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Abstract—Multi-pattern matching with wildcards is to
find all the occurrences of a set of patterns with wildcards in
a text. This problem arises in various fields, such as compu-
tational biology and network security. But the problem is not
extensively studied as the single pattern case and there is no
efficient algorithm for this problem. In this paper, we present
efficient algorithms based on the fast Fourier transform. Let
P = {p1, . . . , pk} be a set of patterns with wildcards where
the total length of patterns is|P |, and a textt of length n over
alphabet a1, . . . , aσ . We present three algorithms for this
problem where patterns are matched simultaneously. The
first algorithm finds the matches of a small set of patterns
in the text in O(n log |P | + occ log k) time where occ is the
total number of occurrences ofP in t. The words used in
the algorithm are of sizekd2 lg σe+

∑
k

i=1
dlg |pi|e bits. The

second algorithm is based on a prime number encoding. It
runs in time O(n log m + occ log k) where m is the length
of the longest pattern in P . The algorithm uses words with
kdlg(2mσ2 + k2)e bits. The third one finds the occurrences
of patterns in the text in time O(n log |P | log σ + occ log k)
by computing the Hamming distance between patterns and
the text. The algorithm uses words with

∑
k

i=1
dlg |pi|e

bits. Moreover, we demonstrate an FFT implementation
based on the modular arithmetic for machines with 64-bit
word. Finally, we show that these algorithms can be easily
parallelized, and the parallelized algorithms are given as
well.

Keywords-Algorithm; Multi-pattern matching; Wildcards;
FFT.

I. I NTRODUCTION

The problem of multi-pattern matching with wildcards
is to find a set of patternsP = {p1, . . . , pk} in a
text t (both the text and the patterns allow to contain
wildcards). Throughout the paper,k denotes the number
of patterns,n denotes the length oft, Σ denotes the
alphabet ofσ symbols from which the symbols inP
and t are chosen. The single pattern matching with
wildcards problem has received much attention. Fischer
and Paterson [12] presented the first solution based on
the fast Fourier transforms (FFT). The running time is
O(n log m logσ) where m is the length of the pattern.
Indyk [13] latter introduced a randomizedO(n log n)
time Monte Carlo algorithm. Kalai [14] gave a simpler
and fasterO(n log m) time algorithm. In 2002 the first
deterministicO(n log m) time solution was presented by
Cole and Hariharan [7]. It uses one convolution, and each

A preliminary version of this paper was presented at PAAP 2010 [23].

symbol in the text and the pattern is encoded with a pair
of rational numbers. Clifford and Clifford [5] recently
gave a simpler deterministic algorithm with the same
time complexity that uses three convolutions where the
numbers used are as large as4m(σ−1)4/27. By allowing
to preprocess the text, Rahman and Iliopoulos [20] gave
efficient solutions without using FFTs and developed an
algorithm runing in timeO(n + m + occ) whereocc is
the total number of occurrences ofP in t. Very recently,
Linhart and Shamir [17] presented the prime number
encoding. By this approach, ifmσ = n, the algorithm runs
in O(n log m) time by computing a single convolution.

Much research focus on Multi-string matching prob-
lem. The first algorithm to solve this problem in
O(n log σ) time is presented by Aho and Corasick [1]
which generalizes the Knuth-Morris-Pratt algorithm [15].
The Commentz-Walter [8] algorithm is a direct extension
of the Boyer-Moore algorithm [4] which also combined
the idea of AC algorithm. Several parallel multi-string
matching algorithms are presented that are either pre-
cise [10] or approximate [27], [25], [24], [26]. The factor
recognition approach based algorithms [9], [19], [2] use
either suffix automata or factor oracles for precise or weak
factor recognition. For short patterns, bit parallelism leads
to algorithms that are efficient in practice, see [18].

However, the problem of matching a set of patterns
with wildcards is not extensively studied as the single
pattern case. To date, there is no efficient algorithm
for this problem. But multi-pattern matching problem
arises in many applications, such as intrusion detection
systems [29], anti-virus systems [28] and computational
biology [17]. A close but different problem: matching
a set of patterns with variable length don’t cares was
solved by Kucherov and Rusinowitch [16]. They proposed
an algorithm that runs in timeO((n + L(P ))log L(P )),
where L(P ) is the total length of keywords in every
pattern of the pattern setP , and |t| is the length of the
input text. A faster solution was given by [22] which runs
in O((n + ‖P‖)logκ/log log κ) time, where‖P‖ is the
total number of keywords in all the patterns inP , andκ
is the number of distinct keywords in all the patterns in
P .

