
A Hybrid Method for XML Clustering by 
Structure and Content 

 
Yong Piao and Xiu-kun Wang 

School of Electronic and Information Engineering, Dalian University of Technology, Dalian, China 
Email: {piaoy, jsjwxk}@dlut.edu.cn 

 

 

 
Abstract—An effective XML cluster method called neighbor 
center clustering algorithm (NCC) is presented in this paper, 
whose similarity is obtained through both structural and 
content information contained in XML files. Structural 
similarity is firstly measured by frequency-path model and 
its similarity calculation algorithm with position and 
frequency weight by longest common subsequence is 
introduced. In order to improve the performance and 
precision, the frequency-path model is further extended by 
considering the structure and content information 
simultaneously. Experiments show that the NCC embed 
with hybrid similarity calculation method can obtain high 
purity and F-measure value and is effective and applicable 
for clustering XML with both homogenous and 
heterogeneous structures. 
 
Index Terms—neighbor center clustering, position and 
frequency weight, longest common subsequence, hybrid 
similarity calculation 

I. INTRODUCTION 

XML (eXtensible Markup Language), as a common 
data representation and exchange format on the Internet, 
contains a rich entailment of information. Also, data 
mining on XML has become an important part in text 
mining research, in which large-scale text clustering is 
one of the effective solutions for massive texts. An 
efficient and fast XML clustering mechanism, which can 
provide better data for decision support, will greatly 
shorten the information retrieval time, improve the 
efficiency of data query and help find out potential value 
of information. The most important feature of XML 
document, which is different from other textural ones, is 
its structural character. For this reason, we believe that 
the structure of XML should also play important role in 
XML clustering. 

Considering the structural character of XML 
documents, many traditional text clustering methods are 
not suitable for XML. Currently, partitioning and 
hierarchical methods are most widely used in XML 
clustering [1-3], but the effect of these two traditional 
methods in dealing with irregular non-spherical 

document clustering is not so satisfactory, and besides, 
they are not well in distinguishing noise or isolated points 
effectively. In terms of computational complexity, the 
searching time of traditional methods for cluster centers 
increase rapidly, this is an obstacle to get better 
performance in XML clustering. In addition, traditional 
partitioning methods represented by K-Means and K-
Medoids have to be specified the clusters number K in 
advance. Due to these reasons, a neighbor center 
clustering algorithm with similarity (NCC) is proposed in 
this situation. It is not only simple, but can find non-
spherical structure documents and distinguish noise or 
isolated point effectively as well. 

Similarity among documents is the key issue in the 
field of document clustering. So far, the methods 
proposed for this purpose can be roughly classified into 
three types, namely by the graph matching, by the edit 
distance or by the tree path model. Reference [4] 
describes an XML document with a directed graph and 
calculates similarity between XML documents by graph 
matching in order to cluster XML with similar structure. 
But the result is not satisfactory due to its low accuracy. 
Reference [5] improves [4], in which its method leads to 
some limitations to clustering results without considering 
the order relationships between edges in the discussion of 
equal direct edges. Reference [6] and [7] introduce a 
concept of edit distance. Reference [6] calculates the 
similarity with graph matching algorithm by describing 
XML as a directed graph, while [7] uses tree editing 
distance to calculate the similarity, so do [1,8,9]. 
However, it is not suitable for document processing due 
to its high computational complexity. As the graph 
cannot express XML structure well, Reference [10] 
proposes a tree path model representation, which is 
simpler than the tree editing distance with a lower time 
complexity, but it uses a complete path matching method 
widely while handling the matching procedures, so do 
references [11,12] in frequent path mining and matching, 
including its improvement [13]. The complete path 
matching method is useful in XML clustering in tree path 
models because XML structure information ignored by 
the complete path matching has little impact on clustering 
XML which have the same DTD, but it is not true if their 
DTDs are different, e.g. they have various structures. 

