
The New Algorithm for Finding the Paths based
on Coding Graph

Mingfu Wang

Dept. of Software Engineering , Shenzhen Polytechnic, Shenzhen, China
Email: wmingfu@21cn.com

Abstract—The most famous one for finding the shortest path
is the Dijkstra, but it has some limitations. For example,
when there are more than one shortest path between the
source node and one special node, Dijkstra could find only
one of them. Besides, the algorithm is quite complex. This
article introduce a conception of coding graph, abstracting
the problem of shortest paths and critical paths into the
same mathematical model to describe and solve, presents a
new algorithm of finding the paths. The algorithm extends
first the data structure of the orthogonal list, so that the
graph will be stored in the same storage space with the path
searching process and result data. Codes for all nodes in the
graph starting from the source node, using the rule of
getting extremum in the weighing calculation and breadth-
first, When accessing recursively the adjacent nodes from
the current node, re-estimate the distance of neighboring
node and entering edge list. if the distance of current node
plus the weight of the edge to the neighboring node is less
then (or greater than) the original distance of the
neighboring node, then set this value as the new distance of
this neighbor node, if the distance of current node plus the
weight of the edge to the neighboring node is greater than
(or less than) the original distance of the neighboring node,
then the edge node will be deleted from the entering edge list,
until all the nodes were coded and the coding graph of
shortest path (or critical path) is created. For each node in
the coding graph, starts searching from entry edge list
recursively could get all shortest paths (or critical paths)
and distances to the source node. Compared with the
existing algorithms, this algorithm is simpler and more
understandable, needs only 3n+5e storage unit that is much
less then that of Dijkstra (which is n2+2n). The time
complexity O(n+e), which is also lower than the Dijkstra
O(n2).

Index Terms—coding graph, shortest path, critical path,
Dijkstra algorithm, extending orthogonal list, time
complexity.

I. INTRODUCTION

On the algorithm of shortest path and critical path,
there were already many researches and applications. For
example, represented as AOE(Activity On Edge
Network), through adjusting and distributing the human
and other physical resources to short the period of
project, the key action which influences the project

progress most. It is solving the problem of critical path of
AOE network. But in network analysis, traffic plan,
communication and computer science, great many
problem could be formalized as finding shortest path
model[1, 2], that is the problem of weighted graph
shortest path of G =<V, E, W>. So, the researches on
algorithm for finding shortest path attracted many
professionals, and have extensive application area.

After the creative work of Dijkstra, many solutions for
finding the shortest path have been presented [1~14]. Eli
Olinick[3] and D.K.Smith[4] discussed it in 1966, but
they are too simple, incomplete, and lacking time
analysis, so have no much practicability. Cherkassky[12]
give an theoretic analysis on seventeen algorithms for
finding shortest path and give experimental evaluation. F.
Benjamin Zhan tested fifteen of them, the result show
that three of then are good, they are: TQQ (graph growth
with two queues), DKA (the Dijkstra′s algorithm
implemented with approximate buckets) and DKD（the
Dijkstra′s algorithm implemented with double buckets）.
The base of TQQ is graph growth theory, fit for
computing the shortest path from one single node to all
other node; the other two algorithm based on Dijkstra, fit
better for computing the shortest path between two
nodes[13]. Tan Guozhen[14] analyzed and evaluated
more than twenty algorithms, including method of flag
setting, modifying, dynamic planning, method based on
linear algebra, method of elicitation and two-way
elicitation, method based on neural network of fluid. All
of these methods are based on Dijkstra, at the cost of time
and space to get the improvement and extension,
essentially not escape from the limitation of Dijkstra
theory. So, the method simpler and more optimized than
Dijkstra has not occurred yet.

Time–dependent model is more practical. Hongyan An
and Guozhen Tan studied shortest path on time-varying
network [15, 16] and got some achievements. But there is
no mature algorithm occurred even today. It is still an
area needs to do more study.

Traditional algorithm for finding shortest path[17]
have shortage as follows: (1) needs to get the earliest and
the latest time for every event occurred, calculate earliest
and latest starting time for each action, estimate which is
key action, the calculation is complex. (2) After the
algorithm running, could get to know only which is and
which is not key action, but could not get the number of
critical path from the source node to the crossing-node.
Neither could get each critical path. Fengsheng Xu[18]

Manuscript received July 1, 2010; revised September 16, 2010;
accepted October 10, 2010.

Copyright credit, project number, Mingfu Wang.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 1

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.1-8

improved the traditional algorithm, based on the extend-
first searching, present a new algorithm. The good point
is that need not to sort, but the shortage is using
orthogonal list as storage structure, need three extend-
first searches, and then could only get all the key actions,
and not critical path. Fanzhen Meng[19] based on depth-
first search, calculate all paths from source node to cross
node, find the longest through analysis and comparison,
so as to get critical path. Because backtracking
recursively many times in the calculation, so it runs with
low efficiency. Aiming at this shortage, Fang Liu[20]
present a finding critical path algorithm that based on
extend-first searching, using priority queue, and
combining with dynamic planning principle. The time
complexity decreased to O(n+e). However, because using
adjacency list of graph, calculating the best value from
bottom to top, and need to record some meaningful
information, so it needs extra storage. Besides, in the
same time, using priority queue according to entry-
degree, need sort, where the time complexity was
evaluated as O(n+e) which is not accurate. In addition,
output all critical path needs transform information into
two-dimensional array for each node, so it gets time at
cost of space.