In this paper, we focus on the problem of matching
a set of patterns with wildcards without preprocessing
the text. We present three FFT based algorithms for
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this problem. The first one extends the Clifford and
Clifford algorithm [5] to handle multi-pattern and runs
in O(n log |P | + occ log k) time where|P | denotes the
total length of all the patterns inP . It can find the
matches of a small set of patterns in the text by three
convolutions. The words used in the algorithm are of size
kd2 lg σe +

∑k
i=1dlg |p

i|e bits. The second one uses the
prime number encoding to encode both the pattern and
the text. It runs in timeO(n log m + occ log k) where
m is the length of the longest pattern. The algorithm
uses words withkd2 lg σ + lg m + lg lg(mσ2)e bits. The
drawback of the two methods is that whenσ, |P | and
k are large, the word will be too long to fit into a
machine word of modern processors (normally 32 or
64 bits). To shorten the word length, we present an
algorithm that uses words with

∑k
i=1dlg |p

i|e bits. The
algorithm finds the occurrences of patterns in the text
in time O(n log |P | logσ + occ log k) by computing the
Hamming distances between the patterns and the text.
The distances are computed by2dlg σe convolutions.
Moreover, we discuss the modular arithmetic based FFT
and give all the necessary parameters for the FFT on
the 64-bit architecture. The algorithms presented in this
paper can be easily parallelized. On aq-processor PRAM
model, the time complexity of the algorithms decreases
by q times compared with that on a single processor.

The paper is organized as follows. Section II gives
some basic notions. Section III presents the algorithms
for multi-pattern matching with wildcards using Euclidean
distance. In Section IV, we give the approach based on
Hamming distance of bit vectors. Section V introduces the
FFT based on modular arithmetic on 64-bit architectures.
Some interesting issues are discussed in Section VI.

II. PRELIMINARIES

Let Σ be a finite alphabet and′∗′ the wildcard symbol.
Denote by |s| the length of a strings. A text t =
t[1] . . . t[n] and a patternp = p[1] . . . p[m] are strings
overΣ∪{′∗′}. Given a patternp and a textt, which both
may contain wildcards, we say thatp occurs at location
j in t if:

p[i] = t[i + j − 1] or p[i] =′ ∗′ or t[i + j − 1] =′ ∗′,

for 1 ≤ i ≤ m. (1)

We useP = {p1, . . . , pk} to denote a set of pat-
terns with wildcards. We use“ · ” to denote the con-
catenation of two patterns, for examplep1 · p2 is the
concatenation of patternp1 andp2. For an integer array
x = x[1], x[2], . . . , x[n], we usex[i1..i2] where1 ≤ i1 ≤
i2 ≤ n to denote the arrayx[i1], . . . , x[i2] and use2ex to
denote the integer array of lengthn, such that

(2ex)[i] = x[i]2e, for each1 ≤ i ≤ n. (2)

The following definition is a basic technique used in
this paper.

Convolution: The convolution, or cross-correlation,
of two vectors a, b is the vector a ⊕ b such that

(a⊕ b)[i] =
∑|a|

j=1 a[j]b[(i + j − 1) mod |b|], 1 ≤ i ≤ |b|.
Note that this definition of convolution involves wrap-
around (i.e.,b is assumed to be a cyclic vector).

Our algorithms are based on FFTs. An important prop-
erty of FFT is that in the RAM model,p ⊕ t can be
computed inO(n log n) time. By a standard trick [12],
the running time can be further reduced toO(n log m).
First, split the text inton/m pieces of length2m. The
starting positions of the pieces are in the set{lm + 1 |
0 ≤ l < n/m}. The convolution between the pattern and
each piece of the text is computed using FFT in time
O(m log m) per piece. The overall time complexity is
O((n/m)m log m) = O(n log m).

III. E UCLIDEAN DISTANCE BASED MULTI-PATTERN

MATCHING WITH WILDCARDS

In this section, we extend the wildcard matching al-
gorithm of Clifford and Clifford [5] to multi-pattern.
Generally speaking, the Clifford and Clifford algorithm
first encodes each symbol by a unique positive number
and replaces wildcards by 0’s. Then, for each location
1 ≤ i ≤ n−m + 1 in the text, the algorithm computes

m∑

j=1

p[j]t[i + j − 1](p[j]− t[i + j − 1])2 =

m∑

j=1

(p[j]3t[i + j − 1]− 2p[j]2t[i + j − 1]2

+p[j]t[i + j − 1]3) (3)

in O(n log m) time using FFTs. Wherever there is an
exact match this sum will be exactly 0.

The numbers computed by the algorithm are as large as
4m(σ−1)4/27. In [6], the authors modified the algorithm
as follows. First by replacing non-wildcards by1’s and
wildcards by0’s in the text and the pattern, we getp′ and
t′ respectively. Then, for each location1 ≤ i ≤ n−m+1
in the text, the algorithm computes

m∑

j=1

p′[j]t′[i + j − 1]
(
p[j]− t[i + j − 1]

)2
. (4)

The result can be viewed as the squire of the Euclidean
distance between the pattern and the substring starting
from a locationi in t. The maximal numbers used in the
convolutions are reduced tomσ2.