In this paper our similarity measurement among XML 
documents with different structures is firstly presented, 
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which is a similarity calculation algorithm with position 
and frequency weight by longest common subsequence 
(PFWLCS). On the basis of expressing XML document 
structures by correspondent paths using DOM tree, we 
extend the original tree path model to the frequency-path 
model by which we not only preserve label information of 
correspondent nodes, which decrease the original tree path 
model scale consumedly on the condition of not losing 
meaningful information and reduce the burden for later 
calculation, but also save the frequency structure of the 
original XML to improve the accuracy of the similarity. It 
makes the calculated similarity closer to the actual value 
by using the longest common subsequence method with 
position and frequency information. Furthermore, we 
continue to improve the frequency-path model by also 
considering node textural content, which makes the result 
more accurate and applicable, e.g. the hybrid method. 

In Section II, Frequency-Path model and basic idea of 
hybrid similarity calculation methods are briefly 
introduced, followed by main steps of cluster algorithm 
NCC in detailed description in Section III. In Section IV 
experiments and its results are given showing better 
performance of our methods. Finally we summarize the 
whole work and provide future applications and research 
directions. 

II. SIMILARITY CALCULATION 

A.  Structural Similarity 
1) Frequency-Path Model 
Definition 1: FPath=(f, v1, v2, …, vm, c1, c2, …, cm), 

where f denotes the number of occurrences of path in the 
current document; (v1,v2,…,vm) is a node sequence from 
the root of XML DOM tree to one of its leaves; the ci in 
(c1,c2,…,cm) denotes the number of occurrences of vi, 
whose ancestor nodes v1,v2,…,vi-1 are the same; m denotes 
the length of FPath (the node sequence). 

Definition 2: XMLDoc=(FPath1, FPath2, ..., FPathn), 
FPathi and FPathj are not the same FPath. We call two 
FPaths same only if the nodes at corresponding location 
of the two FPaths are completely identical. n denotes the 
number of various FPath. 

Before calculating the similarity of XML, we extract 
the structure information of XML into FPaths where only 
the label of the node (structure) is considered. Other 
information such as data type and constraints are ignored. 
In Fig. 1 is an XML tree model and in Fig. 2 is a path 
model with its statistical information. 
 

2) Frequency-Path Model Generation 
Fig. 3 is the pseudo code of the algorithm to create the 

FPath model from XML document. The input of this 
algorithm is an XML document and output is an FPath 
model of it. 

We also consider the semantic meanings that a node 
name can have during the structure matching. It is 
necessary since we are aiming at XML documents from 
different DTDs, which may not use the same word to 
express the similar meaning. For expressing the similar 

meaning only one word was taken from the synonymous 
word sets provided by WordNet. Besides, we assume that 
the node in higher hierarchy contributes more to the 
similarity than in lower hierarchy during the FPath 
matching. We will cover that in detail later. 

 
Figure 1. XML DOM Model 

For reducing the complexity of getting semantic FPath, 
we use a parameter ζ to denote the depth of the node 
hierarchy being considered. For example, if ζ=1, we just 
consider the meaning of the first node (root) of FPath. 

 

 
Figure 2. A frequency-path model  

 
3) Algorithm PFWLCS 
In this part the algorithm PFWLCS (Position and 

Frequency Weight by Longest Common Subsequence) 
used to calculate structural similarity of XML documents 
is described.  

Definition 3: Subsequence: we call <ai1, ai2, …, aik> a 
subsequence of <a1, a2, …, an>, only if 
1<=i1<i2<…<ik<=n. 

Definition 4: Common subsequence: we call <c1, c2, …, 
ck> one common subsequence of <a1, a2, …, an> and <b1, 
b2, …, bm>, only when <c1, c2, …, ck> is a subsequence of 
<a1, a2, …, an> and also a subsequence of <b1, b2, …, 
bm>, k denotes the length of the common subsequence 
<c1, c2, …, ck>. 