The author of the article breakthrough traditional idea
about finding critical path algorithm, introduced the
conception of coding graph at first time, present an new
algorithm for finding critical path[21], which could find
all the critical paths, key action, and their length from the
source to crossing node.

This article simplified the conception of coding graph
in [21], using an storage structure with extended
orthogonal list, abstracting the shortest path and critical
path as the same mathematic model, that is the model of
path-finding. It aimed to transform the method of finding
path into constructing a coding graph, present a new
algorithm for finding path based on coding graph. In the
same time, through presented path tree, transformed the
problem of dynamic solving into the problem of
modifying the code of path tree. Presented a dynamic
algorism for finding shortest path when single edge
weight varies.

The algorithm has the following feature:
(1) Set up a unified mathematic model of both the

shortest path problem and problem of critical path, the
algorithm is simple, and visual. The storage structure of
coding graph with orthogonal list could be set up only by
coding for the nodes of graph G and put deleted mark for
some edge nodes of entry-edge list.

(2) Reverse search in the coding graph, all shortest
path (or critical path) and their length could be found.
The algorithm has time complexity O(n+e), optimal than
that of Dijkstra (which is O(n2)).

(3) No need for any additional condition on the graph,
it is healthy and robustness. No additional conditions on
the graph. The usual directed and undirected graph can be
seen as a special case of weighted graph, so this
algorithm is suitable for the general.

(4) No needs for additional temporary storage space,
the graph, the temporary data of intermediate processing

and the result data sharing same space. This algorithm
requires only 3n+5e basic memory units, but Dijkstra
algorithm requires (n2 +2n).

(5) Take the maximum advantage of the graph formed
before changing, by re-encoding on the changed shortest
path tree (or critical path tree) it could be expanded to the
shortest path (or critical path) of the fast dynamic
algorithm.

II. BASIC CONCEPTS AND CHARACTERS

A. Definition of terms
Definition 1. For a given weighted graph G= < V, E,

W >, set v0, v1, …, vm ∈V , mark E(i, j)as directed edge
from Vi to Vj, and E(0, 1) , E(1, 2), …, E(m-1, m)∈E,
weight w01, w12, …, w(m- 1) m∈ W corresponding to each
edge, sequence v0 v1 ... vm as path connecting v0 to vm,
w01 + w12 + ... + w (m-1) m as the length of the path. Among
all paths connecting v0 to vm, the path with the minimum
length is called shortest path, and the path with the
maximal length is called critical path.

The usual undirected graph and directed graph can be
viewed as a special case of the weighted graph, so the
paper discusses only the weighted graph.

Definition 2. Set G =<V, E, W> as a weighted graph
with n nodes, where node set V = {Vi | i=0, 1, 2, …, n-1},
edge set E={E(i, j) | i, j=0, 1, 2, …, n-1}, weight set for
each edge corresponding to elements in E, W = {Wij | i,
j=0, 1, 2, …, n-1}, then the coding graph of shortest path
in graph G corresponding source node V0 (denoted by G
(S, V0)) could be defined constructively as:

G(S, V0)=<PV, E′, W′>
Where PV = {PVi=(Vi, Li)| i=0, 1, 2, …, n-1}, Li as

PVi scalar quantity of nodes in G(S, V0), its value is equal
to the length of the shortest path between Vi and V0 (if no
path, take ∞, which will be called isolated node); E′⊆E,
and E′={all edges of shortest path}, W′ is the set of
weights corresponding to elements in E′, i.e, W′⊆W.
For example, Figure 1(B) is coding graph G(S, V0) of G1
corresponds to source node V0 in Figure 1(A), while
Figure 1(C) is the expansion of orthogonal list storage
representations of G1 (S, V0).

V0

V2

V3
V4

V1
2

2

5 2

3 2

（A）weight graph G1

(B) coding graph G(S, V0) of G1

3

2

5

2

PV0 = (V0,
0)

PV1 =（V1 , 2)

PV3 = (V3,
5)

PV2 = (V2, 4)

PV4 = (V4, ∞)

2 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

（C）Expansion of orthogonal list representations of G1(S, V0).

 (D) shortest path tree T(V1)

Figure 1. Schematic diagram G1 and related concepts

Clearly, in the representation of expanded orthogonal
list G1（S, V0）for each node Vi, search in opposite
direction starting from entry-edge, until arrive the source
node V0, could find all shortest path from V0 to Vi, and Li
in PVi = (Vi, Li,) is the shortest path from V0 to Vi .

