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Abstract—The most famous one for finding the shortest path 
is the Dijkstra, but it has some limitations. For example, 
when there are more than one shortest path between the 
source node and one special node, Dijkstra could find only 
one of them. Besides, the algorithm is quite complex. This 
article introduce a conception of coding graph, abstracting 
the problem of shortest paths and critical paths into the 
same mathematical model to describe and solve, presents a 
new algorithm of finding the paths. The algorithm extends 
first the data structure of the orthogonal list, so that the 
graph will be stored in the same storage space with the path 
searching process and result data. Codes for all nodes in the 
graph starting from the source node, using the rule of 
getting extremum in the weighing calculation and breadth-
first, When accessing recursively the adjacent nodes from 
the current node, re-estimate the distance of neighboring 
node and entering edge list. if the distance of current node 
plus the weight of the edge to the neighboring node is less 
then (or greater than) the original distance of the 
neighboring node, then set this value as the new distance of 
this neighbor node, if the distance of current node plus the 
weight of the edge to the neighboring node is greater than 
(or less than) the original distance of the neighboring node, 
then the edge node will be deleted from the entering edge list, 
until all the nodes were coded and the coding graph of 
shortest path (or critical path) is created. For each node in 
the coding graph, starts searching from entry edge list 
recursively could get all shortest paths (or critical paths) 
and distances to the source node. Compared with the 
existing algorithms, this algorithm is simpler and more 
understandable, needs only 3n+5e storage unit that is much 
less then that of Dijkstra (which is n2+2n). The time 
complexity O(n+e), which is also lower than the Dijkstra 
O(n2).  
 
Index Terms—coding graph, shortest path, critical path, 
Dijkstra algorithm, extending orthogonal list, time 
complexity. 
 

I.  INTRODUCTION 

On the algorithm of shortest path and critical path, 
there were already many researches and applications. For 
example, represented as AOE(Activity On Edge 
Network), through adjusting and distributing the human 
and other physical resources to short the period of 
project, the key action which influences the project 

progress most. It is solving the problem of critical path of 
AOE network. But in network analysis, traffic plan, 
communication and computer science, great many 
problem could be formalized as finding shortest path 
model[1, 2], that is the problem of weighted graph 
shortest path of G =<V, E, W>. So, the researches on 
algorithm for finding shortest path attracted many 
professionals, and have extensive application area. 

After the creative work of Dijkstra, many solutions for 
finding the shortest path have been presented [1~14]. Eli 
Olinick[3] and  D.K.Smith[4] discussed it in 1966, but 
they are too simple, incomplete, and lacking time 
analysis, so have no much practicability. Cherkassky[12] 
give an theoretic analysis on seventeen algorithms for 
finding shortest path and give experimental evaluation. F. 
Benjamin Zhan tested fifteen of them, the result show 
that three of then are good, they are: TQQ (graph growth 
with two queues), DKA (the Dijkstra′s algorithm 
implemented with approximate buckets) and DKD（the 
Dijkstra′s algorithm implemented with double buckets）. 
The base of TQQ is graph growth theory, fit for 
computing the shortest path from one single node to all 
other node; the other two algorithm based on Dijkstra, fit 
better for computing the shortest path between two 
nodes[13]. Tan Guozhen[14] analyzed and evaluated 
more than twenty algorithms, including method of flag 
setting, modifying, dynamic planning, method based on 
linear algebra, method of elicitation and two-way  
elicitation, method based on neural network of fluid. All 
of these methods are based on Dijkstra, at the cost of time 
and space to get the improvement and extension, 
essentially not escape from the limitation of Dijkstra 
theory. So, the method simpler and more optimized than 
Dijkstra has not occurred yet. 

Time–dependent model is more practical. Hongyan An 
and Guozhen Tan studied shortest path on time-varying 
network [15, 16] and got some achievements. But there is 
no mature algorithm occurred even today. It is still an 
area needs to do more study. 

Traditional algorithm for finding shortest path[17] 
have shortage as follows: (1) needs to get the earliest and 
the latest time for every event occurred, calculate earliest 
and latest starting time for each action, estimate which is 
key action, the calculation is complex. (2) After the 
algorithm running, could get to know only which is and 
which is not key action, but could not get the number of 
critical path from the source node to the crossing-node. 
Neither could get each critical path. Fengsheng Xu[18] 
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improved the traditional algorithm, based on the extend-
first searching, present a new algorithm. The good point 
is that need not to sort, but the shortage is using 
orthogonal list as storage structure, need three extend-
first searches, and then could only get all the key actions, 
and not critical path. Fanzhen Meng[19] based on depth-
first search, calculate all paths from source node to cross 
node, find the longest through analysis and comparison, 
so as to get critical path. Because backtracking 
recursively many times in the calculation, so it runs with 
low efficiency. Aiming at this shortage, Fang Liu[20] 
present a finding critical path algorithm that based on 
extend-first searching, using priority queue, and 
combining with dynamic planning principle. The time 
complexity decreased to O(n+e). However, because using 
adjacency list of graph, calculating the best value from 
bottom to top, and need to record some meaningful 
information, so it needs extra storage. Besides, in the 
same time, using priority queue according to entry-
degree, need sort, where the time complexity was 
evaluated as O(n+e) which is not accurate. In addition, 
output all critical path needs transform information into 
two-dimensional array for each node, so it gets time at 
cost of space.  