In our method, we use Longest Common Subsequence 
(LCS) in matching two given paths. In Table I different 
situations are illustrated by xPath [10-12], PCXSS [13] 
and LCS[14-15] respectively, showing more information 
can be kept by using LCS than other methods. 

 

1 automobile manufacturer 20 1 
1 automobile model 20 1 
1 automobile year 20 1 
1 automobile engine type 20 1 1 
1 automobile transmission 20 1 
1 automobile feature safety 20 15 1 
1 automobile feature drive 20 15 1 
1 automobile feature seat 20 15 1 
1 automobile feature mpg 20 15 1 
9 automobile feature pro 20 15 9 
2 automobile feature con 20 15 2 
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Figure 3. FPath model generation 

We introduce a position-frequency weight vector 
[W(1), W(2), …, W(n)], where (1, 2, ..., n) is the index of 
nodes in a FPath, representing the hierarchy level. We 
assume that the node in higher hierarchy contributes more 
to the similarity than in lower hierarchy during FPath 
matching. Then the weight function W(i) must be 
digressive with i increases. In addition, W(i) also has the 
character below. 

 
W(i)>0, ∑W(i)=1 (i=1, …, n) 

 
TABLE I. 

PATH MATCHING USING DIFFERENT METHODS 

No. Path1 Path2 LCS PCXSS xPath 

1 (a,b) (a,b,y) (a,b) (a,b) NULL 

2 (a,b) (y,a,b) (a,b) (a,b) NULL 

3 (x,a,b) (y,a,b) (a,b) (a,b) NULL 

4 (a,b,x) (a,b,y) (a,b) NULL NULL 

5 (a,b,x) (a,k,b,y) (a,b) NULL NULL 

6 (a,h,b,x) (a,k,b,y) (a,b) NULL NULL 

7 (a,b,x,h) (a,b,y,k) (a,b) NULL NULL 
 
To further explain the necessity for position-frequency 

weight vector, the followings are discussed. 
Suppose there are several paths when calculating the 

XML document similarity: P1(1, a, b, c, 1, 1, 1), P2(1, a, 
b, x, 1, 1, 1), P3(1, a, x, b, 1, 1, 1), P4(2, a, b, x, 2, 2, 1). 

For the similarity comparison of actual data, the nodes 
in higher hierarchy have greater effect in the XML 
document tree, namely the more front position the node is 
at, the more contributions to the similarity during FPath 
matching. Therefore, the similarity between P1 and P2 is 
significantly higher than it between P1 and P3. It shows 

the weight function W(i) is closely related to the position 
factor, namely position weight T(i). 

We also notice that the similarity degree between P1 
and P4 is significantly greater than it between P1 and P2. 
That is because in the case of FPaths with the same node 
position, higher frequency of the same node indicates its 
role is more dominant than other nodes. Hence, the weight 
function W(i) is also closely related to node’s frequency 
factor, namely frequency weight F(i). 

From the above, the position-frequency weight function 
W(i) is composed of T(i) and F(i), where the position 
weight function T(i) =1/2i . As for the frequency weight 
function F(i), we first define frequency equation of node 
Vi as cilog(ci/fs+1) (ci is from the definition 1; fs is ∑f for 
all FPaths in the document). Then the normalized function 
of frequency weight can be expressed as (1). 

1
( ) log( / 1) log( / 1)

n

i i s i i s
i

F i c c f c c f
=

= + +∑                     (1) 

and the position-frequency weight function W(i) is, 
W(i) = (T(i) + F(i))/2                                            (2) 
 
We prove that (2) satisfies the features of W(i), e.g. 