Completely similar, let G =<V, E, W> is a n-node
acyclic AOE network, in the above constructed
definitions, if in PVi = (Vi, Li) the node Li is the longest
path value from V0 to Vi (if no path, take 0 value), then
G1(S, V0) is the coding graph to solve the critical path,
same way, all the critical path, the key activities and
length can be obtained from the source to either meeting-
node.

Definition 3. Set G =<V, E, W> is a n-nodes weighted
graph (or acyclic AOE network), G′= G(S, V0) is the
shortest path code graph of G corresponds to source node
V0, in G’ shortest path tree (or critical path tree) of node s
is the biggest sub-graph T(s)=<PV′, E′′, W′′ > of G’,
where s is called root-node of the tree, satisfying the
following conditions:

(1) PV′⊆PV, E′′⊆E′, W′′⊆ W′.
(2) For any PVi ∈G′, if the shortest path (or critical

path) from Vi to V0 pass through s, then PVi∈T(s)
otherwise PVi not belongs to T(s).

(3) There are path from node s to all other nodes in
T(s), and further more, they are shortest path (or longest
path). Especially, when s=V0, T(V0)= G(S, V0) - {
isolated node }.

For example, Figure 1 (D) is the shortest path tree in
G1 (S, V0) on node V1, shown in Figure 1 (B).

Definition 4. Set G = <V, E, W> is a n-nodes
weighted graph (or acyclic AOE network), G′= G(S, V0)
is the shortest path(or critical path tree) code graph of G
corresponds to source node V0, T (s) is the shortest path
tree (or critical path tree), the smallest convex of T (s) is
minimal sub-graph T′(s) of G’ with the following
properties:

(1) T(s)⊆ T′(s)⊆G.

(2) for any node Vi ∈G in G, but Vi not belongs to T(s),
if in T(s) exist some one node Vk, make Vk as a directly
next node of Vi, namely edge E(i, k)∈E, then Vi∈T′(s),
otherwise, Vi is not a node in T′(s).

Specified, in graph G and code graph G(S, V0), the two
node sets is obviously isomorphic (that is, V ≌ PV),
therefore, the node can be described in terms
equivalently, for example, node PVi and Vi is the same
thing.

B. Characters
Theorem 1. Set G =<V, E, W> is a directed graph,

without considering the order of edge nodes in the entry-
edge list, the shortest path coding graph G(S, V0) = <PV,
E, W> is unique.

Proof: the existence is evidently. Because in the graph
G, any node Vi, if there is a shortest path from Vi to Vk,
then according to the Dijkstra algorithm, you can find the
shortest path and the length, suppose the path (V0, …, Vf,
Vi) is the shortest path, and length L, taking PVi = (Vi,
Li)=(Vi, L) edge E(Vf, Vi) as the node of entry-edge list;
if no path, take (Vi, Li)=(Vi, ∞) , set table header field of
the entry-edge empty.

For the unique, two ways to prove, first of all, the
unique of Li, guaranteed by the Dijkstra algorithm, the
shortest path length is unique. The proof is as following:
without considering the edge-node order of entry-edge
list, entry-edge list is unique for any node Vi, that is, the
set of edge-node is unique. In fact, suppose it is not
unique, then exists at least two groups foreword-order set
of nodes that are not completely the same. Say they are
{Vp1} and {Vp2}, and {Vp1}≠{Vp2}, setVj∈{Vp2}, but
Vj not belongs to {Vp1}, then foreword node set V =
Vj∪{Vp1} is the preceding node set of Vi, this is
contradict with the assumed condition that {Vp1} is of all
the nodes Vi of the shortest path. So it is unique.

Theorem 2. Set G=<V, E, W> as a directed graph, in
the coding graph G (S, V0), L as a shortest path from V0
to Vi, if L pass through the node Vk , and L= L1∪L2 , then
L1 is the shortest path from V0 to Vk, L2 is the shortest
path from Vk to Vi.

Proof: Without loss of generality, assume L1 is not the
shortest path from V0 to Vk, but Q1 is. Then, there exists
at least one a different node Vt, and length of Q1 is less
then length of L1, obviously L′ = Q1∪L2 is a path from V0
to Vi pass through Vk, the length of which is less then that
of L, this is contradict with the assume that L is a shortest
path from V0 to Vi.

Theorem 3. In coding graph G(S, V0), search
backward starting from the entry-edge list of PVi, if
Li=∞, then no path exists, otherwise, at the most through
n-1（n is the number of nodes in graph G） steps could
surely arrive the source node V0, and the sequence of
nodes obtained Vi, Vi1, Vi2, …, Vim, V0 is a shortest path
from V0 to Vi .

Proof: if the conclusion does not true, then in the
sequence of searching path, there is at least one heavy
node, such as Vk. In other words, exists at least one ring
in the sequence of the search path. Assuming the node
sequence ring is:

PV2 = (V2, 4)

PV1 =（V1 , 2)

3 2

PV3 = (V3,
5)

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 3

© 2012 ACADEMY PUBLISHER

Vi, Vk , Vf , …, Vk , Vt, …, V0
Obviously, the distance {Lf, Lt} of the first two

preceding nodes {Vf, Vt } of the repeated nodes Vk,
satisfying: Lf+wfk>Lt+wtk, according to the definition of
coding graph, the length of node Vkcould only be Lt+wtk,
thus, Vf could not be the preceding node of Vk, this is a
contradict, so, at most through n-1 step could surely
arrive the source node V0. refferenced to the coding graph
G(S, V0) and Theorem 2, the conclusion is proofed to be
true.

