JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

2391

Multi-pattern Matching with Wildcards

Meng Zhang, Yi Zhand, Jijun Tang and Xiaolong B
*College of Computer Science and Technology, Jilin University, Changchun, China
Email: zhangmeng@jlu.edu.cn, baixiaol@sina.com
fDepartment of Computer Science, Jilin Business and Technology College, Changchun, China
Email: whdzy2000@vip.sina.com
'Department of Computer Science & Engineering, Univ. of South Carolina, USA
Email: jtang@cse.sc.edu

Abstract—Multi-pattern matching with wildcards is to
find all the occurrences of a set of patterns with wildcards in
a text. This problem arises in various fields, such as compu-
tational biology and network security. But the problem is not
extensively studied as the single pattern case and there is no
efficient algorithm for this problem. In this paper, we present
efficient algorithms based on the fast Fourier transform. Let
P ={p*,...,p"} be a set of patterns with wildcards where
the total length of patterns is|P|, and a textt of length n over
alphabet a1,...,a,. We present three algorithms for this
problem where patterns are matched simultaneously. The
first algorithm finds the matches of a small set of patterns
in the text in O(nlog |P| + occlog k) time where occ is the
total number of occurrences of P in ¢t. The words used in
the algorithm are of sizek[21go] + 3¢, [lg[p*|] bits. The
second algorithm is based on a prime number encoding. It
runs in time O(nlogm + occlog k) where m is the length
of the longest pattern in P. The algorithm uses words with
k[lg(2mo? + k*)] bits. The third one finds the occurrences
of patterns in the text in time O(nlog |P|log o + occlog k)
by computing the Hamming distance between patterns and
the text. The algorithm uses words with S°F | [1g [p|]
bits. Moreover, we demonstrate an FFT implementation
based on the modular arithmetic for machines with 64-bit
word. Finally, we show that these algorithms can be easily
parallelized, and the parallelized algorithms are given as
well.

Keywords-Algorithm; Multi-pattern matching; Wildcards;
FFT.

I. INTRODUCTION

The problem of multi-pattern matching with wildcards

is to find a set of pattern® = {p',...,p*} in a

text ¢ (both the text and the patterns allow to contain

wildcards). Throughout the papér,denotes the number
of patterns,n denotes the length of, ¥ denotes the
alphabet ofs symbols from which the symbols i#®

and ¢t are chosen. The single pattern matching with
wildcards problem has received much attention. Fisch
and Paterson [12] presented the first solution based off
the fast Fourier transforms (FFT). The running time is:

O(nlogmlogo) wherem is the length of the pattern.
Indyk [13] latter introduced a randomize@(n logn)

time Monte Carlo algorithm. Kalai [14] gave a simpler

and fasterO(n logm) time algorithm. In 2002 the first

deterministicO(n log m) time solution was presented by
Cole and Hariharan [7]. It uses one convolution, and each

e

symbol in the text and the pattern is encoded with a pair
of rational numbers. Clifford and Clifford [5] recently
gave a simpler deterministic algorithm with the same
time complexity that uses three convolutions where the
numbers used are as largedas(o —1)*/27. By allowing
to preprocess the text, Rahman and lliopoulos [20] gave
efficient solutions without using FFTs and developed an
algorithm runing in timeO(n + m + occ) whereocc is
the total number of occurrences 8fin t. Very recently,
Linhart and Shamir [17] presented the prime number
encoding. By this approach,if® = n, the algorithm runs
in O(nlogm) time by computing a single convolution.
Much research focus on Multi-string matching prob-
lem. The first algorithm to solve this problem in
O(nlogo) time is presented by Aho and Corasick [1]
which generalizes the Knuth-Morris-Pratt algorithm [15].
The Commentz-Walter [8] algorithm is a direct extension
of the Boyer-Moore algorithm [4] which also combined
the idea of AC algorithm. Several parallel multi-string
matching algorithms are presented that are either pre-
cise [10] or approximate [27], [25], [24], [26]. The factor
recognition approach based algorithms [9], [19], [2] use
either suffix automata or factor oracles for precise or weak
factor recognition. For short patterns, bit parallelism leads
to algorithms that are efficient in practice, see [18].
However, the problem of matching a set of patterns
with wildcards is not extensively studied as the single
pattern case. To date, there is no efficient algorithm
for this problem. But multi-pattern matching problem
arises in many applications, such as intrusion detection
systems [29], anti-virus systems [28] and computational
biology [17]. A close but different problem: matching
a set of patterns with variable length don’t cares was
solved by Kucherov and Rusinowitch [16]. They proposed
an algorithm that runs in timé&((n + L(P))log L(P)),
here L(P) is the total length of keywords in every
pattern of the pattern sdt, and|t| is the length of the
input text. A faster solution was given by [22] which runs
n O((n + || P||)log k/loglog k) time, where|| P|| is the
total number of keywords in all the patterns) andx
is the number of distinct keywords in all the patterns in
P.
In this paper, we focus on the problem of matching
a set of patterns with wildcards without preprocessing

A preliminary version of this paper was presented at PAAP 2010 [23]the text. We present three FFT based algorithms for

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2391-2398

2392 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

this problem. The first one extends the Clifford and(a & b)[i] = Z‘j‘il alj]b[(i+7 —1) mod |b]], 1 < i < |b].
Clifford algorithm [5] to handle multi-pattern and runs Note that this definition of convolution involves wrap-
in O(nlog|P| + occlog k) time where|P| denotes the around (i.e.p is assumed to be a cyclic vector).