W(i)>0 and ∑W(i)=1. 
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Definition 5: FPath similarity: Suppose two FPaths, 
FPath1 =(fp1, x1, x2, …, xn, cx1, cx2, …, cxn), FPath2 = (fp2, 
y1, y2, …, ym, cy1, cy2, …, cym), the longest common 
subsequence (LCS) is LCSPath=(z1, z2, ..., zk), the 
hierarchy of the nodes in LCSPath in FPath1 is 
Hierarchy1=(l1, l2, ..., lk) orderly, the hierarchy of the 
nodes in LCSPath in FPath2 is Hierarchy2= (h1, h2, ..., hk) 
orderly. Then the similarity of FPath1 and FPath2 is 
described as (3) below. 

k n k m

i=1 j=1 i=1 j=1

similarity= ( ) ( )+ ( ) ( ) 2i iW W j W W jl h
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑

               (3) 
In some practical situations, the occurrence number of 

the same path is also an important component of XML 
structure information, but (3) does not contain the path 
frequency information and just uses label information, 
thus leading to the situation that the calculated result does 
not represent the true sense of XML similarity. So we 
integrate the path frequency into (3) in order to make the 
result closer to actual value. 

From definition 5, fp1 and fp2 are the occurrence 
numbers of FPath1 and FPath2, while fp1/ fs1 and fp2/ fs2 

Name: getMypathModel 
Input:  an XML document to: xmlDocumentName 
           node hierarchy: ζ 
Output: a text document stored F_Path model: mypathModel 
Pseudo code: void getMypathModel  

(xmlDocumentName, ζ, mypathModel.txt) 
{doc=getDocument(xmlDocumentName); 

//Parse XML document 
root=getRoot(doc);//get doc root 
getMypathModel(root, mypathModel);  
//get the paths and store in mypathModel.txt 
 
//the semantic process 
Initialize wordList //for the semantic process 
while(ζ>0){ 

for (each Path in mypathModel.txt){ 
node=getNodeFromPath(ζ);//get the ζ node 
if(node exists in Line j of wordList) 

Use the first word of Line j in wordlist to 
 replace node; 

else 
Insert node and its synonymous words into  
a new line in wordlist; 

} 
ζ--; 

}} 
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are the path frequencies of FPath1 and FPath2 (fs1 is the 
sum of all path frequency in FPath1, and fs2 is the sum of 
all path frequency in FPath2). On the basis of the TF-IDF 
statistics theory widely used in text mining, we assume 
that, the larger the recurrent number of a path in XML is, 
the higher path frequency it is. That is to say, the more 
important the path is, the more structure information the 
path contains. Therefore, the similarity of path should be 
appropriate to be improved, in which the path frequency 
is large and the degree of increasing similarity should be 
within the scope of [1-∑iW(li)]/ ∑jW(j), i=1..k, j=1..n, so 
(3) is modified as follows. 

 
k k k k

1 2i=1 i=1 i=1 i=1
n n m m

1 2

j=1 j=1 j=1 j=1

( ) ( ) ( ) ( )
similarity= (1 (1 ) )+ (1 (1 ) ) 2

( ) ( ) ( ) ( )

i i i ip p

s s

W W W W
f f
f fW j W j W j W j
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⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ (4) 
 

Definition 6: XML document similarity: Suppose two 
XMLDocs, XMLDoc1= (FPath1, FPath2, ..., FPathn), 
XMLDoc2= (FPath1’, FPath2’, ..., FPathm’), m>=n, Each 
FPath in XMLDoc1 finds LCS with every FPath in 
XMLDoc2, and calculates the similarity according to (4). 
We denote the biggest similarity as si, the similarity 
between XMLDoc1 and XMLDoc2 is formed with (5) 
below. 

n n

i=1 i=1

Similarity= + 2
i i

n ms s⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

                         (5) 
 

 
Figure 4. PFWLCS algorithm 

Fig. 4 is the pseudo code of the algorithm to calculate 
the similarity of XML document based on the FPath 
model. The input of this algorithm is two FPath models, 
and the output is the similarity of the two XML 
documents, from which the two inputted FPath models 
come. 

