66, pp.
226–245, 2007.

[16] A. Bottaro, J. Bourcier, C. Escoer, et al. “Autonomic
context-aware service composition”, Proc. of 2nd IEEE
International Conference on Pervasive Services, 2007.

[17] Shi Zhongzhi, Jiang Yunchen, et al. “Agent service
matchmaking based on description logic”, Chinese Journal
of Computers, 27(5), pp. 626−635, 2004 (in Chinese with
English abstract).

[18] Ma Yinglong, Jin Beihong, Feng Yulin, “Dynamic
discovery for semantic Web services based on evolving
distributed ontologies”, Chinese Journal of Computers,
28(4), pp. 603−615, 2005 (in Chinese with English
abstract).

[19] L. Qiu, Z. Shi, F. Lin. “Context optimization of AI
planning for services composition”, Proc. of the IEEE
International Conference on e-Business Engineering, pp.
610-617, 2006.

[20] Therani Madhusudan, N. Uttamsingh, “A declarative
approach to composing web services in dynamic
environments”, Decision Support Systems, 41(2), pp. 325-
357, 2006.

[21] Yu-Liang Chi, Hsun-Ming Lee, “A formal modeling
platform for composing web services”, Expert Systems
with Applications, vol. 34, pp. 1500–1507, 2008.

[22] Valentín Valero, M. Emilia Cambronero, Gregorio Díaz, et
al. “A Petri net approach for the design and analysis of
Web Services Choreographies”, The Journal of Logic and
Algebraic Programming, vol. 78, pp. 359–380, 2009.

[23] LIU Xiangwei, XU Zhicai, YANG Li, “Independent
Global Constraints-aware Web Service Composition
Optimization Based on Genetic algorithm”, Proc. of
International conference on industrial and information
systems, 2009.

[24] Bin Xu, Tao Li, Zhifeng Gu, et al. “SWSDS: Quick Web
Service Discovery and Composition in SEWSIP”, Proc. of
the 8th IEEE International Conference on Ecommerce
Technology and The 3rd IEEE International Conference
on Enterprise Computing, E-Commerce, and E-Services,
2006.

[25] Li Kuang, Ying Li, Jian Wu, et al. “Inverted Indexing for
Composition-Oriented Service Discovery”, Proc. of IEEE
International Conference on Web Services, 2007.

[26] A. Zhou, S. Huang, X. Wang, “BITS: A Binary Tree Based
Web Service Composition System,” Journal of Web
Services Research, vol. 4, 2007.

[27] H. Tang, F. Zhong, C. Yang, “A Tree-Based Method of
Web Service Composition”, Proc. of the Int. Conf. on Web
Services, Beijing, China, 2008.

[28] M.M. Shiaa, J.O. Fladmark, B. Thiell, “An Incremental
Graphbased Approach to Automatic Service Composition”,
Proc. of the Int. Conf. on Services Computing, Honolulu,
HI, USA, 2008.

[29] The OWL Services Coalition. OWL-S: Semantic markup
for Web Services, 2003.

[30] Tao Yu, Kwei J Lin, “Service Selection Algorithms for
Web Services with End-to-End QoS constraints”, Proc. of
the IEEE International Conference on E-commerce
Technology, 2004.

[31] Minhyuk Oh, Jongmoon Baik, Sungwon Kang, et al. “An
Efficient Approach for QoS-Aware Service Selection
Based on A Tree-Based Algorithm”, Proc. of Seventh
IEEE/ACIS International Conference on Computer and
Information Science, 2008.

[32] P.Resnik, “Semantic similarity in a taxonomy: An
Information-Based Measure and its Application to
problems of Ambiguity in Natural Language”, Journal of
Artificial Intelligence Research, vol.11, 1999.

[33] Xu Zeshui. Uncertain Multiple Attribute Decision Making:
Methods and Applications, Tsinghua Univercity Press,
2004 (in Chinese).

Ying ZHANG was born in 1982. She is a candidate for
doctor in Institute of Command Automation, PLA University of
Science & Technology. Her main research is software
engineering, requirement engineering, SOA; Email:
zhywl66@163.com

Xiaoming LIU was born in in 1956. He is a professor for
doctor in Institute of Command Automation, PLA University of
Science & Technology. His main research is system engineering,
computer simulation.

Zhixue WANG was born in 1961. He is a professor for
doctor in Institute of Command Automation, PLA University of
Science & Technology. His main research is requirement
engineering, system engineering, SOA.

Li CHEN was born in 1982. He received the Bachelor of
Engineering and Master of Engineering degrees from Institute
of Meteorology, PLA University of Science and Technology in
2005 and 2008, respectively. He began his PhD study in
Institute of Command Automation, PLA University of Science
and Technology since 2008. His research interests include
semantic Web, data mining, and Web services.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 109

© 2012 ACADEMY PUBLISHER