total length of all the patterns . It can find the

matches of a small set of patterns in the text by three Our algorithms are based on FFTs. An important prop-
convolutions. The words used in the algorithm are of sizeerty of FFT is that in the RAM modelp @ t can be
k[21go] + Zle[lg Ip*|] bits. The second one uses the computed inO(nlogn) time. By a standard trick [12],
prime number encoding to encode both the pattern anthe running time can be further reduced @gn log m).

the text. It runs in timeO(nlogm + occlogk) where First, split the text inton/m pieces of lengtt2m. The

m is the length of the longest pattern. The algorithmstarting positions of the pieces are in the $bt + 1 |
uses words withk[21g o + lgm + lglg(mo?)] bits. The 0 <1 < n/m}. The convolution between the pattern and
drawback of the two methods is that when |P| and each piece of the text is computed using FFT in time
k are large, the word will be too long to fit into a O(mlogm) per piece. The overall time complexity is
machine word of modern processors (normally 32 orO((n/m)mlogm) = O(nlogm).

64 bits). To shorten the word length, we present an
algorithm that uses words Wit[le[lg Ip?|] bits. The m
algorithm finds the occurrences of patterns in the text

in time O(nlog |P|logo + occlog k) by computing the
Hamming distances between the patterns and the text. In this section, we extend the wildcard matching al-
The distances are computed @flgo] convolutions. gorithm of Clifford and Clifford [5] to multi-pattern.
Moreover, we discuss the modular arithmetic based FF15enerally speaking, the Clifford and Clifford algorithm
and give all the necessary parameters for the FFT ofirst encodes each symbol by a unique positive number
the 64-bit architecture. The algorithms presented in thi@nd replaces wildcards by 0's. Then, for each location
paper can be easily parallelized. Og-arocessor PRAM 1 <i <n —m+ 1 in the text, the algorithm computes
model, the time complexity of the algorithms decreases .,

. EUCLIDEAN DISTANCE BASED MULTI-PATTERN
MATCHING WITH WILDCARDS

by ¢ times compared with that on a single processor. pliltli +35 — 1 (plg] — tli +5 —1])* =
The paper is organized as follows. Section Il gives ;=
some basic notions. Section Il presents the algorithms m

for multi-pattern matching with wildcards using Euclidean Z(p[j]Bt[i + 5 — 1] = 2p[j)*t[i + 5 — 1)
distance. In Section IV, we give the approach based on ;=1

Hamming distance of bit vectors. Section V introduces the +plhltli + 5 —1]%) (3)
FFT based on modular arithmetic on 64-bit architectures.

Some interesting issues are discussed in Section VI. in O(nlogm) time using FFTs. Wherever there is an
exact match this sum will be exactly 0.

Il. PRELIMINARIES The numbers computed by the algorithm are as large as
4m(o—1)*/27. In [6], the authors modified the algorithm
as follows. First by replacing non-wildcards kiys and
wildcards by0’s in the text and the pattern, we ggtand

t' respectively. Then, for each locatiar< : <n—m+1

in the text, the algorithm computes

Let X be a finite alphabet an@d’ the wildcard symbol.
Denote by|s| the length of a strings. A text ¢t =
t[1]...t[n] and a patterrp = p[1]...p[m| are strings
overX U {'«’}. Given a pattermp and a text, which both
may contain wildcards, we say thatoccurs at location
jintif: L)
pli] = tli+j — 1] or pli] =' « or tfi+j — 1] =+, ;pmt i+ = 00U =i+ 1) @
fori<i<m. (1) The result can be viewed as the squire of the Euclidean

We use P = {p!,...,p"} to denote a set of pat- distance between the pattern and the substring starting
terns with wildcards. We usé - ” to denote the con- from a location: in . The maximal numbers used in the
catenation of two patterns, for exampte - p? is the convolutions are reduced tac?.
concatenation of pattern' andp?. For an integer array

x = x[1],z[2],...,x[n], we usex[i;..iz] wherel < i; < _

i» < n to denote the arrayli1]. ..., z[is] and usesr to A Algorithm 1

denote the integer array of length such that In our approach, for a pattegnand each location <
(2°0)[i] = 2[i]2°, for eachl <i < n. o) 1 < n in the text, we use the following wrap-around sum

|pl

d(p.1)[i) = Yo (G D) (L]~ 116D (8)

The following definition is a basic technique used in
this paper.

Convolution: The convolution, or cross-correlation, wherel(i, j) denoteg:+ j — 1) mod n. We can compute
of two vectorsa, b is the vectora & b such that (5) by the following formula which uses only three

© 2011 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

convolutions.