 

B.  Hybrid XML similarity calculation 
 

The PFWLCS algorithm based on frequency and path 
is introduced previously. Although it can obtain better 
result when processing XMLs from different DTDs, 
structured information is mainly concerned, e.g. structural 
similarity without considering node content. We know 
that the content feature of XML structure has also effects 
on XML document classification and clustering and has 
contributions to the result of data mining, which should 
not be ignored.  

The content information is the textual part between 
tags. A method called SCSC (Similarity Calculation with 
Structure and Content) is presented in this subsection. The 
Frequency-path model is firstly improved in SCSC by 
adding the element content vector under the same path, 
making the presentation of XML documents richer. 
Moreover, a level ratio is introduced in XML similarity 
calculation, considering both the structural and element 
content similarity and making the result more sensible. 

 
1) Improved frequency-path model 
Definition 7: Improved tree path model: IFPath=(f, 

v1,v2,…,vm , /E/,c1,c2,…,cm), where f denotes the number of 
occurrences of path in the current document; (v1,v2,…,vm) 
is a node sequence from the root of XML DOM tree to 
one of its leaves; E is a content vector (e1,e2,…,et) under 
structural path (v1,v2,…,vm); the ci in (c1,c2,…,cm) denotes 
the number of occurrences of vi, whose ancestor nodes 
v1,v2,…,vi-1 are the same; m denotes the length of IFPath 
(the node sequence). 

 

 
Figure 5. An improved FPath model 

 
Example in Fig. 5 is improved based on the model 

introduced before. A content vector (e1,e2,…,et) is 
supplemented, by which the XML content information is 

1 automobile manufacturer / Cadillac / 20 1 
1 automobile model / Cadillac CTS / 20 1 
1 automobile year /2004 / 20 1 
1 automobile engine type / 255 hp / 20 1 1 
1 automobile transmission / Speed Manua / 20 1 
1 automobile feature safety  

/ Driver-Passenger airbags / 20 15 1 
1 automobile feature drive / RWD / 20 15 1 
1 automobile feature seat / 5 / 20 15 1 
1 automobile feature mpg / City / 20 15 1 
9 automobile feature pro  

/ ABS Air Base CD Player Leather 
                            Seats Side Theft Tracking 
                            Traction Control Highway / 20 15 9 
2 automobile feature con  

/ Transmission Changer / 20 15 2 

Name: PFWLCS 
Input: two F_Path model: mypathModel_1, mypathModel_2 
Output: similarity of two Documents 
Pseudo code: double getPFWLCSSimilarity 

(mypathModel_1, mypathModel_2) 
{ //n1, n2: number of paths in mypathModel_1, mypathModel_2 

Initialize n1, n2; 
//fs1, fs2: sum of path frequencies in the two models 
Initialize fs1, fs2; 
if(n1>n2) 

return getSimilarity(mypathModel_2, mypathModel_1); 
else{ 

for(each path p1_i in mypathModel_1){ 
for(each path p2_j in mypathModel_2){ 
//a1, a2: position-frequency weights of p1_i,p2_j 
Initialize a1, a2; 
//get the longest common path of p1_i,p2_j 
lcs=getLCS(p1_i,p2_j); 
//w1,w2: position-frequency weights of the lcs 
Initialize w1,w2; 
im1=w1/a1; 
sim2=w2/a2; 
//f1,f2: path frequency of p1_i,p2_j 
Initialize f1,f2; 
sim=(sim*(1+(1-sim1)f1/fs1) 

+sim2*(1+(1-sim2)f2/fs2))/2; 
} 
similarity += sim; 

} 
} 
//get the similarity of documents 
similarity=(similarity/n1+similarity/n2)/2; 
return similarity; 

} 
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further kept, making hybrid computation of XML 
similarity of both structure and content possible. 

 
2) Content similarity calculation 
Suppose we have two paths P1 and P2 belonging to 

documents D1 and D2 respectively, E1 is content vector of 
P1 and E2 is content vector of P2. 

