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Abstract—Vibration problems in rotors can be extremely 
frustrating and may lead to greatly reduced reliability. By 
utilizing the proper data collection and analysis techniques, 
the faults because of vibration can be discovered and 
predicted. The signal analysis is important in extracting 
fault characteristics in fault diagnosis of machinery. The 
traditional signal analysis can not settle for non-stationary 
vibration signal whose statistic properties are variant. To 
deal with non-stationary signal, time-frequency analysis 
techniques are widely used. The experiment data of oil whip 
vibration fault signal were analyzed by different methods, 
such as short time Fourier transform (STFT), Wigner-Ville 
distribution (WVD), Wavelet transform (WT) and Hilbert-
Huang Transform (HHT). The experiment data of rubbing 
vibration faults signal were also analyzed by the HHT. 
Compared with these methods, it is demonstrated that the 
time-frequency resolutions of STFT and WVD were 
inconsistent, which were easy to cross or make signal lower. 
WT had distinct time-frequency distribution, but it brought 
redundant component. HHT time-frequency analysis can 
detect components of low energy, and displayed true and 
distinct time-frequency distribution. Therefore, HHT is a 
very effective tool to diagnose the faults of rotating 
machinery. 
 
Index Terms—signal analysis, time-frequency analysis, 
vibration,  Hilbert-Huang transform (HHT), fault diagnosis 

I.  INTRODUCTION 

Vibration signal analysis has been widely used in the 
faults detection of rotation machinery. Many methods 
based on vibration signal analysis have been developed. 
These methods include power spectrum estimation, fast 
Fourier transform (FFT), envelope spectrum analysis, 
which have been proved to be effective in fault detection. 
However, these methods are based on the assumption of 
stationary and linearly of the vibration signal. Therefore, 
new techniques are needed to analyze vibration for faults 
detection in rotating machinery. Effective detection of 

non-stationary signals is of great importance [1-2], as 
they are precursors of potential machine failures. 
However, their temporary nature makes the assumption 
of signal stationary as required by Fourier transform 
invalid, thus reducing its effectiveness.  

To deal with non-stationary and non-linearity signals, 
time-frequency analysis techniques such as the Short 
Time Fourier Transform (STFT), Wigner-Ville 
distribution (WVD) and Wavelet Transform (WT) are 
widely used. The STFT uses sliding windows in time to 
capture the frequency characteristics as functions of time. 
Therefore, spectrum is generated at discrete time instants. 
An inherent drawback with STFT is the limitation 
between time and frequency resolutions. A finer 
frequency resolution can only be achieved at the expense 
of time resolution and vice-versa. The Wigner-Ville 
distribution (WVD) is a basic time-frequency 
representation, which is part of the Cohen class of 
distribution. The WVD possesses a great number of good 
properties and is of popular interest for non-stationary 
signal analysis. The difficulty of WVD is the severe cross 
terms as indicated by the existence of negative power for 
some frequency ranges. The Wavelet Transform (WT) 
provides a time-frequency map of the signal being 
analyzed[3-5]. It can achieve high frequency resolution 
with sharper time resolutions. A very appearing feature of 
the wavelet analysis is that it provides a uniform 
resolution for all the scales. Limited by the size of the 
basic wavelet function, the downside of the uniform 
resolution is uniformly poor resolution. The Hilbert–
Huang transform (HHT) is based on the instantaneous 
frequencies resulting from the intrinsic mode functions of 
the signal being analyzed [6]; thus, it is not constrained 
by the uncertainty limitations with respect to the time and 
frequency resolutions to which other time-frequency 
techniques are subject. In recent years, HHT has been 
applied to identification of damage time instant and 
location in civil and mechanical structures[7-12]. Using 
HHT, the physical mass, damping coefficient, and 
stiffness matrices of a multiple degree of freedom linear 
system could be identified[13].  
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This paper investigates the utility of time-frequency 
methods for vibration signal analysis. The theoretical 
backgrounds of each time-frequency methods were 
introduced, and the simulation was evaluated through 
experimental studies performed on a test shaft. The 
experiment data of oil whip vibration fault signal were 
analyzed by different methods, such as short time Fourier 
transform (STFT), Wigner-Ville distribution (WVD), 
Wavelet transform (WT) and Hilbert-Huang Transform 
(HHT). The experiment data of rubbing vibration faults 
signal were also analyzed by the HHT. Compared with 
these methods, it is demonstrated that HHT is a very 
effective tool to analyze non-stationary and non-linearity 
signals. 