Ip|
(7, j)]+z ¢33, 5)Ipla)-

(6)

[p|

2Zp[j]t[l

|pl

Zp’[]]t[l(z NP—

Wherever there is an exact match this sum will be exactly ,

0.
To match a set of patterng, . . .
a composed pattern of lengtR|:

,p"*, we first construct

p=p"-p* ... Pk
Defineay = 0, a; = Z (Dg Ip'| + 21g o)), for
1<j<kando; =0, 0; = 7|p|,f0r1§]§k.
We usel[l..l] to denote the array of length where all
the entries ard’s. We construct/ " as follows

I7 = (2 [|p) - (222 I [L[p?[]) - .- (2 I [L.]p").
Then we compute the following
|p|
1. 7)) (Pl — t1iGi,)

= > 1" LY
j=1

Ip|

- ZIP[j]p'[]]t[l(z PE - 2ZIP[j]p[J]t[l(z 7)]
[p|
+ZIP[j]p[j]2t’[l<i,j>]- ©)

R can be computed using three convolutions. By checking®

whether the bit vector fronfa; + 1)th significant bit to
a;+1th significant bit of the binary code a®]:], denoted
by Rli]ja,+1..a,.,), is all 0's, we will know whethep’

occurs at positioni + o;) modn in t. That is to say,
assume that is a cyclic vector, then for eactP|-length
factor of ¢ starting from each position af the result of

2393

Algorithm 1
Input: Text ¢
{p17p27"'7pk}'
1: R {0,0,...

and pattern set P

,0}
cap «— 0,00 0
3 for j«—2tok do

4 aj—aj_1+[lglp 7 +21go]

5. 05 < o0j_1+[p 7

6: end for

7. L «— oy, + |p¥|

g p—p-p’ ... ph

o IP[i] = (uI[1.|p')]) - (2°I[1..]p%]) - ... -
(2% I[1..[p*]])

10: Compute(p*)’ wherel < i < k andt’ by replacing
non-wildcards byl's and wildcards by0’s in the ¢
andp’.

11: For 1 < ¢ < n, compute R[{]] =
S PG+ § - 1) modn]* -
2Z] 1 " [J]p[J]ﬂ(Z + j — 1)modn] +
ST + § — 1) modnplj]? using
FET.

12: for pos « 1 to n do

13: for j « 1tok do

14: Output “p’ occurs at(pos + o;) modn in ¢ if

R[pos]ia;+1..a;11] = O-

15. end for
end for

Fig. 1. Algorithm 1.

_in the FFTs are of the same S|zeo1f|P| andk are small

interval in a word. We give the algorithm in Figure 1.

modern processors that is typically 32 bits or 64 bits. For

According to (7), we can see that for the resulting arrayaxample, for DNA sequences where= 4, Algorithm 1

R computed by Algorithm 1,
k
R[] = Zd(pj,t)[i +0,]2%, for1<i<mn. (8)
j=1

For anyp’ € P, according to (5), we havé(p’,t)[i +
o;] < |pilo?. So ;1 — «; (that equals[lg |[p/| +
21go]) bits are enough to represedtp’,t)[i + o;].
As a result, the binary code of(p’,t)[i + o;] equals
R[i)ja;+1..a,,,)- Thus we can getl(p’,t)[i + o;] by
computing(R[i] mod 2%+1) /2%,

To verify the correctness of Algorithm 1, suppose that
patternp’ € P occurs in the text starting from position
x. We haved(p’,t)[x] = 0. If p’ does not occur int
starting fromz, we haved(p/, t)[z] # 0. Leti = z — o;.
Thus R[i]ja,41..a,.,) = 0 indicatesd(p’, t)[i + o;] = 0,
that is,p’ occurs at positior{i + o;) mod n of ¢.

The algorithm takesD(nlog|P|) time to computeR
and usesD(nk) time to checkR to find whether there
is any occurrence of patterns. Each entry Bfuses

can process four patterns each with symbols or three
patterns each witl64 symbols. But wherv, |P| and k
are not small the words used in FFTs have to be very
long. For example, letr = 256, even for two patterns,
Algorithm 1 uses words exceeding 32 bits. The algorithm
in Section 1V tries to shorten the word size to cope with
texts on larger alphabets and pattern sets that have larger
number of patterns and longer length.

The time complexity of checking the matches @fin
t can be further reduced. Let the length of the longest

Jattern inP be m. Checking the matches d? in ¢ can

be done in time(n log(mo)+occlog k) whereocc is the
times of occurrences of patterns inWe first transform
R to array ¢ such thatg[i]y; = 0 if I ¢ {a1 + 1,00 +

1,...,ar+ 1} and forl < j <k,

0;

] _ 1 If R[i][aj+1..aj+1] =
oli]{a,+1) = { 0 it Rli]{a,+1..0;,1] # 0.

For p’ position aj+1 is called the indication position

k[21go]+ 3%, [lg |p[] bits. The size of the words used (id position) of p7. The transformation is described as

© 2011 ACADEMY PUBLISHER

2394

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

follows. Let there bel different lengths of patterns. We If it is not O, at least one pattern matches, we continue
order the lengths in an increasing order, us¢ where to search in the left subtree of the root by checking
1 < j < d to denote thejth minimal length. First, = A Mask([1..k/2]). If it is O then there is no match for
setgli] = 0 for 1 < i < n. Then for each pattern patternsp®,p?,...,p*/?, and we prune the left branch;

e

p’ we compute the bit/\g‘if;jJrlR—[i]J

to 0[i][a;+1)- It follows that if R[i]ja,1..0;.]

l and set this bit otherwise, at least one pattern matches, so we continue to
= 0 search the left subtree of the root. After searching in the

then /\?]ZIH [l][e} = 0[i]ja,+1) = 1. The computa- left subtree, we search in the right subtree. In this manner
tion is by bitwise shiftright and bitwiseand oper- Wwe traversél’ depth-first, checking A Mask(u) for each
ations. In the transformation, We uskebit masks, say Visited nodeu and pruning the branch if it is 0 along the
Vmask[1],...,Vmask[d]. The bit maskVmask[j] is Wway. At last, all the occurrences will be found by visiting
a word where the bits on the indication locations forthe leaves corresponding to the matched patterns.
patterns whose length is1; are set to bit 1 and other ~ The time complexity isO(n + occlogk). So the to-
bits are set to Os. The transformation is given in Figure 2tal time complexity for finding the matches iR is

The time complexity of the algorithm i©(nlog(mo?)) O(nlog(mao?) 4 occlogk). For |P| > m and|P| > o,

Transform R
Input: An array R of lengthn.