Before processing, we use TF-IDF theory to complete 
feature word selection and extraction against E1 and E2, 
resulting in feature word vector E1’ and E2’. Then we use 
cosine similarity equation to get content similarity.  

Similarity(content) = 
n1+n2
ω

                      (6) 

Where n1 is the dimension of E1’ and n2 is the 
dimension of E2’, ω is the number of common feature 
words E1’ and E2’ have. 

3) Overall Similarity Calculation 
Due to the reason that a new part is added to the 

frequency-path model, the original similarity calculation 
method is about to be modified accordingly. Similarity of 
a complete document is defined: 

 
Sim =α*Sim content +(1-α)* Sim structure             (7) 
 

The final similarity is determined by both structure and 
content similarity, where α is called the level ratio 
parameter, presenting the structure layer of the element 
content. Structural similarity is still calculated using 
PFWLCS algorithm. 

The higher level an element is at, the more closely it is 
to root node and has more contribution. That is, the level 
ratio factor α is greater and so has close relation with the 
position factor T(i):  

α=(T(i)+T(j))/2. 
T(i) and T(j) are two position weights of the last nodes 

in the compared paths separately. 

III. XML DOCUMENTS CLUSTERING 

A.  Steps of Algorithm NCC 
1)  A point is chosen as the initial cluster center O1 

from a data set. 
2)  Set the center threshold parameter (ξ1, ξ1≥0). Then 

the similarity of O1 between each remaining points from 
the data set is calculated and compared. If the similarity is 
greater than ξ1, the point will be put into the cluster C1, 
where O1 is in. 

3)  Set the neighbor threshold parameter (ξ2, ξ2≥ξ1). At 
this time, the similarity of the points except O1 in C1 with 
the remaining points from the data set is calculated and 
compared again. If the similarity is greater than ξ2, the 
point will be put into the cluster C1. 

4)  Set the isolated threshold parameter (φ, φ=1, 2… n). 
If the number of points in C1 is less than φ, the cluster C1 
will be discarded. 

5)  A point is chosen as another cluster center O2 from 
the remaining points in the data set. Repeat 2) 3) 4) steps 
until there are no points in the data set left. 

 
Figure 6. SCSC algorithm 

 

B.  Analyses of NCC 
The basic idea of NCC algorithm is trying to identify 

the actual cluster from the data set in each iterative step 
greedily. Below explains the main idea of NCC algorithm. 

Considering the XML document set D={d1, d2, d3, d4, 
d5, d6} (di denotes the ith XML document), where d1, d2, 
d3, d4, d5 are actually in the same cluster, while d6 is in 
another one. Set the parameters (ξ1=0, ξ2=0.1, φ=1). 

NCC arbitrarily selects d1 as the initial cluster center 
and then finds the similarity between d1 and d2 greater 
than ξ1, so d2 is put into the cluster C1, where d1 is. So 
does d3. At the moment, in order to avoid the situation that 
the chosen cluster center may be irrelevant resulting in 
imperfect clusters, it calculates and compares the 
similarity of the points except d1 in C1, in this case d2 and 
d3, with the remaining points. The purpose here is to 
spread the function of cluster center out over the 
neighborhood points in one cluster, which tries the 
number of matched points into one cluster, e.g. C1, as 
many as possible. In Fig. 7, d4 and d5 are also put into the 
cluster because of d2 and d3. 

Compared with some traditional algorithms, the NCC 
algorithm reduces the repeated calculation complexity on 
choosing cluster center in each iterative step, and 
improves overall efficiency. The clustering result from Fig. 