The author of the article breakthrough traditional idea  
about finding critical path algorithm, introduced the 
conception of coding graph at first time, present an new 
algorithm for finding critical path[21], which could find 
all the critical paths, key action, and their length from the 
source to crossing node. 

This article simplified the conception of coding graph 
in [21], using an storage structure with extended 
orthogonal list, abstracting the shortest path and critical 
path as the same mathematic model, that is the model of 
path-finding. It aimed to transform the method of finding 
path into constructing a coding graph, present a new 
algorithm for finding path based on coding graph. In the 
same time, through presented path tree, transformed the 
problem of dynamic solving into the problem of 
modifying the code of path tree. Presented a dynamic 
algorism for finding shortest path when single edge 
weight varies. 

The algorithm has the following feature:  
(1) Set up a unified mathematic model of both the 

shortest path problem and problem of critical path, the 
algorithm is simple, and visual. The storage structure of 
coding graph with orthogonal list could be set up only by 
coding for the nodes of graph G and put deleted mark for 
some edge nodes of entry-edge list. 

(2) Reverse search in the coding graph, all shortest 
path (or critical path) and their length could be found. 
The algorithm has time complexity O(n+e), optimal than 
that of Dijkstra (which is O(n2 )). 

(3) No need for any additional condition on the graph, 
it is healthy and robustness. No additional conditions on 
the graph. The usual directed and undirected graph can be 
seen as a special case of weighted graph, so this 
algorithm is suitable for the general.  

(4) No needs for additional temporary storage space, 
the graph, the temporary data of intermediate processing 

and the result data sharing same space. This algorithm 
requires only 3n+5e basic memory units, but Dijkstra 
algorithm requires (n2 +2n).  

(5) Take the maximum advantage of the graph formed 
before changing, by re-encoding on the changed shortest 
path tree (or critical path tree) it could be expanded to the 
shortest path (or critical path) of the fast dynamic 
algorithm.  

II.  BASIC CONCEPTS AND CHARACTERS 

A.  Definition of terms 
Definition 1. For a given weighted graph G= < V, E, 

W >, set v0, v1, …, vm ∈V , mark E(i, j)as directed edge 
from Vi to Vj, and E(0, 1) , E(1, 2), …, E(m-1, m)∈E, 
weight w01, w12, …, w( m- 1) m∈ W corresponding to each 
edge, sequence v0 v1 ... vm as path connecting v0 to vm, 
w01 + w12 + ... + w (m-1) m as the length of the path. Among 
all paths connecting v0 to vm, the path with the minimum 
length is called shortest path, and the path with the 
maximal length is called critical path.  

The usual undirected graph and directed graph can be 
viewed as a special case of the weighted graph, so the 
paper discusses only the weighted graph.  

Definition 2. Set G =<V, E, W> as a weighted graph 
with n nodes, where node set V = {Vi | i=0, 1, 2, …, n-1}, 
edge set E={E(i, j) | i, j=0, 1, 2, …, n-1}, weight set for 
each edge corresponding to elements in E, W = {Wij | i, 
j=0, 1, 2, …, n-1}, then the coding graph of shortest path 
in graph G corresponding source node V0 (denoted by G 
(S, V0)) could be defined constructively as:  

G(S, V0)=<PV, E′, W′> 
Where PV = {PVi=(Vi, Li)| i=0, 1, 2, …, n-1}, Li as 

PVi scalar quantity of nodes in G(S, V0), its value is equal 
to the length of the shortest path between Vi and V0 (if no 
path, take ∞, which will be called isolated node); E′⊆E, 
and E′={all edges of shortest path}, W′ is the set of 
weights corresponding to elements in E′, i.e, W′⊆W. 
For example, Figure 1(B) is coding graph G(S, V0) of G1 
corresponds to source node V0 in Figure 1(A), while 
Figure 1(C) is the expansion of orthogonal list storage 
representations of G1 (S, V0). 