1: for 1 +— 1 ton do

2. R[] < R—[z]

3: end for

4: for j «— 1toddo

5. Vmask[j] =0

6: for each patterp® such thatlp®| = m, do
7: Vmask[jlja,+1] < 1

8: end for

9: end for

10: for ¢ « 1 to n do

11: j« 1,z Rr<— R[i], RE 0
12. for s « 1 to [lg(mo?)] — 1 do
13: Rr — Rr >>1

14: r<—x N Rr

15: if s=[lg(m;o?)] —1 then
16: RE —x AN Vmask[j]

17: j—3j3+1

18: end if

19: end for

20. o[i] — RE

21: end for

Fig. 2. TransformR to p.

When is available, we next check each entryofo
find matches. For an entry = g[i], we use an implicit

the total time complexity of Algorithm 1 i®(n log | P|+
occlogk).

B. Prime number encoding based algorithm

In this section, we introduce another strategy for
matching a set of patterns with wildcards. Other than
concatenating the patterns to a long one, this method
aligns the patterns and generates a composed pattern with
the length of the longest pattern. The algorithm is based
on a prime number encoding of patterns. ketbe the
length of the longest pattern iR. We extend each pattern
to a similar lengthm by padding’+’s to the end of a
pattern. Denote the resulting pattern setfyBy padding
m 0’s to the end of the input, any matching &fin ¢ is
exactly a matching of”’ in ¢ for the same pattern on the
same position.

We first pick up k distinct prime numbers
P1,pP2,---,pk. Denote M = py - po---pr. We further
require thatp; are larger tharp?|o2.

Now we consider the encoding method. Fornon-
negative integerscy, xo, ..., x;, Where eachr; is not
greater tharv, define an integeX that is less than\/,
such that forl <<k

X =xz; (mod p;). (9)

According to the Chinese Remainder Theorem (CRT, in
short) [11], definez; = M/p; ((M/p;)~*mod p;). Forc;,
we havec; = 1(modp;) and¢; = 0(mod p;r), " # i.
By the CRT,X = Y2F | ¢; - a;.
We construct a composed patteyrof lengthm from
P, where

binary treeT' to find the id positions on which the bit
values 1. Each tree node corresponds to a subset of the ZCJ , forl <i<m, (10)
indication positions. A node = [n;..ng] consists of the

indication positions ofp; wherej € [n1..n2]. The root

and another composed patteyhof lengthm, where

is the set of all id positions, denoted fy..k]. Each leaf

contains one id position. For node the two children are
[11..(n1+n2)/2] and((n1+n2)/2..n2]. We compute a bit
mask M ask(u) from u as follows: the bits ofM ask(u)

k
Z Jfori<i<m. (11

on positions in[n;..ns] are set tols, other bits are setto The text is encoded as follows:

0s.

We start at the root d' and checke A M ask([1..k]). If Z cj-tli], for 1 <i <n. (12)

it is 0, then there is no match for patterps p?, . ..

© 2011 ACADEMY PUBLISHER

s

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2395

7’ is encoded as follows: According to the bound, we can verify that foro? >
17,
T'li] = ch '], for 1 <i <n. 13) 7(2mo? + k?) — m(mo?) >
Jj=1 2 2 2
2 k
| | _ MO TR 26— Sk (17)
Sincep; > |p’lo? and d(p?,t)[i] < |pi|o?, for 1 < In(2mo? + k?) In(mo?)
J <k, we have Thus, if we search for prime numbers between? + 1

and 2mo? + k2, we will find at leastk prime numbers.
Using the sieve algorithm of Atkin et al. [3] it takes
o(2mo? + k?) time to find these prime numbers. Each
prime number is at mostg(2mo? + k2) bits long.
Therefore,lg M < klg(2mo? + k?). Thus, each entry
of R usesk[lg(2mo? + k?)] bits.

v mod p; = p’, 7 mod p; = t. (14)

Then we can use Clifford and Clifford algorithm to match

P’ in t as follows. We compute Equation (5) fgrand

7 and get arrayi(v, 7). For an arbitrary array, define

A mod p as the array of the same length df where

(A mod p)[i] = A[i] mod p. According to the CRT, for

1< j <k, we have IV. HAMMING DISTANCE BASED APPROACH
A. Hamming distance of bit vectors with wildcards