Name: Similarity calculation using SCSC 
Input: Two improved frequency-path models: 

mypathModel_1, mypathModel_2 
Output: Similarity score between the two documents 
Process: double getSimilarity 

(mypathModel_1, mypathModel_2) 
{ Initialize n1, n2; 

//n1, n2: number of different paths in the two models 
if(n1>n2) 

return getSimilarity(mypathModel_2, mypathModel_1); 
else{ 

//Extract element content feature words using TF-IDF 
mypathModel_1’=do_TFIDF(mypathModel_1); 
mypathModel_2’=do_TFIDF(mypathModel_2); 
for( each path p1_i in mypathModel_1’){ 

for(each path p2_j in mypathModel_2’){ 
//Get structural similarity using PFWLCS 
SimS=getPFWLCSSimilarity(p1_i, p2_j); 
//Get number of common feature words 
w=getCommonElet(p1_i, p2_j); 
//t1, t2: number of feature words 
Initialize t1, t2; 
//Calculate content similarity 
SimC=w/sqrt(t1+t2); 
//Ti, Tj: position weights of last nodes 
//in p1_i, p2_j 
Initialize Ti, Tj; 
//calculate level ratio factor 
a=getPostion(); 
//calculate similarity between two paths 
sim=a*SimC (1-a)*SimS 

} 
similarity +=sim; 

}} 
similarity=(similarity/n1+similarity/n2)/2; 
return similarity;} 
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7 is non-spherical, and besides, isolated points or isolated 
clusters are also identified, e.g. the point d6 in the Figure. 

 
Figure 7. An Example of NCC clusters 

 
NCC algorithm is suitable for XML clustering 

considering the XML structural character, while some 
vectorization methods ignore this kind of information 
during their calculation. It not only retains XML 
document’s structural information, but also evaluates 
XML’s textual meaning when with the method SCSC 
embedded. Therefore, the NCC algorithm based on SCSC 
has advantages in XML document clustering. 

 

C.  Evaluation of NCC 
At present the two parameter indexes used widely to 

evaluate the overall performance of a clustering algorithm 
are the Purity and F-measure. The experimental data are 
the known document set or have usually been categorized 
before evaluation [16]. The purity of the cluster r is 
defined as follows: 

1P(Sr)= * ( )i
r

r
Max n

n
 

The purity of the overall clustering is defined as: 

1

Purity= P(Sr)
k

r

r

n
n=

∑  

Where ni
r is the number of document belonging to type 

i, which is assigned to cluster r; nr is the number of 
documents in cluster r; n is the number of the whole 
document set. 

High purity can be easily achieved when the number of 
clusters becomes larger. In particular, the purity will be 1 
if each document gets its own cluster. Thus, F-measure is 
introduced as a harmonic mean to combine both precision 
and recall factors. 

Recall: Recall(i,r) = n(i,r) / ni 
Precision: Precision(i,r) = n(i,r) / nr 
where n(i,r) is the number of document belonging to 

type i in the cluster r; nr is the number of document in 
cluster r; ni is the number of documents of type i. So the 
F-measure between cluster r and type i is defined as 
follows. 

2 * ( , ) * ( , )f(i,r)=
( , ) ( , )

recall i r precision i r
recall i r precision i r+

 

The F-measure of the overall clustering is defined as: 

F= Max{f(i,r)}r

i

n
n∑  

IV. EXPERIMENT AND DISCUSSION 

The goal of our experiments is to examine the 
effectiveness of the SCSC by calculating the similarity of 
XML documents using both structure and content 
information. Further, SCSC is embedded into NCC in 
clustering XML and we obtained satisfactory results. 

Two data sets are used in the following experiments. 
The first data set used in our experiment is a real life data 
set introduced in [17], which is generated in the 
XML/XSLT version of web pages from 20 different sites 
belonging to 4 categories, labeled as “automobile” , 
“movie” , “reference” and “software”. There are a total of 
120 documents: 24 in “automobile”, 24 in “movie”, 48 in 
“reference” and 24 in “software”. There is no cross-
labeling and the depth of the DOM tree of these XML 
documents is 5. The second data set is from Sigmod XML 
collection, 84 files and 4 DTDs are included.  