V0

V2

V3
V4

V1
2

2

5 2

3 2

 
（A）weight graph G1 

 
 
 
 
 
 

 
 
 
 

(B) coding graph G(S, V0) of G1 
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（C）Expansion of orthogonal list representations of G1(S, V0). 

 
 (D) shortest path  tree T(V1) 

 
Figure 1.   Schematic diagram G1 and related concepts 

Clearly, in the representation of expanded orthogonal 
list G1（S, V0）for each node Vi, search in opposite 
direction starting from entry-edge, until arrive the source 
node V0, could find all shortest path from V0 to Vi, and Li  
in PVi  = (Vi, Li, ) is the shortest path from V0 to Vi . 

Completely similar, let G =<V, E, W> is a n-node 
acyclic AOE network, in the above constructed 
definitions, if in PVi = (Vi, Li) the node Li is the longest 
path value from V0 to Vi (if no path, take 0 value),  then 
G1(S, V0) is the coding graph to solve the critical path, 
same way,  all the critical path, the key activities and 
length can be obtained from the source to either meeting-
node. 

Definition 3.  Set G =<V, E, W> is a n-nodes weighted 
graph (or acyclic AOE network), G′= G(S, V0) is the 
shortest path code graph of G corresponds to source node 
V0, in G’ shortest path tree (or critical path tree) of node s 
is the biggest sub-graph T(s)=<PV′, E′′, W′′ > of G’, 
where s is called root-node of the tree, satisfying the 
following conditions: 

(1) PV′⊆PV, E′′⊆E′, W′′⊆ W′. 
(2) For any PVi ∈G′, if the shortest path (or critical 

path) from Vi to V0 pass through s, then PVi∈T(s) 
otherwise PVi not belongs to T(s). 

(3) There are path from node s to all other nodes in 
T(s), and further more, they are shortest path (or longest 
path). Especially, when s=V0, T(V0)= G(S, V0) - { 
isolated node }. 

For example, Figure 1 (D) is the shortest path tree in 
G1 (S, V0) on node V1, shown in Figure 1 (B). 

Definition 4.  Set G = <V, E, W> is a n-nodes 
weighted graph (or acyclic AOE network), G′= G(S, V0) 
is the shortest path(or critical path tree) code graph of G 
corresponds to source node V0,  T (s) is the shortest path 
tree (or critical path tree), the smallest convex of  T (s) is 
minimal sub-graph T′(s) of G’ with the following 
properties:  

(1) T(s)⊆ T′(s)⊆G. 

(2) for any node Vi ∈G in G, but Vi not belongs to T(s), 
if in T(s) exist some one node Vk, make Vk as a directly 
next node of Vi, namely edge E(i, k)∈E, then Vi∈T′(s), 
otherwise, Vi is not a node in T′(s). 

Specified, in graph G and code graph G(S, V0), the two 
node sets is obviously isomorphic (that is, V ≌ PV), 
therefore, the node can be described in terms 
equivalently, for example, node PVi and Vi is the same 
thing. 

B.  Characters 
Theorem 1. Set G =<V, E, W> is a directed graph, 

without considering the order of edge nodes in the entry-
edge list, the shortest path coding graph G(S, V0) = <PV, 
E, W> is unique. 

Proof: the existence is evidently. Because in the graph 
G, any node Vi, if there is a shortest path from Vi to Vk, 
then according to the Dijkstra algorithm, you can find the 
shortest path and the length, suppose the path (V0, …, Vf, 
Vi) is the shortest path, and length L, taking PVi = (Vi, 
Li)=(Vi, L) edge E(Vf, Vi) as the node of entry-edge list; 
if no path, take (Vi, Li)=(Vi, ∞) , set table header field of 
the entry-edge empty. 

For the unique, two ways to prove, first of all, the 
unique of Li, guaranteed by the Dijkstra algorithm, the 
shortest path length is unique. The proof is as following: 
without considering the edge-node order of entry-edge 
list, entry-edge list is unique for any node Vi, that is, the 
set of edge-node is unique. In fact, suppose it is not 
unique, then exists at least two groups foreword-order set 
of nodes that are not completely the same. Say they are 
{Vp1} and {Vp2}, and {Vp1}≠{Vp2}, setVj∈{Vp2}, but 
Vj not belongs to {Vp1}, then foreword   node set V = 
Vj∪{Vp1} is the preceding node set of Vi, this is 
contradict with the assumed condition that {Vp1} is of all 
the nodes Vi of the shortest path. So it is unique. 

Theorem 2.  Set G=<V, E, W> as a directed graph, in 
the coding graph G (S, V0), L as a  shortest path from V0 
to Vi, if L pass through the node Vk , and L= L1∪L2 , then 
L1 is the shortest path from V0 to Vk, L2 is the shortest 
path from Vk to Vi. 