A. Algorithm 1

In our approach, for a patternp and each location1 ≤
i ≤ n in the text, we use the following wrap-around sum

d(p, t)[i] =

|p|∑

j=1

p′[j]t′[l(i, j)]
(
p[j]− t[l(i, j)]

)2
(5)

wherel(i, j) denotes(i+ j−1) mod n. We can compute
(5) by the following formula which uses only three
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convolutions.
|p|∑

j=1

p′[j]t[l(i, j)]2−2

|p|∑

j=1

p[j]t[l(i, j)]+

|p|∑

j=1

t′[l(i, j)]p[j]2.

(6)
Wherever there is an exact match this sum will be exactly
0.

To match a set of patternsp1, . . . , pk, we first construct
a composed pattern of length|P |:

p = p1 · p2 · . . . · pk.

Define α1 = 0, αj =
∑j−1

l=1 (dlg |pl| + 2 lg σe), for
1 ≤ j ≤ k and o1 = 0, oj =

∑j−1
l=1 |p

l|, for 1 ≤ j ≤ k.
We useI[1..l] to denote the array of lengthn where all
the entries are1’s. We constructIP as follows

IP = (2α1I[1..|p1|]) · (2α2I[1..|p2|]) · . . . · (2αkI[1..|pk|]).

Then we compute the following

R[i] =

|p|∑

j=1

IP [j]p′[j]t′[l(i, j)]
(
p[j]− t[l(i, j)]

)2

=

|p|∑

j=1

IP [j]p′[j]t[l(i, j)]2 − 2

|p|∑

j=1

IP [j]p[j]t[l(i, j)]

+

|p|∑

j=1

IP [j]p[j]2t′[l(i, j)]. (7)

R can be computed using three convolutions. By checking
whether the bit vector from(αj + 1)th significant bit to
αj+1th significant bit of the binary code ofR[i], denoted
by R[i][αj+1..αj+1], is all 0’s, we will know whetherpj

occurs at position(i + oj) mod n in t. That is to say,
assume thatt is a cyclic vector, then for each|P |-length
factor of t starting from each position oft, the result of
the matching of each pattern is stored in a disjoint bit
interval in a word. We give the algorithm in Figure 1.

According to (7), we can see that for the resulting array
R computed by Algorithm 1,

R[i] =

k∑

j=1

d(pj , t)[i + oj ]2
αj , for 1 ≤ i ≤ n. (8)

For anypj ∈ P , according to (5), we haved(pj , t)[i +
oj ] ≤ |p

j |σ2. So αj+1 − αj (that equalsdlg |pj| +
2 lg σe) bits are enough to representd(pj , t)[i + oj ].
As a result, the binary code ofd(pj , t)[i + oj ] equals
R[i][αj+1..αj+1]. Thus we can getd(pj , t)[i + oj ] by
computing(R[i] mod 2αj+1)/2αj .

To verify the correctness of Algorithm 1, suppose that a
patternpj ∈ P occurs in the textt starting from position
x. We haved(pj , t)[x] = 0. If pj does not occur int
starting fromx, we haved(pj , t)[x] 6= 0. Let i = x− oj .
ThusR[i][αj+1..αj+1] = 0 indicatesd(pj , t)[i + oj ] = 0,
that is,pj occurs at position(i + oj) mod n of t.

The algorithm takesO(n log |P |) time to computeR
and usesO(nk) time to checkR to find whether there
is any occurrence of patterns. Each entry ofR uses
kd2 lg σe+

∑k
i=1dlg |p

i|e bits. The size of the words used

——————————————————
Algorithm 1
Input : Text t and pattern set P =
{p1, p2, . . . , pk}.

1: R← {0, 0, . . . , 0}
2: α1 ← 0, o1 ← 0
3: for j ← 2 to k do
4: αj ← αj−1 + dlg |pj−1|+ 2 lg σe
5: oj ← oj−1 + |pj−1|
6: end for
7: L← ok + |pk|
8: p← p1 · p2 · . . . · pk,
9: IP [i] = (2α1I[1..|p1|]) · (2α2I[1..|p2|]) · . . . ·

(2αkI[1..|pk|])
10: Compute(pi)′ where1 ≤ i ≤ k and t′ by replacing

non-wildcards by1’s and wildcards by0’s in the t
andpi.

11: For 1 ≤ i ≤ n, compute R[i] =∑L
j=1 IP [j]p′[j]t[(i + j − 1) mod n]2 −

2
∑L

j=1 IP [j]p[j]t[(i + j − 1) mod n] +∑L
j=1 IP [j]t′[(i + j − 1) mod n]p[j]2 using

FFT.
12: for pos← 1 to n do
13: for j ← 1 to k do
14: Output “pj occurs at(pos + oj) mod n in t” if

R[pos][αj+1..αj+1] = 0.
15: end for
16: end for
———————————————————–

Fig. 1. Algorithm 1.

in the FFTs are of the same size. Ifσ, |P | andk are small
enough, each word can fit into a single machine word of
modern processors that is typically 32 bits or 64 bits. For
example, for DNA sequences whereσ = 4, Algorithm 1
can process four patterns each with16 symbols or three
patterns each with64 symbols. But whenσ, |P | and k
are not small the words used in FFTs have to be very
long. For example, letσ = 256, even for two patterns,
Algorithm 1 uses words exceeding 32 bits. The algorithm
in Section IV tries to shorten the word size to cope with
texts on larger alphabets and pattern sets that have larger
number of patterns and longer length.