In the experiments, NCC method is used to cluster the 
two data sets and evaluate results according the recall 
ratio, accuracy and F-measure introduced before. 

First we use improved frequency-path model to extract 
information from all documents, then complete feature 
selection and extraction. We randomly choose one file 
from two data sets as cluster center and calculate 
similarities of other files against the cluster center 
respectively, this process is repeated 10 times and the 
result is as following: 

 
TABLE II. 

EXPERIMENT RESULT 
 DataSet1 

(SCSC) 
DataSet1 
(PFWLCS) 

DataSet2 
(SCSC) 

Average 
Values 

Recall Ratio 81.13% 83.02% 88.56% 
Accuracy 94.08% 94.29% 95.81% 
F-measure 87.13% 88.30% 92.17% 
Purity 94.35% 93.89% 85.96% 
Clusters 3.72 3.80 3.87 

 
From the Table II, results of dataset1 and dataset 2 are 

all satisfactory. Specifically, results of the first two 
columns, e.g. dataset1 (SCSC) considers both the structure 
and content information, while dataset1 (PFWLCS) is 
calculated by considering only structure information. Each 
item of dataset1 (SCSC) is a little lower than dataset1 
(PFWLCS), that is because in dataset1 XML files are 
from many different DTDs, even in the same cluster. 
Therefore structural information plays more important 
role than content information in this situation. However, 
considering both the structure and content information is 
more nature and reasonable in practice and can reflect 
more real feature of data. 

A good similarity calculation will make the similarity 
closer within one cluster and larger outside the cluster. In 
the following experiments, we pick up one file arbitrary 
from 4 clusters of the two datasets separately. We 
compare the similarity of this file to other files in its 
cluster and repeat this process 10 times. The following 
results are obtained. 
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TABLE III.  
 SIMILARITY COMPARISON IN DATASET1 

SimAvg(Si,Sj) S1 S2 S3 S4 
S1 0.4853 0.0054 0.0026 0.0018 
S2 0.0054 0.4526 0.0021 0.0034 
S3 0.0026 0.0021 0.4722 0.0012 
S4 0.0018 0.0034 0.0012 0.4336 

 
Si is the ith cluster in Dataset1, SimAvg(Si, Sj) is the 

average similarity between documents in cluster Si and Sj.  
TABLE IV.  

SIMILARITY COMPARISON IN DATASET2 

SimAvg(Ci,Cj) C1 C2 C3 C4 
C1 0.9646 0.1326 0.1464 0.1318 
C2 0.1326 0.9524 0.1298 0.1431 
C3 0.1464 0.1298 0.9346 0.1373 
C4 0.1318 0.1431 0.1373 0.9546 

 
Ci is ith cluster in Dataset2, SimAvg(Ci,Cj) is the average 

similarity of  documents in clusters Ci and Cj. 
From the two tables above, Similarities in the same 

cluster are all far greater than in other clusters using 
SCSC. We also notice that scores of dataset2 is a litter 
greater than in dataset1, this is because most XML files in 
dataset1 are from different DTDs and structure 
information become more significant, while in dataset2 
XML files in one cluster are most from same DTD and 
content information become important. Anyway, SCSC 
can handle both of these conditions and results showing 
that the hybrid method is more applicable and effective. 
 

V. CONCLUSION 

We have demonstrated an XML document clustering 
method NCC, when embed with SCSC higher 
effectiveness will be achieved by considering both 
structure and content similarity. On one hand, the 
structural similarity is calculated using method PFWLCS 
with position frequency weight, based on frequency path 
model, in which more valuable information in XML 
clustering is kept using the longest common subsequence 
method and the position frequency weight vector. On the 
other hand, XML’s content similarity is obtained through 
TF-IDF method. Experiments showed SCSC method 
could greatly help to improve clustering precision and 
performance, decrease complexity when embedded in 
NCC, and is suitable to both homogenous and 
heterogeneous XML documents. 
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