d(v, 7)[i] mod p; = d(y mod p;, 7 mod p;)[i] Let B = b1bs. .. b, be a binary pattern with wildcards.
=d(p’,t)[i], for 1 <i<n. (15) Denotebibs...b, by B where if b; = = thend; = =.
‘ Given a binary patterp and a bit string (¢ is assumed to
Suppose that a patter’ € P occurs in the text pe g cyclic vector), such that bogrand¢ have wildcards.
¢ starting from positioni. We haved(p’,t)[{] = 0. The matchings between the pattern and a factor of
So, d(v,7)[t] mod p; = 0. If p’ does not occur i |engthm have seven casesl, 1x, 1, 00, 0%, *0 and
starting fromz, we haved(y,7)[i] mod p; # 0. TO .4 glignments. The Hamming distance between the two
find the matches of patterns, we have to check ever¥trings is the sum of the number of nonmatchings, that is
entry of d(v,7), say d(vy,7)[i], for all p;s such that 410 + #01.
d(v,7)li] mod p; = 0. This straight forward method The Hamming distance betwegrand the factor start-
can find the occurrences i@ (nk) time. However, by ing from each position of of lengthm can be computed
using the method of Linhart and Shamir [17], the timepy the following method: For a bit vectar with wild-
complexity can be reduced 0(n + occlog k). cards, denote b”(v) the bit vector where each wildcard
For z = d(v,7)[i], we use an implicit binary tred” of 4 is replaced by the bit:. Then (h°(p) ® h°(t))][i]
to find p; such thatz mod p; = 0. Each tree node equals#01 betweenp and the factor ot starting from
corresponds to a subset of the pattern set. The roqt and (h°(7) @ h°(p))[i] equals#10 between the same
is the set of all patterns, denoted by..k]. Each leaf pair of strings. The Hamming distance betweerand
contains one pattern. For a node= [n;..n], the tWo the factor oft starting fromi can be computed by the
children are[nl..(nl +n2)/2] and((m +n2)/2..n2]. For f0||owing:
node u, we compute an integed odul(u) as follows: _
Modul(w) = pny * P41 Prg- H(p, t)[i] = (h°(®)®h° () [i] + (R° (D) @ h°(p))[i]. (18)
We start at the root df” and check: mod M. If it is not
0, then there is no match for patterns. If it is O, at least one
pattern matches, we continue to search in the left subtree)]] i]
of the root by checkings mod py - ps--- prja. If it is B. Multi-pattern matching by Hamming distance of bit
not O then there is no match for patteps p?, ..., pt/2, ~ Vectors
and we prune the left branch; otherwise, at least one of We present an algorithm for multi-pattern matching
these patterns matches, so we continue to search the Igfith wildcards based on Hamming distance. In this ap-
subtree of the root. We travergein a depth-first manner, proach, we derivdlg o] bit vectors from the input text
pruning some of the branches along the way. In the endind [lg o] patterns from the pattern and then perform
all the occurrences will be found by visiting the leaves[lgo]| times of pattern matchings foflgo| pairs of
corresponding to the matched patterns. pattern and bit text. Fot < s < [lgo], denote thesth
The algorithm take®(n log m) time to compute? and bit of the integer encoding of a charactee X by ¢,
usesO(n + occlogk) time to checkR to find whether for ¢ = *, ¢y = *. For a stringt over ¥, denote the bit
there is any occurrence of patterns. The total running tim&ectort[1]i¢[2](y) - . . t[n](s) DY t[4).
is O(nlogm + occlogk). To match a set of patterns, we first construct a series of
Now we consider the size of words used in the algofatternsBy, B(a), ..., B(ngo))y from P, such that for
rithm. For the number () of primes not exceeding, 1< s<[lgo],
the following bound is well known: By = 2% ply - 2%, - .. 2%]9&’

This distance can be computed by two convolutions.

x xz .

© 2011 ACADEMY PUBLISHER

2396 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

as—

Algorithm 3

Input: text ¢

{'.p%,....0"}.

: R+ {0,0,...,0}

a1 «— 0,00 0

. for j«—2tok do

aj —a;1 + [lg|p? 1]

0j — 0j—1 + [P

. end for

. L« o, + |p¥|

. for s —1to[lgo] do

B0y = 2 h%(ply)) - 2°2 1O (p7,
)

and set P =

R[1] ‘ 0 pattern

a: 2 3 a 4
By Py 22py | 2%y | 2%+Pp)

1 | | \

. . 1 2
i i+|p'[+|p7

©C®NDO A BNE

Fig. 3. An example of the run of Algorithm 3. Patte;ﬁé is matched in
t2. The matching position i+ |p*| + |p2| and R2[i][a3 + 1..a4] = 0.). 29 RO (pk)

[5] B [5]

10: B = 2h0(pjy) - 2200 (p) - - - 2740 (pfy)
Define 11: end for
12: for s — 1 to [lgo] do
B(s,O) = Qalho(p[ls]) ’ 2u2h0(p[25]> Teeet 2akh0(pf€s])a 13: For 1 < ¢ < mn, compute RS[Z] —

o1 Bloo [H0(t)l + v — 1) modn] +
Y1 Bisoy [r]h°(F))[(@ + r — 1) modn] using

Biogy = 2" h0(ply) - 22h0(p2)) - ... - 2 hO(pF,)). (19)

According to the computing of Hamming distance, for

FFT.

eachB and P, we compute 14: for i« 1ton do
_ - 15: R[i] < RJi] V R*[i]
R°li] = (B(s,0) ® h°(t19))li] + (h°(F 1)) © Bys)1l 16: end for
for 1 <i<n.(20) 17: end for