The time complexity of checking the matches ofP in
t can be further reduced. Let the length of the longest
pattern inP be m. Checking the matches ofP in t can
be done in timeO(n log(mσ)+occ log k) whereocc is the
times of occurrences of patterns int. We first transform
R to array% such that%[i][l] = 0 if l /∈ {α1 + 1, α2 +
1, . . . , αk + 1} and for1 ≤ j ≤ k,

%[i][αj+1] =

{
1 if R[i][αj+1..αj+1] = 0;
0 if R[i][αj+1..αj+1] 6= 0.

For pj positionαj + 1 is called the indication position
(id position) of pj . The transformation is described as
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follows. Let there bed different lengths of patterns. We
order the lengths in an increasing order, usemj where
1 ≤ j ≤ d to denote thejth minimal length. First,
set %[i] = 0 for 1 ≤ i ≤ n. Then for each pattern
pj we compute the bit

∧αj+1

e=αj+1 R[i][e] and set this bit
to %[i][αj+1]. It follows that if R[i][αj+1..αj+1] = 0

then
∧αj+1

e=αj+1 R[i][e] = %[i][αj+1] = 1. The computa-
tion is by bitwise shiftright and bitwiseand oper-
ations. In the transformation, We used bit masks, say
V mask[1], . . . , V mask[d]. The bit maskV mask[j] is
a word where the bits on the indication locations for
patterns whose length ismj are set to bit 1 and other
bits are set to 0s. The transformation is given in Figure 2.
The time complexity of the algorithm isO(n log(mσ2))

——————————————————
Transform R
Input : An arrayR of lengthn.

1: for i← 1 to n do
2: R[i]← R[i]
3: end for
4: for j ← 1 to d do
5: V mask[j] = 0
6: for each patternpe such that|pe| = mj do
7: V mask[j][αe+1] ← 1
8: end for
9: end for

10: for i← 1 to n do
11: j ← 1, x← Rr ← R[i], RE ← 0
12: for s← 1 to dlg(mσ2)e − 1 do
13: Rr ← Rr >> 1
14: x← x ∧ Rr
15: if s = dlg(mjσ

2)e − 1 then
16: RE ← x ∧ V mask[j]
17: j ← j + 1
18: end if
19: end for
20: %[i]← RE
21: end for
———————————————————–

Fig. 2. TransformR to %.

When% is available, we next check each entry of% to
find matches. For an entryx = %[i], we use an implicit
binary treeT to find the id positions on which the bit
values 1. Each tree node corresponds to a subset of the
indication positions. A nodeu = [n1..n2] consists of the
indication positions ofpj where j ∈ [n1..n2]. The root
is the set of all id positions, denoted by[1..k]. Each leaf
contains one id position. For nodeu, the two children are
[n1..(n1+n2)/2] and((n1+n2)/2..n2]. We compute a bit
maskMask(u) from u as follows: the bits ofMask(u)
on positions in[n1..n2] are set to1s, other bits are set to
0s.

We start at the root ofT and checkx∧Mask([1..k]). If
it is 0, then there is no match for patternsp1, p2, . . . , pk.

If it is not 0, at least one pattern matches, we continue
to search in the left subtree of the root by checking
x ∧Mask([1..k/2]). If it is 0 then there is no match for
patternsp1, p2, . . . , pk/2, and we prune the left branch;
otherwise, at least one pattern matches, so we continue to
search the left subtree of the root. After searching in the
left subtree, we search in the right subtree. In this manner
we traverseT depth-first, checkingx∧Mask(u) for each
visited nodeu and pruning the branch if it is 0 along the
way. At last, all the occurrences will be found by visiting
the leaves corresponding to the matched patterns.

The time complexity isO(n + occ log k). So the to-
tal time complexity for finding the matches inR is
O(n log(mσ2) + occ log k). For |P | > m and |P | ≥ σ,
the total time complexity of Algorithm 1 isO(n log |P |+
occ log k).

B. Prime number encoding based algorithm

In this section, we introduce another strategy for
matching a set of patterns with wildcards. Other than
concatenating the patterns to a long one, this method
aligns the patterns and generates a composed pattern with
the length of the longest pattern. The algorithm is based
on a prime number encoding of patterns. Letm be the
length of the longest pattern inP . We extend each pattern
to a similar lengthm by padding′∗′s to the end of a
pattern. Denote the resulting pattern set byP ′. By padding
m 0’s to the end of the input, any matching ofP in t is
exactly a matching ofP ′ in t for the same pattern on the
same position.