Theorem 4. Set G′=G(S, V0) is the coding graph of G
corresponds to source node V0. T(Vi) and T(Vj) are the
two shortest path tree of G′, corresponds to node Vi and
Vj. If Vj∈T(Vi), then T(Vj)⊆T(Vi). Otherwise, if T(Vj) is
a shortest path tree in T(Vi), then T(Vj) is also a shortest
path tree of G′= G(S, V0) .

Refferenced to the definition of shortest path tree,
Theorem 4 be true.

Set G =<V, E, W> as n-node acyclic AOE network,
then in the critical path coding graph G′=G(S, V0), there
are Theorem 1 ~ Theorem 4 similarly.

III. CODING GRAPH

A. Data structures
Orthogonal list of traditional graph stored method be

extended to make as long as the node on the graph G to
modify certain fields, delete some edge node of entry-
edge list, it generates the expansion of orthogonal list
storage of coding graph G(S, V0), the storage structure of
graph G designed as follows:

 (1) Node table header: header from the node to all the
order structure (vector) is stored in order to randomly
access any node in or out side list.

typedef struct Vertex //G (S, V0) node table structure
{ int L; //the path length

struct Ede *firstin;//entry-edge table header pointer
 struct Ede *firstout;//out-edge table header pointer
 }* VERTEX;

(2) Edge table: composed by the edges which
representing adjacency relation between nodes in the
graph.

typedef struct Ede //structure of nodes in edge table
 { int tailvex; //the subscript of starting node of edge

int headvex; //the subscript of ending node of edge
 int weight; //weight of edge
 struct Ede *headlink;//pointer of entry-edge table
 struct Ede *taillink; //pointer of out-edge table
 }* PEDE;

B. Construction Algorithm
Construction algorithm of coding graph G(S, V0)

(coding graph construction, CGC for simple) is a
recursive algorithm, first of all to establish orthogonal list
storage structure graph, introducing queue, on the graph
G to breadth-first coding, establish distance values of the
node, modify entry-edge list to generate the orthogonal
list storage representation of shortest path (or critical
path) coding graph.

Start from source node V0, coding its adjacent node
one by one, then starting from the adjacent coding
sequence of their adjacent nodes, and to "first be encoded
node’s adjacent node" before "last encoded node’s
adjacent node" to be encoded, until the end of the
recursive encoding, construction algorithm of shortest
path (or critical path) encoding graph G(S, V0) described
as follows:

(1) Initialization: Initialize the queue to be empty, set
L0 of the source node PV0 to 0, for all other nodes
initialize scalar L as ∞ (or L initialize 0).

(2) Take the source PV0 into the queue.
(3) If the queue is not empty, then take out the first

node PVi, transfer Li of node PVi to the adjacent node,
and take all the adjacent nodes with which the value of L
has been modified into the queue. Delete non-shortest
edge path (or critical path) edge node in the entry-edge
list. Without loss of generality, assume current out-queue
node is PVi, and of PVi the one-way adjacent nods are
(Vj1, Lj1), (Vj2, Lj2), …, (Vjk, Ljk), and out edge are E (i,
j1), E(i, j2), …, E(i, jk), the weight for corresponded
adjacent edge are wij1, wij2, wij3, …, wijk, for any adjacent
nods（Vjm, Ljm）(m=1, 2, 3, …k）, make the mapping of
transfer weight and take the minimum value(or
maximum) ξ:

and, when Ljm < Li+wijm（or Ljm > Li+wijm）, delete
edge node E（i, jm）from entry edge list; when Ljm >
Li+wijm（or Ljm < Li + wijm）, take the node PVjm into
queue.

(4) Repeat step 3 until the queue becomes empty.

C. Propertis
The paper discussed only the propertis of shortest path

coding graph, of critical path coding graph is similar.
Theorem 5. Set G’ = G (S, V0) as the coding graph of

G, T (Vj) is the shortest path tree corresponding with the
node Vj in G’. Then, if the distance value Lj of nodes Vj
changes, then the graph G, if and only if the new coding
graph created from re-encoding the code graph T(Vj)
constructs the code graph of G. In other words, when and
only when Access T (Vj) changes the value of distance
and entry edge list of the corresponding node, the new
code graph of G after changing will be constructed.

Proof: According to the definition of coding graph and
shortest path tree, it is obviously by recursively derive
that all nodes of T(Vj) need to re-encoding. If not, assume
in graph G, there exists at least one node Vk not belongs
to T(Vj), of which the value of distance or entry edge list
changed, then in G’ = G(S, V0) , the shortest path from Vk
to source node must pass through Vj, according to
definition of T(Vj), Vk shall belongs to T (Vj), that
conflict with the assumption, therefore, only the node in
T(Vj) need to be re-encoded.