Proof: Without loss of generality, assume L1 is not the 
shortest path from V0 to Vk, but Q1 is. Then, there exists 
at least one a different node Vt, and length of Q1 is less 
then length of L1, obviously L′ = Q1∪L2 is a path from V0 
to Vi pass through Vk, the length of which is less then that 
of L, this is contradict with the assume that L is a shortest 
path from V0 to Vi. 

Theorem 3.  In coding graph G(S, V0), search 
backward starting from the entry-edge list of PVi, if 
Li=∞, then no path exists, otherwise, at the most through  
n-1（n is the number of nodes in graph G） steps could 
surely arrive the source node V0, and the sequence of 
nodes obtained Vi, Vi1, Vi2, …, Vim, V0 is a shortest path 
from V0 to Vi . 

Proof: if the conclusion does not true, then in the 
sequence of searching path, there is at least one heavy 
node, such as Vk. In other words, exists at least one ring 
in the sequence of the search path. Assuming the node 
sequence ring is: 

PV2 = (V2, 4 ) 

PV1 =（V1 , 2 ) 

3 2 

PV3 = (V3, 
5)
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Vi, Vk , Vf , …, Vk , Vt, …, V0 
Obviously, the distance {Lf, Lt} of the first two 

preceding nodes {Vf, Vt } of the repeated nodes Vk, 
satisfying: Lf+wfk>Lt+wtk, according to the definition of 
coding graph, the length of  node Vkcould only be Lt+wtk, 
thus, Vf could not be the preceding node of Vk, this is a 
contradict, so, at most through n-1 step could surely 
arrive the source node V0. refferenced to the coding graph 
G(S, V0) and Theorem 2, the conclusion is proofed to be 
true. 

Theorem 4.  Set G′=G(S, V0) is the coding graph of G 
corresponds to source node V0. T(Vi) and T(Vj) are the 
two shortest path tree of G′, corresponds to node Vi and 
Vj. If  Vj∈T(Vi), then T(Vj)⊆T(Vi). Otherwise, if T(Vj) is  
a shortest path tree in T(Vi), then T(Vj) is also a shortest 
path tree of  G′= G(S, V0) . 

Refferenced to the definition of  shortest path tree, 
Theorem 4 be true. 

Set G =<V, E, W> as n-node acyclic AOE network, 
then in the critical path coding graph G′=G(S, V0), there 
are Theorem 1 ~ Theorem 4 similarly. 

III.  CODING  GRAPH 

A.  Data structures 
Orthogonal list of traditional graph stored method be 

extended to make as long as the node on the graph G to 
modify certain fields, delete some edge node of entry-
edge list, it generates the expansion of orthogonal list 
storage of coding graph G(S, V0), the storage structure of 
graph G designed as follows: 

 (1) Node table header: header from the node to all the 
order structure (vector) is stored in order to randomly 
access any node in or out side list.  

typedef struct Vertex //G (S, V0) node table structure 
{   int  L;                    //the  path length 

struct Ede *firstin;//entry-edge table header pointer 
         struct Ede *firstout;//out-edge table header pointer 
      }* VERTEX; 

(2) Edge table: composed by the edges which 
representing adjacency relation between nodes in the 
graph. 

typedef struct Ede  //structure of nodes in edge table 
 {   int  tailvex;   //the subscript of starting node of edge  

int  headvex; //the subscript of ending node of edge 
           int  weight;   //weight of edge 
           struct Ede *headlink;//pointer of entry-edge table 
          struct Ede  *taillink;  //pointer of out-edge table 
        }* PEDE; 

B.  Construction Algorithm 
Construction algorithm of coding graph G(S, V0) 

(coding graph construction, CGC for simple) is a 
recursive algorithm, first of all to establish orthogonal list 
storage structure graph, introducing queue, on the graph 
G to breadth-first coding, establish distance values of the 
node, modify entry-edge list to generate the orthogonal 
list storage representation of shortest path (or critical 
path) coding graph. 

Start from source node V0, coding its adjacent node 
one by one, then starting from the adjacent coding 
sequence of their adjacent nodes, and to "first be encoded 
node’s adjacent node" before "last encoded node’s 
adjacent node"  to be encoded, until the end of the 
recursive encoding, construction algorithm of shortest 
path (or critical path) encoding graph G(S, V0) described 
as follows:  

(1) Initialization: Initialize the queue to be empty, set 
L0 of the source node PV0 to 0, for all other nodes 
initialize scalar L as ∞ (or L initialize 0).  