We first pick up k distinct prime numbers
ρ1, ρ2, . . . , ρk. DenoteM = ρ1 · ρ2 · · · ρk. We further
require thatρi are larger than|pi|σ2.

Now we consider the encoding method. Fork non-
negative integersx1, x2, . . . , xk, where eachxi is not
greater thanσ, define an integerX that is less thanM ,
such that for1 ≤ i ≤ k

X ≡ xi (mod ρi). (9)

According to the Chinese Remainder Theorem (CRT, in
short) [11], defineci = M/ρi

(
(M/ρi)

−1mod ρi

)
. Forci,

we haveci ≡ 1( mod ρi) and ci ≡ 0( mod ρi′ ), i
′ 6= i.

By the CRT,X =
∑k

i=1 ci · xi.
We construct a composed patternγ of lengthm from

P , where

γ[i] =

k∑

j=1

cj · p
j[i], for 1 ≤ i ≤ m, (10)

and another composed patternγ′ of lengthm, where

γ′[i] =

k∑

j=1

cj · (p
j)′[i], for 1 ≤ i ≤ m. (11)

The text is encoded as follows:

τ [i] =

k∑

j=1

cj · t[i], for 1 ≤ i ≤ n. (12)
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τ ′ is encoded as follows:

τ ′[i] =
k∑

j=1

cj · t
′[i], for 1 ≤ i ≤ n. (13)

Since ρj > |pj |σ2 and d(pj , t)[i] ≤ |pj|σ2, for 1 ≤
j ≤ k, we have

γ mod ρj = pj , τ mod ρj = t. (14)

Then we can use Clifford and Clifford algorithm to match
P ′ in t as follows. We compute Equation (5) forγ and
τ and get arrayd(γ, τ). For an arbitrary arrayA, define
A mod p as the array of the same length ofA where
(A mod p)[i] = A[i] mod p. According to the CRT, for
1 ≤ j ≤ k, we have

d(γ, τ)[i] mod ρj = d(γ mod ρj , τ mod ρj)[i]

= d(pj , t)[i], for 1 ≤ i ≤ n. (15)

Suppose that a patternpj ∈ P occurs in the text
t starting from positioni. We have d(pj , t)[i] = 0.
So, d(γ, τ)[i] mod ρj = 0. If pj does not occur int
starting from x, we haved(γ, τ)[i] mod ρj 6= 0. To
find the matches of patterns, we have to check every
entry of d(γ, τ), say d(γ, τ)[i], for all ρjs such that
d(γ, τ)[i] mod ρj = 0. This straight forward method
can find the occurrences inO(nk) time. However, by
using the method of Linhart and Shamir [17], the time
complexity can be reduced toO(n + occ log k).

For x = d(γ, τ)[i], we use an implicit binary treeT
to find ρj such thatx mod ρj = 0. Each tree node
corresponds to a subset of the pattern set. The root
is the set of all patterns, denoted by[1..k]. Each leaf
contains one pattern. For a nodeu = [n1..n2], the two
children are[n1..(n1 +n2)/2] and((n1 +n2)/2..n2]. For
node u, we compute an integerModul(u) as follows:
Modul(u) = ρn1

· ρn1+1 · · ·ρn2
.

We start at the root ofT and checkx mod M . If it is not
0, then there is no match for patterns. If it is 0, at least one
pattern matches, we continue to search in the left subtree
of the root by checkingx mod ρ1 · ρ2 · · · ρk/2. If it is
not 0 then there is no match for patternsp1, p2, . . . , pk/2,
and we prune the left branch; otherwise, at least one of
these patterns matches, so we continue to search the left
subtree of the root. We traverseT in a depth-first manner,
pruning some of the branches along the way. In the end,
all the occurrences will be found by visiting the leaves
corresponding to the matched patterns.

The algorithm takesO(n log m) time to computeR and
usesO(n + occ log k) time to checkR to find whether
there is any occurrence of patterns. The total running time
is O(n log m + occ log k).

Now we consider the size of words used in the algo-
rithm. For the numberπ(x) of primes not exceedingx,
the following bound is well known:

∀x > 17
x

ln x
< π(x) < 1.26

x

lnx
. (16)

According to the bound, we can verify that formσ2 >
17,

π(2mσ2 + k2)− π(mσ2) >

2mσ2 + k2

ln(2mσ2 + k2)
− 1.26

mσ2

ln(mσ2)
> k. (17)

Thus, if we search for prime numbers betweenmσ2+1
and 2mσ2 + k2, we will find at leastk prime numbers.
Using the sieve algorithm of Atkin et al. [3] it takes
o(2mσ2 + k2) time to find these prime numbers. Each
prime number is at mostlg(2mσ2 + k2) bits long.
Therefore,lg M ≤ k lg(2mσ2 + k2). Thus, each entry
of R useskdlg(2mσ2 + k2)e bits.