By Theorem 5 that, when distance value Lj of nodes Vj
changes, need only re-encoding the shortest path tree T
(Vj) that rooted at node Vj, to construct the new coding

(Vjm , Li+wijm) if Ljm > Li + wijm
ξ(PVi) = PVjm = （or Ljm < Li + wijm）

(Vjm , Ljm) others

4 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

graph. This make the existing graphs to be applied in the
maximal scale, reduce time complexity. About re-
encoding T (Vj) have the following conclusions.

Theorem 6. Set T (Vj) as the shortest path tree rooted
at Vj in G’ = G (S, V0), then,

 (1) If the distance value L′j of Vj changed to be
smaller (i.e, L′j<Lj <Lj), then for the internal node T1={
PV| edge node including only the edge of T (Vj) in the
entry edge list}, need only modify the distance value, that
is for any Vk∈T(Vj), change the distance value of node
Vk into Lk=Lk+L′j-Lj; While on the border node T2 = {PV
| edge node including non-T(Vj) edge in entry edge list },
in addition to modify the distance value, but also remove
all the non-T(Vj) edge nodes in the entry edge list. The
resulting graph is the code graph of changed graph G.

(2) If the distance value L′j changed bigger, (ie,
L′j>Lj), then starting from the node Vj, re-encoding
recursively for T(Vj), we must consider the convex of
T’(Vj), the resulting graph is the coding graph of changed
G.

Proof: Without loss of generality, as long as proof the
adjacent node, because the proof can be repeated
recursively for all nodes. Suppose node Vk is the adjacent
node of Vj, and both of them belong to T2, and E (j, k)
and E (f, k) are two edges in the entry edge list of Vk,
where E (f, k) does not belong to T (Vj) (that is, Vf is a
node of G (S, V0), but not T (Vj)), because the shortest
path value Lk from V0 to Vk via Vj is less than the original
value L (the shortest path via node Vf), so, Vf is no
longer the preceding node of Vk, E (f, k) must be
removed from entry edge list. For node Vk on T1, from
the definition of T (Vj) could know clearly that is enough
only modify the distance value. Then according to
Theorem 5, Theorem 6 (1) is proved to be true.

As for Theorem 6 (2), similarly if the adjacent node on
Vj can be proved is enough. Suppose Vk is the adjacent
node of Vj, if Vk has another one entry edge E (f, k) not
belonging to T (Vj), and Vf∈convex T′(Vj), because the
distance value L′j of the tree’s root node Vj getting
bigger, so , when Lf+wfk <L′j+wjk , must add the edge E
(f, k) into the entry edge list of Vk , and remove E (j, k).
In other words, when re-encoding T(Vj) recursively, it is
necessary to consider the convex of T′(Vj), then
according to Theorem 5, Theorem 6 (2) proved.

The dynamic shortest path algorithm could be
simplified as code graph re-construction algorithm when
single edge weight changed. From Theorem 6 could get
the following Inference.

Inference 1. Set E(i, j) as a directed edge of code
graph G(S, V0) , if weight w′ij changed to be bigger (i.e
w′ij> wij), then

(1) When E (i, j) is the only entry edge of node Vj, in
G, then the distance value L′ of root node Vj of shortest
path tree T (Vj) become bigger, the code graph
constructed from re-encoding T (Vj) is the new graph of
G after change.

(2) When E (i, j) is the only entry edge of node Vj in G
(S, V0), but there are other entry edges in G, such as node
Vf, when Lf + wfj <Li+w′ij, then delete the original entry
edge list of Vj, make E (f, j) as a entry edge list edge node

of Vj; when Lf + wfj = Li+w′ij, add E(f, j) to the entry edge
list of Vj; and then the graph constructed by processing
the T(Vj) is the code graph of G after change.

(3) When the node Vj has more then one entry edges in
G (S, V0), as long as remove E(i, j) from the entry edge
list of Vj, the result graph is the code graph of G after
change.

Proof: Since E (i, j) is the only entry edge of node Vj
in graph G, according to the definition of G(S, V0), E (i,
j) is also the only entry edge of Vj in code graph,
therefore, will inevitably lead to the distance value of Vj
in T(Vj) become bigger, according to Theorem 6(2), the
inference 1(1) was true.

Base on the known conditions and the definition of
coding graph, make the distance value of Vj become
bigger, from Theorem 6(2), the inference 1(2) is true.
From the definition of the coding graph, it is easy to
know that the inference 1(3) is true.

Inference 2. Set E(i, j) as a directed edge in code graph
G (S, V0), if the weight w′ij become smaller (w′ij<wij),
then

(1) When E (i, j) is the only entry edge of node Vj, then
distance value L′j of the root node Vj in the shortest path
tree T(Vj) become smaller, the graph constructed from
re-encoding only T(Vj) shall be the graph G after change.