18: for pos < 1 ton do

At last we compute the resulting arrdy such that 19: for j— 1tok do

R[i] = R'[i] v R*[i] v...v R"8°[i], for 1 <i < n. 20: Output “p’ occurs at(pos + 0;) mod n in ¢” if
(21) R[pos] laj+1.aj+1] — 0.
By checking whethe®[i](,,+1.4,,,] = 0, we will know 2L end for
whetherp’ occurs at positior{i + o;) modn in t. 22: end for
According to the definition of3,,, we can see that for
a resulting arrayR®* computed by the algorithm,
k) Fig. 4. Algorithm 3.
R%[i] = E;H(pfs],t[s])moj]z%, for 1 <i<n. (22)
j=

; ;) ; occurrence of patterns. By the method in Section IlI-A,

Forp’ € P, we haveh_f(p[spt[s])[z + o5 < [p]. the time for checking matches i can be reduced
So, aj41 — a; = [lg[p’[] bits are enough to represent O(nlogm + occlogk). The total time complexity is
H{(pi,ts))li + 0j]. Then we have thereforeO(n log |P|log o + occlog k). The words used
in the algorithm are of sizav = Y [lg|p’[] bits.

If we use aO(nlogm) time single pattern matching
Thus we can getH(pfs]J[s])[i + 0;] by computing falgorithmkto match each pattern one by one, the total time
(R®[i] mod 2a5+1) /2. is O(n > ioq log|p*| + occ log.k') = O(nw + occlgg k).

To see why this method works, suppose that a patterfnus if w > lg|P|lgo, Algorithm 3 takes less time for
p’ € P occurs int starting from positionz. We have MatchingP” against than the time taken by single pattern
H(pl t)le) = 0 for 1 < 5 < [lgo]. Otherwise matching algorithms. liv < lg|P|lgo, we can partition
H(iy Jlz] # 0 for at least ones. Let z — i + o;. the pattern set into a set of subsetsbfuaranteeing that

PLsp sl . . 7" w > lg|LP|lgo for each subsef.P. We then match all
SinceR*[i](a,+1..a;11] = H(ply)s L)) [i+05], we have that e subsets P using our algorithm one by one. The
\/S“:gl‘ﬂ R*[i]ja;41..a,01) = 0 indicatesH(p{S],t[S])[i + overall running time is certainly less than the time for
0;] = 0, for 1 < s < [lgo]. Thus R[i][4,41..4,,,) = 0 running a single pattern algorithm for all the patterns.
indicates thap’ occurs at positior(i + 0;) mod» of t. If the occurrences of patterns are rare, we can revise
An example of the running of this algorithm is shown in Algorithm 3 to have a better performance. Recall that
Figure 3 where we only illustrate one bit vector. to use FFT efficiently, the input text is split into/|P]

The algorithm is given in Figure 4. pieces of lengti2|P| and each piece is matched against

P independently. Then in the running of Algorithm 3,

Algorithm 3 takesO(nlog|P|logo) time to compute the pattern set is matched against every piece. Denote

R and usexO(nk) time to check whether there is any the piece starting at positiofi — 1)|P| + 1 in ¢ where

H(p{s]a t[s])[i + Oj] =R [i][affl”aj*l]. (23)

© 2011 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2397

1 <1 < n/|P| by piece(t,l). The resulting arrays Based on Yap and Li's approach, we present the pa-
computed by Algorithm 3 takingiece(t,l) and P as rameters for the 64-bit architecture. We choddg, =
input are denoted byR*(l), for eachl < s < [lgo|. We 6,269,010,681,299,730,433 as the modulo, a prime
have R*(1)[¢{] = R®[i + (I — 1)|P|] wherel < ¢ < |P|. number with only 63 bitsMs, has similar properties with
Algorithm 3 is revised as follows. In computing®, Ms,, which can be expressed a$s4 = 2°d + 1 where

for piecepiece(t(y), 1), if R*(I)[i]ja;41..0,,,) 7 O for all d =87 andz = 56. Among the prime numbers that can

1 < i < |PJ|, then we have that no pattern occurs inbe expressed a&"d + 1, Mg4 has the maximak. The
piecepiece(t,). In the followed computing, all the pieces number 5 turns out to be the smallest primitive element of
piece(t;s,1) wheres’ > s are neglected. That is to say, Zys,,. The primitive 2°6-th roots of unity can be chosen
piece(t;sn,1) will not be matched againsB,,. The re- as

vised al_gorlthm is correct for the S|_tuat|0n that no pattern w = 55 mod Mgs — 4,467,632, 415, 761, 384, 939.
occurs in the neglected pieces. Since the occurrences of
patterns are rare, the number of inspected pieces of bifisingw, we can implement the FFT algorithm on a 64-
vectors of the input by the revised algorithm is small.bit machine, where we compute everything mag, and
The cost is that in processing a bit vector of the inputeach component of the vectors is of the lengghbits.

the revised algorithm has to check the resulting array to

determine which piece of the input can be neglected. In V1. PARALLELIZED ALGORITHMS

the original algorithm, the check is done only once when The gigorithms in this paper can be easily parallelized.
all the convolutions are finished. For Algorithm 1, we design a parallel multi-pattern
matching algorithm with no communication. According
V. FFT BASED ON INTEGER ARITHMETIC to the trick in Section II, we first split the text into/| P

In this section, we give an FFT implementation based?i€ces each of length|P’|. The starting positions of the
on modular arithmetic other than complex numbersPi€ces are in the sefi|P|+1 |0 <! <n/|P|}. The
In [21], Yap and Li present a fast integer multiplication convolution between the composed pattern and each piece

algorithm based on an efficient FFT implementation builtf the text is computed using FFT in tin@@(|P| log | P|)
er piece. We do not use the parallelized FFT, but use

on the integer arithmetic. The approach aims at reducing1 | X
the overhead in the implementation of FFT on machined'® sequential version of FFT conducted by processors.