IV. H AMMING DISTANCE BASED APPROACH

A. Hamming distance of bit vectors with wildcards

Let B = b1b2 . . . bn be a binary pattern with wildcards.
Denoteb1b2 . . . bn by B where if bi = ∗ then bi = ∗.
Given a binary patternp and a bit stringt (t is assumed to
be a cyclic vector), such that bothp andt have wildcards.
The matchings between the pattern and a factor oft of
length m have seven cases:11, 1∗, ∗1, 00, 0∗, ∗0 and
∗∗ alignments. The Hamming distance between the two
strings is the sum of the number of nonmatchings, that is
#10 + #01.

The Hamming distance betweenp and the factor start-
ing from each position oft of lengthm can be computed
by the following method: For a bit vectorv with wild-
cards, denote byhx(v) the bit vector where each wildcard
of v is replaced by the bitx. Then (h0(p) ⊕ h0(t))[i]
equals#01 betweenp and the factor oft starting from
i, and (h0(t) ⊕ h0(p))[i] equals#10 between the same
pair of strings. The Hamming distance betweenp and
the factor oft starting fromi can be computed by the
following:

H(p, t)[i] = (h0(p)⊕h0(t))[i]+(h0(t)⊕h0(p))[i]. (18)

This distance can be computed by two convolutions.

B. Multi-pattern matching by Hamming distance of bit
vectors

We present an algorithm for multi-pattern matching
with wildcards based on Hamming distance. In this ap-
proach, we derivedlg σe bit vectors from the input text
and dlg σe patterns from the pattern and then perform
dlg σe times of pattern matchings fordlg σe pairs of
pattern and bit text. For1 ≤ s ≤ dlg σe, denote thesth
bit of the integer encoding of a characterc ∈ Σ by c[s],
for c = ∗, c[s] = ∗. For a stringt over Σ, denote the bit
vectort[1][s]t[2][s] . . . t[n][s] by t[s].

To match a set of patterns, we first construct a series of
patternsB〈1〉, B〈2〉, . . ., B〈dlg σe〉 from P , such that for
1 ≤ s ≤ dlg σe,

B〈s〉 = 2a1p1
[s] · 2

a2p2
[s] · . . . · 2

akpk
[s],

wherea1 = 0, aj =
∑j−1

l=1 dlg |p
l|e.
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w

R2[i]

B〈2〉

t[2]

i i+|p1|+|p2|

1
[2] [2] [2][2]
2 3 42a2 * 2a3* 2a4 *

Fig. 3. An example of the run of Algorithm 3. Patternp3

2
is matched in

t2. The matching position isi+ |p1|+ |p2| andR2[i][a3 +1..a4] = 0.

Define

B〈s,0〉 = 2a1h0(p1
[s]) · 2

a2h0(p2
[s]) · . . . · 2

akh0(pk
[s]),

B̃〈s,0〉 = 2a1h0(p1
[s]) · 2

a2h0(p2
[s]) · . . . · 2

akh0(pk
[s]). (19)

According to the computing of Hamming distance, for
eachB〈s〉 andP , we compute

Rs[i] = (B̃〈s,0〉 ⊕ h0(t[s]))[i] + (h0(t[s])⊕B〈s,0〉)[i],

for 1 ≤ i ≤ n. (20)

At last we compute the resulting arrayR such that

R[i] = R1[i] ∨R2[i] ∨ . . . ∨Rdlg σe[i], for 1 ≤ i ≤ n.
(21)

By checking whetherR[i][aj+1..aj+1] = 0, we will know
whetherpj occurs at position(i + oj) mod n in t.

According to the definition ofB〈s〉, we can see that for
a resulting arrayRs computed by the algorithm,

Rs[i] =

k∑

j=1

H(pj
[s], t[s])[i+oj ]2

aj , for 1 ≤ i ≤ n. (22)

For pj ∈ P , we haveH(pj
[s], t[s])[i + oj ] ≤ |p

j |.
So, aj+1 − aj = dlg |pj |e bits are enough to represent
H(pj

[s], t[s])[i + oj ]. Then we have

H(pj
[s], t[s])[i + oj ] = Rs[i][aj+1..aj+1]. (23)

Thus we can getH(pj
[s], t[s])[i + oj ] by computing

(Rs[i] mod 2aj+1)/2aj .
To see why this method works, suppose that a pattern

pj ∈ P occurs in t starting from positionx. We have
H(pj

[s], t[s])[x] = 0 for 1 ≤ s ≤ dlg σe. Otherwise

H(pj
[s], t[s])[x] 6= 0 for at least ones. Let x = i + oj .