(2) When the node Vj in the coding graph G(S, V0) has
more then one entry edges, then need only remove other
entry edge nodes from it’s entry edge list, leaving only
this entry edge node, and the distance value L′j of node Vj
in the shortest path tree T(Vj) become smaller, and then
the resulted graph by processing T(Vj) shall be the graph
G（S, V0）after graph G changed.

Proof: Since E (i, j) is the only entry edge of node Vj,
and weight w′ij become smaller, assume in G has a
preceding node Vf, but Lf+wfj>Li+wij>Li+w′ij, therefore,
E(f, j) could not be edge node of the entry edge list, so
could only add the distance value Li of node Vi with the
new weight of E(i, j) to transfer to Vj(Lj = Li+w′ij), i.e,
the distance value of root node Vj of T(Vj) becomes
smaller, according to Theorem 6 (1), Inference 2 (1) was
true.

In the coding graph G (S, V0), the node Vj has more
than one entry edge, that means where are more than one
shortest paths from V0 to Vj, because the weight wij of E
(i, j) become smaller, Therefore, the length value from V0
via Vi to Vj become smaller, this path is the only shortest
path from V0 to Vj, according to the definition of coding
graph, node Vj has only entry edge list for single edge
node, so all other entry edge nodes must be removed from
the entry edge list of Vj, retain only E(i, j) of which the
weight value become smaller, then according to Theorem
6(1), inference 2(2) is true.

IV. PATH ALGORITHM

A. Static Path Algorithm
After construction of Coding graph G(S, V0) it is easy

to find all the shortest path (or critical path) and the
length from the source node V0 to other node Vk (k=1, 2,

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 5

© 2012 ACADEMY PUBLISHER

…, n-1) in the graph G, obviously in coding graphＧ(S,
V0), if Li in node PVi =(Vi, Li) is a non-0 finite value,
then it is the length of the shortest path from Vi to the
source node V0. otherwise, no path exists. Thus, solving
the shortest path (or critical path) algorithm, described as
follows:

(1) Create the expanded representation of orthogonal
list of graph G

(2) According to the shortest path (or critical path)
construction algorithm for coding graph, construct the
expanded representation of orthogonal list of coding
graph G(S, V0).

(3) In the expanded representation of orthogonal list of
coding graph G(S, V0), for any node PVi, if the factor Li
is a non-0 finite value, then it is the shortest path (or
critical path) length from source node V0 to Vi., while the
tailvex value of entry-edge list node shall be the
subscripts of the preceding node of Vi in the shortest path
(or critical path). By recursive searching for each node in
entry-edge could find all shortest path (or critical path).
Otherwise, no path exists.

B. Dynamitc Path Algorithm
When the network environment changes, i.e, in the

weighted graph G=<V, E, W> some of the edge weights
changed, dynamic algorithm of the path can be reduced to
the path algorithm of single weight change.

Obviously, the key of dynamic algorithm is the
dynamic construction of coded graph, however, when the
edge weights change, the removed edge node might re-
enter into the list again, so, when constructing code
graphs, if simply do delete operation, the deleted edge
nodes need to be re-searched, resulting decreased
efficiency of the algorithm. To solve this problem, add a
flag field into the edge list structure, change the “delete”
operation for the edge node from entry edge list into the
operation “validate the delete flag”, and the operation for
the edge node “add into entry edge list” change to the
operation “invalidate the delete flag” in the entry edge
list. Therefore, in the constructing of coding graph, just
do the operation of setting delete flag field into
“on(validate)/off(invalidate)“, remain the original entry
edge list not changed.

This article only gives a dynamic shortest path
algorithm, the critical path of the dynamic algorithm
completely similar.

a) The expansion of storage structure
Expansion of edge list structure is as follows:
typedef struct Ede{
 int tailvex; //subscript of the edge starting point

int headvex; //subscript of the edge ending point
int weight; //weight of edge
struct Ede * headlink; //entry edge list pointer field
bool onof; //delete flag field, new added
struct Ede * taillink; //out edge list pointer field
} * PEDE;

b) The dynamic shortest path algorithm.
Set G (S, V0) as a code graph of weighted graph G =

(V, E, W) , weight value of the edge E (i, j) on node Vi,
Vj changed from wij into w′ij, according to the character

of code graph, for single edge weighting change, shortest
path algorithm is described as follows:

(1) If E (i, j) is not an edge of G (S, V0), then turn to
step 3.

(2) If w′ij become bigger (w′ij>wij), when E (i, j) is the
only edge node in the entry edge list of node Vj , turn to
step 6. Otherwise, the entry edge list of Vj, turn on
deleted flag of E (i, j) in the entry edge list, and then turn
to step 7.

If w′ij become smaller(w′ij<wij), and in the entry edge
list exists other edge nodes, turn on deleted flag for all
other edge nodes, keep only for E (i, j) off. Turn to step 6.

(3) If w′ij become bigger(w′ij>wij), then turn to step 8.
(4) if w′ij become smaller （ w′ij<wij ） , when

Li+w′ij>Lj , turn to step 8, otherwise turn to step 5.
(5) If Li+w′ij< Lj, in the entry edge list of node Vj turn

on deleted flag for all other edge node, turn off only the
deleted flag for E (i, j), then turn to step 6. If Li+w′ij= Lj
then turn off the deleted flag for E(i, j) and turn to step 7.