in which the words are 32-bit or 64-bit. This FFT imple- AS €ach piece can be matched independently, no commu-
mentation fits the context of our multi-pattern matchingnication is needed. Since each piece is of lergjff| and
algorithm well. The basic idea of the approach is toComPpletely overlaps with the adjacent pieces, any occur-
perform FFT in the ringZy; = {0,1,...,M — 1} of rence of a pattern will k_eep mtegr_ate in a_t least one piece.
Therefore, the parallelized Algorithm 1 is correct. On a
g-processor PRAM model, the overall time complexity of
parallelized Algorithm 1 isO((nlog |P| + occlogk)/q).
Algorithm 2 and Algorithm 3 can be parallelized in the
same way as Algorithm 1. Readily, the time complexity
;of the parallelize Algorithm 2 and Algorithm 3 on @
processor PRAM model ar@((nlogm + occlogk)/q)
M =nd+1. (24) andO((nlog|P|logc + occlog k) /q) accordingly.

numbers moduld/. Here M is a specially chosen prime
number. In aw-bit machine,M is at mostw-bits so that
the component-wise product can be don&irl) machine
operations. For am-length vector, in the field,,;, we
need primitiven-th roots of unity. According to [21], the
modularM is a prime number that can be expressed a

We next pick up a primitive element &,,, saye, and
set

VIl. CONCLUSION AND FURTHER RESEARCH

We have presented three algorithms for multi-pattern
matching with wildcards. The first one can find the
Then we have that each of mod M is distinct and# 1, matches of a small set of patterns in a text in

w = e mod M. (25)

fori=1,2,3,...,n—1. We havew” = ¢ = eM-1 = O(nlog|P| + occlogk) time. The words used in the
1(modM) by Fermat's little theorem. That is is an algorithm are of sizek[2lgo]| + Zleﬂg Ip’[] bits.
n-th primitive root of unity. The second algorithm finds the occurrences of patterns

In practice, to proceed the recursion of FFT, we need in time nlogm + occlogk based on a prime number
to be a power of 2. For the case that the machine word isncoding of the pattern set and the text, using the words
32 bits, Yap and Li [21] choos&/3; = 2,013,265,921as of k[lg(2mo? + k2)] bits. The last algorithm is based
the modulo, a prime number with only 31 bits that can beon Hamming distance between bit vectors. It runs in
expressed adls; = 227d+1 whered = 15 andn = 2%7. O(n logiP| logo + occlogk) time and uses the words
The number 31 can be proved to be a primitive element ofvith >, [1g [p’|] bits. If the number of wildcards in
Zr,,- The primitive 227-th roots of unity can be chosen the patterns is very small, the problem can be solved
asw = 31'% mod M3, = 440, 564, 289. Usingw, we can by building a deterministic finite automaton (DFA) that
implement the FFT algorithm on a 32-bit machine, wheredetects all possible words that match the pattern. One
we compute everything moil/;, and each component of advantage of our algorithm over finite automata based
the vectors is of the lengt®7 bits. algorithms is that the patterns in our algorithm need not

© 2011 ACADEMY PUBLISHER

2398

be preprocessed but taken as the input. In automata basgd]
approaches, the pattern set is used to build automata that
will be further optimized for a low memory usage or a [18]
better performance. Whenever built, it is difficult to add
or remove patterns from the existing data structures fo([%g]
the automata. In our approach, as patterns are taken as
the input, adding or deleting a pattern has very low costs,
thus our approach has more flexibilities. (20]
It remains to determine whether there exists arn,y
O(nlog|P|) algorithm using words of a proper size. That
is in the resulting array, each bit of an entry indicates
whether a pattern occurs at the corresponding Iocatioﬁzl
of the text. The modifications on FFT itself would be

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

C. Linhart and R. Shamir, Faster pattern matching witaracter
classes using prime number encodidgComput. Syst. Sci.75(3):

155-162, 2009.

G. Navarro, M. Raffinot. Flexible Pattern Matching inri8gs

— Practical on-line search algorithms for texts and biaabi
sequences. Cambridge University Press, 2002.

M. Raffinot. On the multi backward dawg matching algamit
(MultiBDM). In R. Baeza-Yates, editor, Proceedings of i

South American Workshop on Sring Processing, 149-165, 1997.
M. Rahman and C. lliopoulos, Pattern Matching Algamith with

Don't Cares.SOFSEM (2), 116-126 2007.

C. Yap and C. Li. QuickMul: Practical FFT-based Intedéul-

tiplication. Technical report, Department of Computer eBce,
Courant Institute, New York University, October 2000.

M. Zhang, Y. Zhang and L. Hu, A faster algorithm for matadha
set of patterns with variable length don't caré#. Process. Lett.