II. STFT OF VIBRATION SIGNAL 

A.  Short Time Fourier Transform (STFT) 
Short Time Fourier Transform (STFT) has a short data 

window centered at time. The window is moved to a new 
position and the calculation repeated.  

STFT is defined for  a single sample function ( )x t ， 
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Where || ( ) || 1g τ = ， ,|| ( ) || 1tg ω τ = , and the window 
function ( )g τ  is symmetrical. 

If the width of the window is represented by time 
duration t , its frequency bandwidth is approximately ω . 
A feature of the STFT is that all spectral estimates have 
the same bandwidth. 

B. 2.2 STFT of Oil Whip Signal 

 
Figure 1.  Experimental test rotor system 

To experimentally evaluate the effectiveness of time-
frequency methods for non-stationary vibration signal, 
systematic tests were conducted on a rotor test system 
(see Figure 1). The test system consisted of an oil pump 
assembly, an oil bearing assembly, a rotor kit shaft with 
oil bearing journal and a preload frame. Tighten the set 
screws to firmly attach the rotor masses to the rotor. The 
rotor will whirl at a lower speed the closer the rotor 

masses are to the fluid film bearing. The rotor kit is to go 
unstable place as the speed increases. The rotor will 
develop oil whirl to oil whip.  

When the rotor running speed is near the 2th rev, the 
rotor will develop oil whip. Because the frequency of oil 
whirl approaches the high eccentricity natural resonant 
frequency of the rotor. During oil whip the frequency of 
the whip is nearly constant as rotor rpm is increased. In 
Figure 2 the sampling data is shown when the rotor speed 
is 4800rpm. The three major frequency components at 
80Hz, 31Hz and 15Hz were identified, which are 
corresponding to fundamental frequency, whip frequency 
and dimidiate frequency of whip. In Figure 3 the STFT 
provides a time-frequency distribute. The adjacent data 
windows have overlapped, so the time-frequency 
spectrum of STFT generated redundant information.  

 

 
(a)  Time signal 

 
  (b)  Frequency spectrum  

Figure 2.  FFT of oil whip vibration signal 

 

 
(a)  3-D time-frequency distribution 

 
 (b)  High light spectrum 

Figure 3.  STFT of oil whip vibration signal 
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III.  WVD OF VIBRATION SIGNAL  

A. WVD and SPWVD 
The function (3) is called the Wigner-Ville distribution 

(WVD). Wigner (1932) used it first in quantum 
mechanics and J.Ville (1948) was the first to propose 
using (3) for harmonic analysis. 

( ) 2WVD , t-
2 2
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x t f x t e dx πττ τ τ
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The smooth pseudo Wigner-Ville distribution 
(SPWVD) selects appropriate window function. By 
sliding Wigner-Ville kernel function, the cross elements 
are restrained. The SPWVD is defined as: 
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B.  SPWVD of Oil Whip Signal 
Figure 4 is time-frequency diagram of SPWVD. It has 

high time-frequency resolution and immunity of cross 
term interference. But high resolution cannot be obtained 
simultaneously in time and in frequency. The 2X 
frequency of vibration was weakened. 

 
(a)  3-D time-frequency distribution 

 
(b)  High light spectrum 

Figure 4.  SPWVD of oil whip vibration signal 

IV.  WT OF VIBRATION SIGNAL 

A. Wavelet Transform (WT) 
Wavelet analysis involves a fundamentally different 

approach. Instead of seeking to break down a signal into 
its harmonics, which are global functions that go on for 
ever, the signal is broken down into a series of local basis 
functions called wavelets. At the finest scale, wavelets 
may be very short indeed; at a coarse scale, they may be 

very long. The signal ( )x t , is plotted along the horizontal 
axis and the wavelet function ( )tψ  is plotted vertically.  