(6) transfer the distance value Li of node Vi and the
weight value w′ij of edge E(i, j) to node Vj, which is
Lj=Li+w′ij; according to Theorem 6, calling CGC
algorithm processing the distance value L and entry edge
list on shortest path tree T(Vj), construct the coding
graph G(S, V0）with G changed.

(7)Starting from any code Vi in the graph G(S, V0),
began with entry edge list do reverse-search recursively
to find all shortest paths and their lengths from source
node to any node in the graph, then turn to Step 9.

(8)Coding graph G(S, V0) did not change, no changes
in the shortest path.

(9) algorithm end.

V. ALGORITHM ANALYSIS

A. The consumpion of storage space
Set G = (V, E, W) is a n-node directed weighted graph,

Dijkstra algorithm adjacency matrix representation, need
to provide auxiliary array dist [n], each element of the
array includes two word Section: len field is distance
from the source node V0 to other, per field value is the
order number from V0 to the previous node; it needs a
total of n2+2n basic memory units. In this paper, graph G
is stored with the expansion of orthogonal list, header
array needs 3n storage units, edge table needs 5e (e is the
number of edges in graph G) memory units, Total
requirement is therefore 3n+5e basic memory units,
apparently, in the dynamic algorithm when single edge
weight changing requires 3n+6e basic memory units,
apparently, save more storage space compared with
traditional method.

B. Time Complexity
In the construction algorithm of coding graph G(S,

V0), each node in G get into the queue at most one time,
so the number of nodes into the queue is not greater than
n. When node Vi goes out of the queue, the internal
cycling number of dealing with its neighboring nodes is
equal to the out-degree di of node Vi. As the total time

6 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

complexity accessing to all nodes of the adjacent node is
O(d0+d1+d2+…+dn-1)=O(e), so the time complexity of
structural coding graph G(S, V0) is O(n+e), superior to
the traditional method of time complexity O(n2).

VI. ALGORITHM APPLICATION

Set G2=(V, E, W) as 9-node weighted directional
graph, shown as Figure 2 (A) below. Without loss of
generality, to solve the shortest path and the length from
the node V0 to other node, steps as following:

(1) Create the expansion of orthogonal list
representation of G2, shown as Figure 2(B). Field L be set
value 0 in the table header (node V0) or ∞ (other node).

(2) According to the construction algorithm of the
shortest path coding graph, the orthogonal list
representation of construction coding graph G2(S, V0),
shown as Figure 2(C), obviously is the sub-graph of G2(S,
V0) in Figure 2(B) that deleted E(1, 4), E(4, 7) and E(6,
8) from the entry-edge list of node V4, V7 and V8.

(3) In the expansion of orthogonal list representation of
shortest path coding graph G2(S, V0), search from entry-
edge of Vi (i=1, 2, …, 8), finish at the source node V0,
could find all shortest path from V0 to all node Vi (i=1, 2,
…, 8), information shown in Table 1. where has two
shortest paths from V0 to V4 :V0 V2 V4 and V0 V3V4, the
length is 5; from V0 to V6 has two shortest paths: V0 V2
V4 V6 and V0 V3V4V6, with length 14.

VII. CONCLUSION

The article breakthrough traditional thinking of the
solution path algorithm, by introducing the concept of
coded graph, abstract the shortest path and critical path
issues as the same mathematical model to describe and
solve. Present a new path algorithm based on coding
graph, and find the dynamic algorithm to solve shortest
path when single edge weight changed. Compared with
the existing shortest path algorithm is not only simple and
intuitive, but also need storage space only
3n+5e(dynamic algorithm is 3n +6e) basic memory units,
less then in traditional method (n2 +2n). Time complexity
reduced to 0(n+e). That could efficiently, simply find the
shortest path and length from any node to all other node
in the graph, has a good adaptability.

In this paper, graph-based coding algorithm is the
expansion of [21] for solving the critical path algorithm.
More detailed study for the character of the coding graph,
the expansion applied to time-dependent dynamic
complex network shortest path algorithm, that is, the
dynamic algorithm in complex case like add and remove
nodes will be the subject of further study.

ACKNOWLEDGMENT

I would like to thank all those who helped in the
preparation of this paper. In particular, I am grateful to
Prof. HuJun Bao for his constructive suggestions. It is
supported by the Open Project Program of the State Key
Lab of CAD&CG(A1015), Zhejiang University.

REFERENCES

[1] A huja R K, M agnanti T L, Orlin J B. Network Flow s:
Theory, Algorithm s and Applications. Englewood Cliffs,
NJ: Prentice-Hall, 1993.

[2] Donald M, Topkins. A K shortest path algorithm for
adaptive routing in communication networks. IEEE Trans
Communications, 1988, 36(7) : 855- 859.

[3] Eli Olinick [EB/ OL] . http://mail.informs.org/GROUP
96B/0299.html , 1996-06.