110(6): 216—220, 2010.

necessary to reach this goal. [23] M. Zhang, Y. Zhang and J. Tang, Matching a set of pattevits
wildcards. Third International Symposium on Parallel Architec-
tures, Algorithms and Programming (PAAP’10), 169-174, IEEE
ACKNOWLEDGMENTS Computer Society, 2010.
[24] C. Zhong, Z. Fan and D. Su, Parallel Approximate Mukitern

This work was in part supported by Fundamental Re-
search Funds for the Central Universities N0.200903186,
Education Department of Jilin Province N0.599, NSF
of Science & Technology Department of Jilin Province[25]
N0.20101522, NSF grant OCI 0904179, Chinese NSF
No0.60703024 and Program for New Century Excellent

Matching on Heterogenerous Cluster Systems, Proceediniee o
9th International Conference on Parallel and Distributed Com-
puting, Appplications and Technologies, 74-79, IEEE Computer
Society Press, 2008.

C. Zhong, D. Fan, Parallel Algorithms for ApproximateriSg
Matching with Multi-Round Distribution Strategy on Hetge
neous Cluster Computing Systems(in Chineselrnal of Com-
puter Research and Devel opment,45(S1):105-112,2008.

Talents in University NCET-09-0428. [26] Z. Fan, C. Zhong, X. Cui, L. Xu, Parallel Algorithm for Aspoxi-
mate Multiple Object Strings Matching on Heterogeneousstelu
Computing Systems with Limited Memory(in Chinesdpurnal
REFERENCES of Chinese Computer Systems, 30(2):225-229,2009.
. -) . . [27] C. Zhong, G. Chen, Parallel Algorithms for Approximéasring
[1] A. V. Aho, M. J. Corasick: Efficient String Matching: An Aito Matching on PRAM and LARPBS(in Chinese)ournal of Soft-
Blbllographlc SearChCOmm. ACM 18, 333-340, 1975. ware, 15(2)159—169, 2004.
[2] C. Allauzen, M. Raffinot. Factor oracle of a set of wordecfinical [28] Clam AntiVirus. URL: ht t p: / / www. cl amav. net .
Report 99-11, Institut Gaspard-Monge, Université de Mdm [29] Snort Intrusion Detection System. URL:

(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

[16]

Vallée, 1999.

A. Atkin, D. Bernstein. Prime sieves using binary quamréorms,
Math. Comp. 73, 1023-1030, 2004.

R. S. Boyer, J. S. Moore. A fast string searching algonith
Communications of the ACM, 20(10):762-772, 1977.

P. Clifford and R. Clifford, Simple deterministic wilded match-
ing. Inf. Process. Lett. 101(2): 53-54, 2007.

R. Clifford, K. Efremenko, E. Porat and A. Rothschild, offm
coding theory to efficient pattern matching. Pnoceedings of the
Annual ACM-SAM Symposium on Discrete Algorithm, 778-784,
2009.

R. Cole and R. Hariharan, Verifying candidate matchesparse
and wildcard matching. IfProceedings of the Annual ACM Sym-
posium on Theory of Computing, 592—-601, 2002.

B. Commentz-Walter. A string matching algorithm fast tdme
average. In Proc. of théth International Colloguium on Automata,
Languages and Programming, LNCS 71, 118-132, 1979.

M. Crochemore, A. Czumaj,
Plandowski, and W. Rytter. Fast practical multi-patterrtahig.
Information Processing Letters, 71(3/4):107-113, 1999.

Maxime Crochemore, Zvi Galil, Leszek Gasieniec, Kumso
Park, Wojciech Rytter. Constant-Time Randomized Par&tehg
Matching. SAM J. Comput. 26(4): 950-960, 1997.

T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introgrctto
Algorithms, 2nd Edition, MIT Press and McGraw-Hill, 2001.
M. Fischer and M. Paterson, String matching and othedpcts.
In Proceedings of the 7th SAM-AMS Complexity of Computation,
113-125, 1974.

P. Indyk, Faster algorithms for string matching probse Match-
ing the convolution bound. IProceedings of the 38th Annual
Symposium on Foundations of Computer Science, 166—173, 1998.
A. Kalai, Efficient pattern-matching with don't caretn Pro-
ceedings of the 13tnnual ACM-SAM Symposium on Discrete
Algorithms, 655-656, Philadelphia, PA, USA, 2002.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast patterntchang
in strings.S5AM Journal on Computing, 6(1):323-350, 1977.

G. Kucherov and M. Rusinowitch, Matching a Set of Stangith
Variable Length don't Carestheor. Comput. Sci. 178(1-2): 129—
154, 1997.

© 2011 ACADEMY PUBLISHER

L. Gasieniec, T. Lecrog, W.

http://ww.snort. org.

BIOGRAPHIES

Meng Zhang received his Ph.D. in Computer Science
from Jilin University, in 2003. He is currently an As-
sociate Professor in College of Computer Science and
Technology, Jilin University. His main research interests
include stringology, network security and computational
biology.

Yi Zhang received her Ph.D. in Computer Science from
Jilin University, in 2009. She is currently an Associate
Professor in Department of Computer Science, Jilin Busi-
ness and Technology College. She is also a Postdoc
researcher in Jilin university. Her main research intsrest
include artificial intelligent and computational biology.

Jijun Tang Prof. Jijun Tang received his Ph.D. in
Computer Science from University of New Mexico, in
2004. He is currently an Associate Professor in Depart-
ment of Computer Science and Engineering, University
of South Carolina. His main research interests include
high performance algorithm development, computational
biology and engineering simulation. During the past five
years, His research has been supported by ONR, NSF and
NIH.

Xiaolong Bai is currently a third year undergraduate stu-
dent in College of Computer Science and Technology of
Jilin University. His research interests include algarith
design and network security.