,
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Where ,a b  are constants, and 0a > . If 2( ) ( )x t L R∈  , 
Wavelet Transform is defined as: 
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B. WT of Oil Whip Signal 
The structure of a non-stationary signal can be 

analyzed with local features represented by closely-
packed wavelets of short length. Vibration characteristics 
can be identified readily from a wavelet map in which the 
mean-square value of the vibration record is shown 
distributed over wavelet scale and position. Coefficient of 
continuous wavelet transform was plotted on time-
frequency plane of oil whip signal in Figure 5. 3-D time-
frequency distribution was shown in Figure 6. The three 
major frequency components at 80Hz, 31Hz and 15Hz 
were identified, which are corresponding to fundamental 
frequency, whip frequency and dimidiate frequency of 
whip. WT had distinct time-frequency distribution, but it 
brought redundant component decomposed in Figure 5. 

 

 
Figure 5.  The decomposed components of WT 
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(a)  3-D time-frequency distribution 

 
(b)  High light spectrum 

Figure 6.  WT of oil whip signal 

V.  HHT OF VIBRATION SIGNAL 

A. Hilbert-Huang Transform (HHT) 
The HHT represents the signal being analyzed in the 

time-frequency domain by combining the empirical mode 
decomposition (EMD) with the Hilbert transform [6]. In 
contrast to the Fourier spectral analysis by which a series 
of sine and cosine functions of constant amplitudes are 
used to represent each constituent frequency components 
in the signal, the HHT technique is based on the 
instantaneous frequency calculation that results from the 
Hilbert transform of the signal. Generally, the Hilbert 
transform for any signal is defined as 

1 ( )[ ( )] ( ) xH x t y t d
t

τ τ
π τ

= = ∫ −
                    (7) 

Where ( )H •  denotes the Hilbert transform operation. 
Theoretically, any analytic signal z(t) can be expressed by 
the sum of its real part x(t) and imaginary part y(t), with 
the latter being the Hilbert transform of the real part.  

( ) ( ) ( )z t x t jy t= +                          (8) 
Equation (8) can be rewritten in a polar coordinate 

system as  
( )( ) ( ) j tz t a t e θ=                             (9) 

From the instantaneous phase ( )tθ , the instantaneous 
frequency ( )tω of the signal can be derived as 

2 2

( ( )) ( ) ( ) ( ) ( )( )
( ) ( )

d t y t x t y t x tt
dt x t y t
θω −= =

+
& &

              (10) 

Accordingly, the real part x(t) of the signal can be 
written in terms of the amplitude and instantaneous 
frequency as a time-dependent function 

( )
( ) ( ( )) ( ( ) )

j t dt
x t z t a t e

ω∫= ℜ = ℜ                       (11) 

Where the symbol ( )ℜ •  denotes the real part of the 
signal z(t). 

To effectively construct frequency spectrum of a 
vibration signal that contains multiple-frequency 
components, the signal needs to be first decomposed into 
mono-component functions, by means of EMD [6]. 
Decomposition of such a signal is based on the following 
observations.  

1) The signal has at least two extrema, i.e., one 
maximum and one minimum.  

2) The characteristic time scale is clearly defined by 
the time lapse between successive alternations of local 
maxima and minima of the signal.  

3) If the signal has no extrema but contains inflection 
points, then it can be differentiated one or more times to 
reveal the extrema. 

The EMD technique decomposes the signal into a 
number of Intrinsic Mode Functions (IMFs), each of 
which is a mono-component function. Then, the Hilbert 
transform is applied to calculate the instantaneous 
frequencies of the original signal.  