[4] Smith DK[EB/ OL] . http://mail.informs.org/GROUP
96B/0300.html , 1996-06.

[5] Mikkel Thorup. Floats, integers, and single source shortest
paths. Journal of Algorithm s, 2000, 35(2) : 189- 201.

[6] Hanmao Sh i. Time work tradeoffs of the single source
shortest paths problem. Journal of A lgo rithm s, 1999,
30(1) : 19-32.

[7] Friedhelm Meyer auf der Heide , Berthold vocking.
Shortest path routing in arbitrary networks. Journal of
Algorithms, 1999, 31 (1) : 105-131.

[8] Daniele Frigioni. Fully dynamic algorithms for
maintaining shortest path trees. Journal of Algorithms,
2000, 34 (2) : 351-381.

[9] Donald Goldfarb. AnO(nm) - time network simple
algorithm for the shortest path problem. Operations
Research, 1999, 47(3) : 445-448.

[10] Naesingh Deo, Chi-yin Pang. Shortest-path algorithms:
taxonomy and annotation. Networks, 1984, 14 (2) : 275-
323.

[11] Fengsheng Xu, new algorithm solving shortest path,
computer project and science, 2006, 28(2):83-85.

[12] Cherkassky B V , Goldberg A V , Radzik T. Shortest paths
algorithms: Theory and experimental evaluation.
Mathematical Programming, 1996, 73(2) : 129-174.

[13] F B ZHAN. Three Fastest Shortest Path Algorithms on
Real Road Networks[J] . Journal of Geographic
Information and Decision Analysis , 1997, 1(1) : 69～82.

[14] Tan Guozhen. Shortest paths algorithms: Design, analysis,
implementation and experimental evaluation. Department
of Computer Science and Engineering, Dalian University
of Technology: Technology Report 199901, 1999 (in
Chinese).

[15] Hongyan An, dynamic algorithm of network shortest path,
computer project and application, 2003.1:173-174.

[16] Guozhen Tan, shortest path algorithm in the time
depending network, computer science, 2002.2:165-172.

[17] Weimin Yan, Weimin Wu, data structure, QingHa
University publication company, 1997.

[18] Fengsheng Xu, Jing Huang. New algorithm solving critical
path [J], computer application, 2004, 24(12):108-109.

[19] Fanzhen Meng. An algorithm solving critical path [J],
computer project, 2001, 21(4):6-9.

[20] Fang Liu, Ling Wang, algorithm solving critical path based
on dynamic planning theory, computer application, 2006,
26(6):1440-1442.

[21] Mingfu Wang, New Algprithm for Finding Critical Paths.
Computer Engineering, 2008, 34(9):106-108.

Mingfu Wang born in 1956/12/25 at
HuNan province of china, Associate
professor of computer in Shenzhen
Polytechnic. Achieved M.S. in mathematics
from Zhejiang University in 1991. Research
interests include computer graphics, volume
visualization, computer vision, image

processing, and applications on medical images.
Has been served as software engineer in Shenzhen

Yuanwangcheng Multimedia computer Company, one of the
project he directed, The multimedia colored painting system

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 7

© 2012 ACADEMY PUBLISHER

achieved inventive and creative Award by Technological
Information System of Unit Nation (China Bureau) , now study
instruct at shenzhen Polytechnic. Typical works includes:

[1] Mingfu Wang, Yong Zhou, Voxel-Coding for Surface
Reconstruction from Contours, Computer Science, 2009,
NO.7:34-38.

[2] Mingfu Wang, Zhiwen Qi., Research of Anti-copy and
Plagiarism Monitoring System, ETCS 2009, Vol.2 :890-894.

[3] Mingfu Wang, Zhiwen Qi, Research and practice of Web
server Optimization, ISECS 2009, 2009, Vol.2:432-436.

His research interests computer graphics and algorithm
analysis.

V 0
V 2

V 3

V 4

V 5

V 6

V 7

V 8

V 1

6

2

1

4

42

4

9 2

7
3

4

(A) Weighted directed graph G2

(B) Expansion of orthogonal list representation of G2

(C) expansion of orthogonal list representation of coding graph G2(S, V0)

Figure 2. Expansion of orthogonal list representation of graph G2 and coding graph G2(S, V0).

Table 1. Information of coding Graph G2(S, V0)
Source
node

Node
Vi

Node of entry-edge
list of Vi

Length of the shortest
path from V0 to Vi

Shortest path from V0 to Vi

V0

V1 E(0, 1) 6 (V0 , V1)

V2 E(0, 2) 4 (V0 , V2)

V3 E(0, 3) 2 (V0 , V3)

V4 E(2, 4), E(3, 4) 5 (V0 , V2 , V4)和(V0 , V3 , V4)

V5 E(3, 5) 4 (V0 , V3 , V5)

V6 E(4, 6) 14 (V0 , V2 , V4 , V6)和(V0 , V3 , V4 , V6)

V7 E(5, 7) 8 (V0 , V3 , V5 , V7)

V8 E(7, 8) 12 (V0 , V3 , V5 , V7 , V8)

8 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