(2) Take the source PV0 into the queue. 
(3) If the queue is not empty, then take out the first 

node PVi, transfer Li  of node PVi to the adjacent node, 
and take all the adjacent nodes with which the value of L 
has been modified into the queue. Delete non-shortest 
edge path (or critical path) edge node in the entry-edge 
list. Without loss of generality, assume current out-queue 
node is PVi, and of PVi the one-way adjacent nods are  
(Vj1, Lj1), (Vj2, Lj2), …, (Vjk, Ljk), and out edge are E (i, 
j1), E(i, j2), …, E(i, jk), the weight for corresponded 
adjacent edge are  wij1, wij2, wij3, …, wijk, for any adjacent 
nods（Vjm, Ljm）(m=1, 2, 3, …k）, make the mapping of 
transfer weight and take the minimum value(or 
maximum) ξ:  

 
 
 
 

and, when Ljm  <  Li+wijm（or Ljm  >  Li+wijm）, delete 
edge node E（i, jm）from entry edge list; when Ljm  >  
Li+wijm（or Ljm < Li + wijm）, take the node PVjm into 
queue. 

(4) Repeat step 3 until the queue becomes empty. 

C.  Propertis 
The paper discussed only the propertis of shortest path 

coding graph, of critical path coding graph is similar. 
Theorem 5.  Set G’ = G (S, V0) as the coding graph of 

G, T (Vj ) is the shortest path tree corresponding with the 
node Vj in G’. Then, if the distance value Lj of nodes Vj 
changes, then the graph G, if and only if the new coding 
graph created from re-encoding the code graph T(Vj )  
constructs the code graph of G. In other words, when and 
only when Access T (Vj ) changes the value of distance 
and entry edge list of the corresponding node, the new 
code graph of G after changing will be constructed.  

Proof:  According to the definition of coding graph and 
shortest path tree, it is obviously by recursively derive 
that all nodes of T(Vj) need to re-encoding. If not, assume 
in graph G, there exists at least one node Vk not belongs 
to T(Vj), of which the value of distance or entry edge list 
changed, then in G’ = G(S, V0) , the shortest path from Vk 
to source node must pass through Vj, according to 
definition of T(Vj ), Vk shall belongs to T (Vj ), that 
conflict with the assumption, therefore, only the node in 
T(Vj ) need to be re-encoded.  

By Theorem 5 that, when distance value Lj of nodes Vj 
changes, need only re-encoding the shortest path tree T 
(Vj ) that rooted at node Vj, to construct the new coding 

(Vjm , Li+wijm )   if  Ljm > Li + wijm 
ξ(PVi) = PVjm =                              （or Ljm < Li + wijm） 

(Vjm , Ljm )          others 
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graph. This make the existing graphs to be applied in the 
maximal scale, reduce time complexity. About re-
encoding T (Vj )  have the following conclusions.  

Theorem 6.  Set T (Vj ) as the shortest path tree rooted 
at Vj  in G’ = G (S, V0),  then,  

 (1) If the distance value L′j  of  Vj  changed to be 
smaller ( i.e, L′j<Lj <Lj),  then for the internal node T1={ 
PV| edge node including only the edge of T (Vj ) in the 
entry edge list}, need only modify the distance value, that 
is for any Vk∈T(Vj),  change the distance value of node 
Vk into Lk=Lk+L′j-Lj; While on the border node T2 = {PV 
| edge node including non-T(Vj) edge in entry edge list }, 
in addition to modify the distance value, but also remove 
all the non-T(Vj) edge nodes in the entry edge list. The 
resulting graph is the code graph of changed graph G. 

(2) If the distance value L′j changed bigger,  (ie, 
L′j>Lj), then starting from the node Vj, re-encoding 
recursively for T(Vj), we must consider the convex of 
T’(Vj), the resulting graph is the coding graph of changed 
G.  

Proof:  Without loss of generality, as long as proof the 
adjacent node, because the proof can be repeated 
recursively for all nodes. Suppose node Vk is the adjacent 
node of Vj, and both of them belong to T2, and E (j, k) 
and E (f, k) are two edges in the entry edge list of Vk, 
where E (f, k) does not belong to T (Vj )  (that is, Vf is a 
node of G (S, V0), but not T (Vj)), because the shortest 
path value Lk from V0 to Vk via Vj is less than the original 
value L (the shortest path via node Vf ), so, Vf is no 
longer the preceding node of Vk,  E (f, k) must be 
removed from entry edge list. For node Vk on T1, from 
the definition of T (Vj ) could know clearly that is enough 
only modify the distance value. Then according to 
Theorem 5, Theorem 6 (1) is proved to be true.  