SinceRs[i][aj+1..aj+1] = H(pj
[s], t[s])[i+oj ], we have that

∨dlg σe
s=1 Rs[i][aj+1..aj+1] = 0 indicatesH(pj

[s], t[s])[i +

oj ] = 0, for 1 ≤ s ≤ dlg σe. Thus R[i][aj+1..aj+1] = 0
indicates thatpj occurs at position(i + oj) mod n of t.
An example of the running of this algorithm is shown in
Figure 3 where we only illustrate one bit vector.

The algorithm is given in Figure 4.

Algorithm 3 takesO(n log |P | logσ) time to compute
R and usesO(nk) time to check whether there is any

———————————————————
Algorithm 3
Input : text t and pattern set P =
{p1, p2, . . . , pk}.

1: R← {0, 0, . . . , 0}
2: a1 ← 0, o1 ← 0
3: for j ← 2 to k do
4: aj ← aj−1 + dlg |pj−1|e
5: oj ← oj−1 + |pj−1|
6: end for
7: L← ok + |pk|
8: for s← 1 to dlg σe do
9: B〈s,0〉 = 2a1h0(p1

[s]) · 2
a2h0(p2

[s]) · . . . · 2
akh0(pk

[s])

10: B̃〈s,0〉 = 2a1h0(p1
[s]) · 2

a2h0(p2
[s]) · . . . · 2

akh0(pk
[s])

11: end for
12: for s← 1 to dlg σe do
13: For 1 ≤ i ≤ n, compute Rs[i] ←∑L

r=1 B̃〈s,0〉[r]h
0(t[s])[(i + r − 1) mod n] +∑L

r=1 B〈s,0〉[r]h
0(t[s])[(i + r − 1) mod n] using

FFT.
14: for i← 1 to n do
15: R[i]← R[i] ∨Rs[i]
16: end for
17: end for
18: for pos← 1 to n do
19: for j ← 1 to k do
20: Output “pj occurs at(pos + oj) mod n in t” if

R[pos][aj+1..aj+1] = 0.
21: end for
22: end for
———————————————————

Fig. 4. Algorithm 3.

occurrence of patterns. By the method in Section III-A,
the time for checking matches inR can be reduced
to O(n log m + occ log k). The total time complexity is
thereforeO(n log |P | log σ + occ log k). The words used
in the algorithm are of sizew =

∑k
i=1dlg |p

i|e bits.
If we use aO(n log m) time single pattern matching
algorithm to match each pattern one by one, the total time
is O(n

∑k
i=1 log |pi| + occ log k) = O(nw + occ log k).

Thus if w > lg |P | lg σ, Algorithm 3 takes less time for
matchingP againstt than the time taken by single pattern
matching algorithms. Ifw ≤ lg |P | lg σ, we can partition
the pattern set into a set of subsets ofP guaranteeing that
w > lg |LP | lg σ for each subsetLP . We then match all
these subsets ofP using our algorithm one by one. The
overall running time is certainly less than the time for
running a single pattern algorithm for all the patterns.

If the occurrences of patterns are rare, we can revise
Algorithm 3 to have a better performance. Recall that
to use FFT efficiently, the input text is split inton/|P |
pieces of length2|P | and each piece is matched against
P independently. Then in the running of Algorithm 3,
the pattern set is matched against every piece. Denote
the piece starting at position(l − 1)|P | + 1 in t where
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1 ≤ l ≤ n/|P | by piece(t, l). The resulting arrays
computed by Algorithm 3 takingpiece(t, l) and P as
input are denoted byRs(l), for each1 ≤ s ≤ dlg σe. We
haveRs(l)[i] = Rs[i + (l − 1)|P |] where1 ≤ i ≤ |P |.
Algorithm 3 is revised as follows. In computingRs,
for piecepiece(t[s], l), if Rs(l)[i][aj+1..aj+1] 6= 0 for all
1 ≤ i ≤ |P |, then we have that no pattern occurs in
piecepiece(t, l). In the followed computing, all the pieces
piece(t[s′], l) wheres′ > s are neglected. That is to say,
piece(t[s′], l) will not be matched againstB〈s′〉. The re-
vised algorithm is correct for the situation that no pattern
occurs in the neglected pieces. Since the occurrences of
patterns are rare, the number of inspected pieces of bit
vectors of the input by the revised algorithm is small.
The cost is that in processing a bit vector of the input,
the revised algorithm has to check the resulting array to
determine which piece of the input can be neglected. In
the original algorithm, the check is done only once when
all the convolutions are finished.