After identifying all the local maxima and minima of 
the signal, the upper and lower envelopes are generated 
through curve fitting. Therefore, the cubic spline function 
was employed in the presented study. The mean values of 
the upper and lower envelopes of the signal 11( )m t are 
calculated as 

11( ) ( ( ) ( )) / 2up lowm t x t x t= +                 (12) 
Where ( )upx t and ( )lowx t  are the upper and lower 

envelopes of the signal, respectively. Accordingly, the 
difference between the signal ( )x t  and the envelopes of 
the signal  11( )m t , which is denoted as 11( )h t , is given by 

11 11( ) ( ) ( )h t x t m t= −                          (13) 
Due to the approximation nature of the curve fitting 

method, 11( )h t  has to be further processed (by treating 

11( )h t  as the signal itself and repeating the process 
continually) until it satisfies the following two conditions.  

1) The number of extrema and the number of zero-
crossings are either equal to each other or differ by at 
most one.  

2) At any point, the mean value between the envelope 
defined by local maxima and the envelope defined by the 
local minima is zero. 

Through the iteration process (for a total of times), the 
difference between the signal and the mean envelope 
values, is denoted as 

1 1( 1) 1( ) ( ) ( )k k kh t h t m t−= −                     (14) 
Where 1km is the mean envelope value after the kth 

iteration, and 1( 1) ( )kh t− is the difference between the 
signal and the mean envelope values at the (k-1)th 
iteration. The function 1 ( )kh t is then defined as the first 
IMF component and expressed as 

1 1( ) ( )kc t h t=                                      (15) 
After separating 1( )c t from the original signal ( )x t , the 

residue is obtained as 
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1 1( ) ( ) ( )r t x t c t= −                                (16) 
Subsequently, the residue 1( )r t can be treated as the 

new signal, and the above-illustrated iteration process is 
repeated to extract the rest of the IMFs inherent to the 
signal ( )x t as 

2 1 2 1( ) ( ) ( ), , ( ) ( ) ( )n n nr t r t c t r t r t c t−= − = −L             (17) 
The signal decomposition process is terminated when  

( )nr t becomes a monotonic function, from which no 
further IMFs can be extracted. By substituting (17) into 
(16), the signal ( )x t is decomposed into a number of 
intrinsic mode functions that are the constituent 
components of the signal. As a result, the signal ( )x t can 
be expressed as 

1
( ) ( ) ( )

n

i n
i

x t c t r t
=

= +∑                        (18) 

Where ( )ic t represents the ith intrinsic mode function,  
and ( )nr t  is the residue of the signal decomposition. 
Equation (18) provides a complete description of the 
empirical mode decomposition process [6], which can be 
evaluated by checking the amplitude error between the 
reconstructed and the original signal. 

Based on (7)–(10) and (18), (11) can be modified as 
( )

1
( ) ( ( ) )i

n j t dt
i

i
x t a t e

ω

=

∫= ℜ ∑                  (19) 

In which 2 2( ) ( ) [ ( )]i i ia t c t H c t= + and ( )i tω = 
1(tan ( [ ( )] / ( )) /i id H c t c t dt− . The term ( )nr t  in (12) is not 

included in (13) as it is a monotonic function and does 
not contribute to the frequency content of the signal. 

Comparing (20) with the Fourier-based representation 
of a signal ( )x t  given by 

1
( ) ( )ij t

i
i

x t A e
∞

Ω

=

= ℜ ∑                       (20) 

Where both iA and iΩ are constants, it becomes 
evident that the EMD process enables flexible 
representation of a dynamic signal by revealing its time-
dependent amplitude and the characteristic frequency 
components at various time instances. The signal is thus 
represented by a time-frequency distribution. The 
underlying HHT of the signal is mathematically defined 
as 

1 1
HHT( , ) HHT ( , ) ( , )

n n

i i i
i i

t t a tω ω ω
= =

= ≡∑ ∑            (21) 

HHT ( , )i t ω represents the time-frequency distribution 
obtained from the ith IMF of the signal. The symbol 
denotes “by definition,” and combines the amplitude and 
instantaneous frequency of the signal together. 