As for Theorem 6 (2), similarly if the adjacent node on 
Vj can be proved is enough. Suppose Vk is the adjacent 
node of Vj, if Vk has another one entry edge E (f, k) not 
belonging to T (Vj ), and Vf∈convex T′(Vj), because the 
distance value L′j of the tree’s root node Vj getting 
bigger, so , when Lf+wfk <L′j+wjk , must add the edge E 
(f, k)  into the entry edge list of Vk , and remove E (j, k). 
In other words, when re-encoding T(Vj ) recursively, it is 
necessary to consider the convex of T′(Vj), then 
according to Theorem 5, Theorem 6 (2) proved.  

The dynamic shortest path algorithm could be 
simplified as code graph re-construction algorithm when 
single edge weight changed. From Theorem 6 could get 
the following Inference. 

Inference 1.  Set E(i, j) as a directed edge of code 
graph G(S, V0) , if weight w′ij changed to be bigger (i.e 
w′ij> wij),  then  

(1) When E (i, j) is the only entry edge of node Vj, in 
G, then the distance value L′ of root node Vj of shortest 
path tree T (Vj ) become bigger,  the code graph 
constructed from re-encoding  T (Vj ) is the new graph of 
G after change.  

(2) When E (i, j) is the only entry edge of node Vj in G 
(S, V0), but there are other entry edges in G, such as node 
Vf, when Lf + wfj <Li+w′ij, then delete the original entry 
edge list of Vj, make E (f, j) as a entry edge list edge node 

of Vj; when Lf + wfj = Li+w′ij, add E(f, j) to the entry edge 
list of Vj; and then the graph constructed by processing 
the T(Vj) is the code graph of G after change.  

(3) When the node Vj has more then one entry edges in 
G (S, V0), as long as remove E(i, j) from the entry edge 
list of Vj, the result graph is the code graph of G after 
change. 

Proof:  Since E (i, j) is the only entry edge of node Vj 
in graph G, according to the definition of G(S, V0), E (i, 
j) is also the only entry edge of Vj in code graph, 
therefore, will inevitably lead to the distance value of Vj 
in T(Vj ) become bigger, according to Theorem 6(2), the 
inference 1(1) was true.  

Base on the known conditions and the definition of 
coding graph, make the distance value of Vj become 
bigger, from Theorem 6(2), the inference 1(2) is true. 
From the definition of the coding graph, it is easy to 
know that the inference 1(3) is true. 

Inference 2.  Set E(i, j) as a directed edge in code graph 
G (S, V0), if the weight w′ij become smaller (w′ij<wij), 
then   

(1) When E (i, j) is the only entry edge of node Vj, then 
distance value L′j  of the root node Vj in the shortest path 
tree T(Vj)  become smaller, the graph constructed from 
re-encoding only T(Vj) shall be the graph G after change.  

(2) When the node Vj in the coding graph G(S, V0) has 
more then one entry edges, then need only remove other 
entry edge nodes from it’s entry edge list, leaving only 
this entry edge node, and the distance value L′j of node Vj 
in the shortest path tree T(Vj) become smaller, and then 
the resulted graph by processing T(Vj) shall be the graph 
G（S, V0）after graph G changed.  

Proof: Since E (i, j) is the only entry edge of node Vj, 
and weight w′ij  become smaller, assume in G has a 
preceding node Vf, but Lf+wfj>Li+wij>Li+w′ij, therefore, 
E(f, j) could not be edge node of the entry edge list, so 
could only add the distance value Li of node Vi with the 
new weight of  E(i, j) to transfer to Vj(Lj = Li+w′ij), i.e,  
the distance value of root node Vj of T(Vj) becomes 
smaller, according to Theorem 6 (1), Inference 2 (1) was 
true.  

In the coding graph G (S, V0), the node Vj has more 
than one entry edge, that means where are more than one 
shortest paths from V0 to Vj, because the weight wij of E 
(i, j) become smaller, Therefore, the length value from V0 
via Vi to Vj become smaller, this path is the only shortest 
path from V0 to Vj, according to the definition of coding 
graph, node Vj has only entry edge list for single edge 
node, so all other entry edge nodes must be removed from 
the entry edge list of Vj, retain only E(i, j) of which the 
weight value become smaller, then according to Theorem 
6(1), inference 2(2) is true. 

IV.  PATH  ALGORITHM 

A.  Static Path Algorithm 
After construction of Coding graph G(S, V0) it is easy 

to find all the shortest path (or critical path) and the 
length from the source node V0 to other node Vk (k=1, 2, 
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…, n-1) in the graph G, obviously in coding graphＧ(S, 
V0), if Li in node PVi =(Vi, Li) is a non-0 finite value, 
then it is the length of the shortest path from Vi to the 
source node V0. otherwise, no path exists. Thus, solving 
the shortest path (or critical path) algorithm, described as 
follows:  

(1) Create the expanded representation of orthogonal 
list of graph G  

(2) According to the shortest path (or critical path) 
construction algorithm for coding graph, construct the 
expanded representation of orthogonal list of coding 
graph G(S, V0). 