V. FFT BASED ON INTEGER ARITHMETIC

In this section, we give an FFT implementation based
on modular arithmetic other than complex numbers.
In [21], Yap and Li present a fast integer multiplication
algorithm based on an efficient FFT implementation built
on the integer arithmetic. The approach aims at reducing
the overhead in the implementation of FFT on machines
in which the words are 32-bit or 64-bit. This FFT imple-
mentation fits the context of our multi-pattern matching
algorithm well. The basic idea of the approach is to
perform FFT in the ringZM = {0, 1, . . . , M − 1} of
numbers moduloM . HereM is a specially chosen prime
number. In aw-bit machine,M is at mostw-bits so that
the component-wise product can be done inO(1) machine
operations. For ann-length vector, in the fieldZM , we
need primitiven-th roots of unity. According to [21], the
modularM is a prime number that can be expressed as

M = nd + 1. (24)

We next pick up a primitive element ofZM , say e, and
set

ω = ed mod M. (25)

Then we have that each ofωi mod M is distinct and6= 1,
for i = 1, 2, 3, . . . , n− 1. We havewn ≡ end ≡ eM−1 ≡
1( modM) by Fermat’s little theorem. That isω is an
n-th primitive root of unity.

In practice, to proceed the recursion of FFT, we needn
to be a power of 2. For the case that the machine word is
32 bits, Yap and Li [21] chooseM32 = 2, 013, 265, 921 as
the modulo, a prime number with only 31 bits that can be
expressed asM32 = 227d+1 whered = 15 andn = 227.
The number 31 can be proved to be a primitive element of
ZM32

. The primitive227-th roots of unity can be chosen
asω = 3115 mod M32 = 440, 564, 289. Usingω, we can
implement the FFT algorithm on a 32-bit machine, where
we compute everything modM32 and each component of
the vectors is of the length27 bits.

Based on Yap and Li’s approach, we present the pa-
rameters for the 64-bit architecture. We chooseM64 =
6, 269, 010, 681, 299, 730, 433 as the modulo, a prime
number with only 63 bits.M64 has similar properties with
M32, which can be expressed asM64 = 2xd + 1 where
d = 87 andx = 56. Among the prime numbers that can
be expressed as2xd + 1, M64 has the maximalx. The
number 5 turns out to be the smallest primitive element of
ZM64

. The primitive256-th roots of unity can be chosen
as

ω = 587 mod M64 = 4, 467, 632, 415, 761, 384, 939.

Using ω, we can implement the FFT algorithm on a 64-
bit machine, where we compute everything modM64 and
each component of the vectors is of the length56 bits.

VI. PARALLELIZED ALGORITHMS

The algorithms in this paper can be easily parallelized.
For Algorithm 1, we design a parallel multi-pattern
matching algorithm with no communication. According
to the trick in Section II, we first split the text inton/|P |
pieces each of length2|P |. The starting positions of the
pieces are in the set{l|P | + 1 | 0 ≤ l < n/|P |}. The
convolution between the composed pattern and each piece
of the text is computed using FFT in timeO(|P | log |P |)
per piece. We do not use the parallelized FFT, but use
the sequential version of FFT conducted by processors.
As each piece can be matched independently, no commu-
nication is needed. Since each piece is of length2|P | and
completely overlaps with the adjacent pieces, any occur-
rence of a pattern will keep integrate in at least one piece.
Therefore, the parallelized Algorithm 1 is correct. On a
q-processor PRAM model, the overall time complexity of
parallelized Algorithm 1 isO((n log |P |+ occ log k)/q).

Algorithm 2 and Algorithm 3 can be parallelized in the
same way as Algorithm 1. Readily, the time complexity
of the parallelize Algorithm 2 and Algorithm 3 on aq-
processor PRAM model areO((n log m + occ log k)/q)
andO((n log |P | logσ + occ log k)/q) accordingly.

VII. C ONCLUSION AND FURTHER RESEARCH

We have presented three algorithms for multi-pattern
matching with wildcards. The first one can find the
matches of a small set of patterns in a text in
O(n log |P | + occ log k) time. The words used in the
algorithm are of sizekd2 lg σe +

∑k
i=1dlg |p

i|e bits.
The second algorithm finds the occurrences of patterns
in time n logm + occ log k based on a prime number
encoding of the pattern set and the text, using the words
of kdlg(2mσ2 + k2)e bits. The last algorithm is based
on Hamming distance between bit vectors. It runs in
O(n log |P | log σ + occ log k) time and uses the words
with

∑k
i=1dlg |p

i|e bits. If the number of wildcards in
the patterns is very small, the problem can be solved
by building a deterministic finite automaton (DFA) that
detects all possible words that match the pattern. One
advantage of our algorithm over finite automata based
algorithms is that the patterns in our algorithm need not
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be preprocessed but taken as the input. In automata based
approaches, the pattern set is used to build automata that
will be further optimized for a low memory usage or a
better performance. Whenever built, it is difficult to add
or remove patterns from the existing data structures for
the automata. In our approach, as patterns are taken as
the input, adding or deleting a pattern has very low costs,
thus our approach has more flexibilities.

It remains to determine whether there exists an
O(n log |P |) algorithm using words of a proper size. That
is in the resulting array, each bit of an entry indicates
whether a pattern occurs at the corresponding location
of the text. The modifications on FFT itself would be
necessary to reach this goal.
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