B.  HHT of oil whip signal 
 The first 8 mode of HHT was displayed In Figure 7. 

Compared with decomposed based on WT in Figure 5, 
the mode of HHT had little residual. Time-frequency 
distribution was shown in Figure 8. The three major 
frequency components at 80Hz, 31Hz and 15Hz were 
identified, which are more distinct. In comparison, the 

Hilbert–Huang transform (HHT) is based on the 
instantaneous frequencies resulting from the intrinsic 
mode functions of the signal being analyzed; thus, it is 
not constrained by the uncertainty limitations with respect 
to the time and frequency resolutions to which other time-
frequency techniques are subject. The test results that 
HHT provides a more effective time-frequency distribute. 

 

 
Figure 7.  The mode of HHT for oil whip signal 

 
(a)  3-D time-frequency distribution 

 

 
(b)  High light spectrum 

Figure 8.  HHT of oil whip vibration signal 
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C. HHT of  early local rubbing signal 
To experimentally evaluate the effectiveness of HHT 

for non-stationary vibration signal analysis, systematic 
tests were conducted on a rotor test system. In the 
following the HHT is applied in early local rubbing, 
circumferential rubbing. By comparing the HHT with 
original method, the obvious advantage and validity can 
be clearly expressed. 

 

 
(a)   Time signal 

 
(b)  Frequency spectrum 

Figure 9.  Time and spectral diagram of early local rubbing signals 

 
Figure 10.  Time of early local rubbing fault signals by EMD 

The vibration signal of early local rubbing fault is 
measured and shown in Figure 9(a). Its spectrum in 
Figure 9(b) reveals the fundamental frequency at 31Hz. 
The fundamental frequency was obvious, but the twice 
rotational frequency (2X) is negligible and the 

characteristic of early local rubbing can not be displayed 
in FFT spectral diagram. Figure 10 displays the empirical 
mode decomposition in eight IMFs. Using EMD method, 
the original vibration signals of rubbing faults can be 
decomposed into intrinsic modes. The decomposition 
identifies eight modes: c1-c8, which represents the 
different frequency components exited by the inner race 
defects, c8 is the residue, respectively.  Mode c1 contains 
the highest signal frequencies, mode c2 the next higher 
frequency band and so on. Mode c3 contains the 
fundamental frequency, and modes c4-c7 contains 
differential frequencies, whose amplitudes are very small. 
But they can be characteristics of early local rubbing. 

 
(a)  3-D time-frequency distribution 

 
(b) High light spectrum 

Figure 11.  HT of early local rubbing fault signals 

In Figure 11 the HHT result of the early local rubbing 
fault vibration signal is illustrated. The energy 
distributing of vibrations at normal and compression-
decreasing conditions is given in Figure 3, and their 
frequencies are computed using (15), respectively. As 
shower in two figures, the energy of core vibration 
mainly focuses on the fundamental frequency, a little 
exists round about 1/2X, 1/3X and high frequencies 2X, 
3X and so on. But differential frequencies can be 
considered as the characteristics of early local rubbing. 
Therefore, HHT is a very effective tool to diagnose the 
early faults of rotor system. And it provides new means 
for state detection and fault diagnosis of rotating machine. 

V.  CONCLUSION 

The experiment data of oil whip vibration fault signal 
were analyzed by different methods, such as short time 
Fourier transform (STFT), Wigner-Ville distribution 
(WVD), Wavelet transform (WT) and Hilbert-Huang 
Transform (HHT). Compared with these methods, it is 
demonstrated that the time-frequency resolutions of 
STFT and WVD were inconsistent, which were easy to 
cross or make signal lower. WT had distinct time-
frequency distribution, but it brought redundant 
component. HHT time-frequency analysis can detect 

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 73

© 2012 ACADEMY PUBLISHER



components of low energy, and displayed true and 
distinct time-frequency distribution. Therefore, as a time-
frequency signal decomposition technique, the Hilbert-
Huang transform provides an effective tool for analyzing 
vibration signal. Research is being continued to 
systematically investigate the suitability and constraints 
of the HHT for non-stationary signal analysis, using 
vibration signals from different faults. Furthermore, 
integration of the EMD process with enveloping spectrum 
analysis is also being investigated, with the goal of 
realizing an adaptive signal demodulation approach to 
account for varying machine conditions in real-world 
applications. 
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