(3) In the expanded representation of orthogonal list of 
coding graph G(S, V0), for any node PVi, if the factor Li  
is a non-0 finite value, then it is the shortest path (or 
critical path) length from source node V0 to Vi., while the 
tailvex value of entry-edge list node shall be the 
subscripts of the preceding node of Vi in the shortest path 
(or critical path). By recursive searching for each node in 
entry-edge could find all shortest path (or critical path). 
Otherwise, no path exists. 

B.  Dynamitc Path Algorithm 
When the network environment changes, i.e, in the 

weighted graph G=<V, E, W> some of the edge weights 
changed, dynamic algorithm of the path can be reduced to 
the path algorithm of single weight change.  

Obviously, the key of dynamic algorithm is the 
dynamic construction of coded graph, however, when the 
edge weights change, the removed edge node might re-
enter into the list again, so, when constructing code 
graphs, if simply do delete operation, the deleted edge 
nodes need to be re-searched, resulting decreased 
efficiency of the algorithm. To solve this problem, add a 
flag field into the edge list structure, change the “delete” 
operation for the edge node from entry edge list into the 
operation “validate the delete flag”, and the operation for 
the edge node “add into entry edge list” change to the 
operation “invalidate the delete flag” in the entry edge 
list. Therefore, in the constructing of coding graph, just 
do the operation of setting delete flag field into 
“on(validate)/off(invalidate)“,  remain the original entry 
edge list not changed.  

This article only gives a dynamic shortest path 
algorithm, the critical path of the dynamic algorithm 
completely similar.  

a) The expansion of storage structure  
Expansion of edge list structure is as follows:  
typedef struct Ede{ 
    int tailvex; //subscript of the edge starting point  

int headvex; //subscript of the edge ending point 
int weight; //weight of edge 
struct Ede * headlink; //entry edge list pointer field 
bool onof; //delete flag field, new added 
struct Ede * taillink; //out edge list pointer field 
} * PEDE; 

b) The dynamic shortest path algorithm.  
Set G (S, V0) as a code graph of weighted graph G = 

(V, E, W) , weight value of the edge E (i, j) on node Vi, 
Vj changed from wij into w′ij, according to the character 

of code graph, for single edge weighting change, shortest 
path algorithm is described as follows:  

(1) If E (i, j) is not an edge of G (S, V0), then turn to 
step 3. 

(2) If w′ij become bigger (w′ij>wij), when E (i, j) is the 
only edge node in the entry edge list of node Vj , turn to 
step 6. Otherwise, the entry edge list of Vj, turn on 
deleted flag of E (i, j) in the entry edge list, and then turn 
to step 7.  

If w′ij become smaller(w′ij<wij), and in the entry edge 
list exists other edge nodes, turn on deleted flag for all 
other edge nodes, keep only for E (i, j) off. Turn to step 6.  

(3) If w′ij become bigger(w′ij>wij), then turn to step 8.  
(4) if w′ij become smaller （ w′ij<wij ） , when 

Li+w′ij>Lj , turn to step 8, otherwise turn to step 5.  
(5) If Li+w′ij< Lj, in the entry edge list of node Vj turn 

on deleted flag for all other edge node, turn off only the 
deleted flag for E (i, j), then turn to step 6. If Li+w′ij= Lj 
then turn off the deleted flag for E(i, j) and turn to step 7.  

(6) transfer the distance value Li of node Vi and the 
weight value w′ij of edge E(i, j) to node Vj, which is 
Lj=Li+w′ij; according to Theorem 6, calling CGC 
algorithm processing the distance value L and entry edge 
list on shortest path tree T(Vj),  construct the coding 
graph G(S, V0）with G changed.  

(7)Starting from any code Vi in the graph G(S, V0), 
began with entry edge list do reverse-search recursively 
to find all shortest paths and their lengths from source 
node to any node in the graph, then turn to Step 9.  

(8)Coding graph G(S, V0) did not change, no changes 
in the shortest path.  

(9) algorithm end. 

V.  ALGORITHM ANALYSIS 

A.  The consumpion of storage space 
Set G = (V, E, W) is a n-node directed weighted graph, 

Dijkstra algorithm adjacency matrix representation, need 
to provide auxiliary array dist [n], each element of the 
array includes two word Section: len field is distance 
from the source node V0 to other,  per field value is the 
order number from V0 to the previous node; it needs a 
total of n2+2n basic memory units. In this paper, graph G 
is stored with the expansion of orthogonal list, header 
array needs 3n storage units, edge table needs 5e (e is the 
number of edges in graph G) memory units, Total 
requirement is therefore 3n+5e basic memory units, 
apparently, in the dynamic algorithm when single edge 
weight changing requires 3n+6e basic memory units, 
apparently, save more storage space compared with 
traditional method. 

B.  Time Complexity 
In the construction algorithm of coding graph G(S, 

V0), each node in G get into the queue at most one time, 
so the number of nodes into the queue is not greater than 
n. When node Vi goes out of the queue, the internal 
cycling number of dealing with its neighboring nodes is 
equal to the out-degree di of node Vi. As the total time 
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complexity accessing to all nodes of the adjacent node is 
O(d0+d1+d2+…+dn-1)=O(e), so the time complexity of 
structural coding graph G(S, V0) is O(n+e), superior to 
the traditional method of time complexity O(n2 ). 

VI.  ALGORITHM APPLICATION 

Set G2=(V, E, W) as 9-node weighted directional 
graph, shown as Figure 2 (A) below.  Without loss of 
generality, to solve the shortest path and the length from 
the node V0 to other node, steps as following:  

(1) Create the expansion of orthogonal list 
representation of G2, shown as Figure 2(B). Field L be set 
value 0 in the table header (node V0) or ∞ (other node). 

(2) According to the construction algorithm of the 
shortest path coding graph, the orthogonal list 
representation of construction coding graph G2(S, V0), 
shown as Figure 2(C), obviously is the sub-graph of G2(S, 
V0) in Figure 2(B) that deleted E(1, 4), E(4, 7) and E(6, 
8) from the entry-edge list of node V4, V7 and V8.  

(3) In the expansion of orthogonal list representation of 
shortest path coding graph G2(S, V0), search from entry-
edge of Vi (i=1, 2, …, 8), finish at the source node V0, 
could find all shortest path from V0 to all node Vi (i=1, 2, 
…, 8), information shown in Table 1. where has two 
shortest paths from V0 to V4 :V0 V2 V4 and V0 V3V4, the 
length is 5; from V0 to V6  has two shortest paths: V0 V2 
V4 V6 and V0 V3V4V6, with length 14. 

VII.  CONCLUSION 

The article breakthrough traditional thinking of the 
solution path algorithm, by introducing the concept of 
coded graph, abstract the shortest path and critical path 
issues as the same mathematical model to describe and 
solve. Present a new path algorithm based on coding 
graph, and find the dynamic algorithm to solve shortest 
path when single edge weight changed. Compared with 
the existing shortest path algorithm is not only simple and 
intuitive, but also need storage space only 
3n+5e(dynamic algorithm is 3n +6e) basic memory units, 
less then in traditional method (n2 +2n). Time complexity 
reduced to 0(n+e). That could efficiently, simply find the 
shortest path and length from any node to all other node 
in the graph, has a good adaptability.  

In this paper, graph-based coding algorithm is the 
expansion of [21] for solving the critical path algorithm. 
More detailed study for the character of the coding graph, 
the expansion applied to time-dependent dynamic 
complex network shortest path algorithm, that is, the 
dynamic algorithm in complex case like add and remove 
nodes will be the subject of further study. 
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(A) Weighted directed graph G2 

 

 
(B) Expansion of orthogonal list representation of G2 

 

 
(C)  expansion of orthogonal list representation of coding graph G2(S, V0) 

Figure 2.   Expansion of orthogonal list representation of graph G2 and coding graph G2(S, V0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Information of coding Graph G2(S, V0) 
Source 
node 

Node 
Vi 

Node of entry-edge 
list of Vi 

Length of the shortest 
path   from V0 to Vi 

Shortest path from V0 to Vi 

V0 

V1 E(0, 1 ) 6 (V0  , V1 ) 

V2 E(0, 2 ) 4 (V0  , V2  ) 

V3 E(0, 3 ) 2 (V0  , V3 ) 

V4 E(2, 4 ), E(3, 4 ) 5 (V0  , V2  , V4 )和(V0  , V3  , V4 ) 

V5 E(3, 5 ) 4 (V0  , V3  , V5 ) 

V6 E(4, 6 ) 14 (V0  , V2 , V4  , V6 )和(V0  , V3 , V4  , V6 ) 

V7 E(5, 7 ) 8 (V0  , V3 , V5  , V7 ) 

V8 E(7, 8 ) 12 (V0  , V3 , V5  , V7 , V8 ) 
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